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Receptivity of compressible boundary layers over porous surfaces

Pierre Ricco * and Ludovico Fossà
Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom

(Received 2 November 2022; accepted 7 June 2023; published 19 July 2023)

Supersonic pretransitional boundary layers flowing over porous flat and concave sur-
faces are studied using numerical and asymptotic methods. The porous wall is composed
of thin equally spaced cylindrical microcavities. The flow is perturbed by small-amplitude,
free-stream vortical disturbances of the convected gust type. From the proximity of the
leading edge, these external agents generate the compressible Klebanoff modes, i.e.,
low-frequency disturbances of the kinematic and thermal kind that grow algebraically
downstream. For Klebanoff modes with a spanwise wavelength comparable with the
boundary-layer thickness, the porous surface has a negligible effect on their growth. When
the spanwise wavelength is instead larger than the boundary-layer thickness, these distur-
bances are effectively attenuated by the porous surface. For a specified set of frequency and
wavelengths, the Klebanoff modes evolve into oblique Tollmien-Schlichting waves through
a leading-edge-adjustment receptivity mechanism. The wave number of these waves is
only slightly modified over the porous surface, while the growth rate increases, thus
confirming previous experimental results. An asymptotic analysis based on the triple-deck
theory confirms these numerical findings. When the wall is concave, the amplitude of the
Klebanoff modes is enhanced by the wall curvature and is attenuated by the wall porosity
during the initial development.

DOI: 10.1103/PhysRevFluids.8.073903

I. INTRODUCTION

Passive control methods aiming to delay laminar-to-turbulent transition in high-speed wall flows
have been the subject of several studies of numerical, experimental, and theoretical nature. The
development of new flow control strategies is critical to several aerospace applications ranging from
the heat-transfer management on the surface of atmospheric reentry vehicles and in supersonic trans-
port systems [1,2] to the design of hypersonic quiet tunnels where the level of noise contamination
has to be reduced to a minimum [3].

Although the inviscid second mode of instability is predominant in high-Mach number boundary
layer flows [4], the presence of both the relatively low-frequency first-mode stability disturbances
and the laminar streaks triggered by free-stream vorticity has been documented in wind-tunnel
experiments. Muñoz et al. [5] observed streaky structures in the cross flow over a cone in a Ludwieg
tube at Mach 6. In the experiments of Borg et al. [6] and Hofferth et al. [7], the energy content
measured at low frequency was comparable with the energy peak associated with the second
instability mode at higher frequency for all the unit Reynolds numbers considered. Graziosi and
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PIERRE RICCO AND LUDOVICO FOSSÀ

Brown [8] also measured large low-frequency disturbances in a pretransitional Mach-3 boundary
layer exposed to vortical and acoustic free-stream fluctuations.

The second mode of instability is effectively attenuated by passive porous coatings. Fedorov and
coworkers first showed, in their linear stability and experimental analyses [9–13], how the presence
of a porous surface could result in an attenuation of the acoustic disturbances that propagate
within the boundary layer at the expense of a slight enhancement of the Tollmien-Schlichting
waves.

This type of porous coatings has the advantage of interacting with small-amplitude disturbances
without affecting the laminar base flow. These early analyses paved the way to further studies on
ultrasonically absorptive coatings [14–16] and have been extended to include irregular geometries,
acoustic scattering effects, and coupling mechanisms between adjacent pores [17–19]. Other re-
searchers have studied surfaces with two-dimensional, equally spaced grooves of constant width
[20] and porous surfaces with irregular microstructures [21]. Egorov et al. [22] investigated the
effect of a porous layer on the receptivity of a boundary layer to free-stream disturbances of the
acoustic type. In his review paper, Fedorov [23] advocated further study on porous coatings for the
control of boundary-layer receptivity and transient growth.

In the words of Morkovin [24], the term receptivity refers to the process of internalization of
the free-stream disturbances in the boundary layer, their subsequent downstream evolution and
the excitation of unstable disturbances. When the disturbance amplitude is relatively high, the
early stage of transition in flat-plate boundary layers is dominated by the algebraic growth of
externally forced perturbations rather than the exponential amplification of normal modes. The
streamwise-elongated fluid structures of nearly constant spanwise wavelength, often referred to as
streaks or Klebanoff modes [25,26], reach a saturation level and break down to turbulence through a
secondary-instability mechanism [27]. Their evolution was the subject of experiments performed
in incompressible boundary layers [28–30]. A mathematical description of the incompressible
Klebanoff modes was developed by Goldstein and coworkers [31] (hereafter referred to as LWG99).
Through an asymptotic approach, they unraveled the physical interaction between the disturbances
in the free stream and the boundary layer. At downstream locations where the boundary-layer
thickness is comparable to the spanwise wavelength of the disturbances, the spanwise diffusion
is no longer negligible and the disturbance is described by the unsteady boundary-region equa-
tions. The mathematical formulation hinges on the assumption of streamwise-elongated structures,
which results in negligible streamwise diffusion and streamwise pressure gradient. The differential
problem that arises is of parabolic nature, and thus suitable to a downstream-marching treatment.
The computational cost is considerably lower than that required by the numerical solution of the
complete Navier-Stokes equations. Goldstein’s theory is based on the precise specification of the
initial and boundary conditions and accounts for the effect of the continuous outer forcing on the
growth of the Klebanoff modes as the flow evolves downstream. For a review of the theory, the
reader is referred to Ricco et al. [32].

Compressible laminar boundary layers are receptive to free-stream disturbances of the vortical,
acoustic, and entropic type [33]. The early stages of transition in compressible boundary layers are
thus considerably more complex than in the incompressible regime. The rather scarce experimental
literature has mainly focused on the role of the acoustic disturbances in supersonic quiet tunnels
[8,34]. However, the presence of free-stream vorticity is relevant, as all types of disturbances
are present downstream of a shock wave [35] and exist in supersonic and hypersonic wind
tunnels [3].

The linear incompressible theory of LWG99 was extended to the compressible case [36]
(hereafter referred to as RW7), to the nonlinear incompressible case [27], and to the nonlinear
compressible case [37]. The linear theory well describes the initial growth of the Klebanoff modes,
their amplitude still being small and the intermodal coupling negligible. The contribution of each
monochromatic mode can be studied separately in this case. The nonlinear theory instead applies
when the amplitude of the disturbance flow is comparable with that of the base flow. The combined
effect of a continuous free-stream spectrum of vortical disturbances and nonlinearity within the
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boundary layer was considered by Zhang et al. [38]. Wu and Dong [39] included the contribution
of short-wavelength free-stream disturbances in incompressible and compressible boundary layers.
The spanwise and wall-normal wavelengths were comparable with the boundary-layer thickness,
that is, the wavelengths were much shorter than those considered by LWG99.

Free-stream vorticity has also been indicated as a critical cause for the generation and growth of
unsteady counter-rotating Görtler vortices [40–43]. A laminar boundary layer over a concave wall
is subject to an inviscid instability caused by the imbalance between the centrifugal force and the
radial pressure gradient. Free-stream vorticity triggers the onset of Klebanoff modes near the leading
edge, which, because of the wall curvature, evolve downstream into Görtler vortices, as shown by
Wu et al. [43], Xu et al. [44], and Xu et al. [45].

Motivated by Egorov et al. [22] and Fedorov [23], we study the effect of porous surfaces on
the receptivity of supersonic boundary layers excited by free-stream vortical disturbances and, in
particular, on the generation and evolution of compressible Klebanoff modes and highly oblique
Tollmien-Schlichting waves (TS) over these porous surfaces. We adopt the porous-layer model first
utilized by Fedorov et al. [9], which is characterized by a regular microstructure of thin, uniformly
spaced cylindrical pores. To our knowledge, it is the first time that porous surfaces are utilized
to control Klebanoff modes over flat and concave porous surfaces. The mathematical framework
is discussed in Sec. II. The Klebanoff modes are studied in Sec. III A and the receptivity and
exponential growth of the TS waves are investigated in Sec. III B. The combined effect of wall
porosity and curvature is the subject of Sec. III C. Conclusions are presented in Sec. IV.

II. MATHEMATICAL FORMULATION

A supersonic uniform air flow with free-stream velocity U ∗
∞ and static temperature T ∗

∞ past an
infinitely thin plate is considered. The flow is described in a Cartesian frame of reference, where
x∗, y∗ and z∗ define the streamwise, wall-normal, and spanwise coordinates, respectively. The
leading edge of the plates is located at x∗ = y∗ = 0. The Mach number is M∞ ≡ U ∗

∞/c∗
∞, where

c∗
∞ =

√
γR∗T ∗

∞ is the speed of sound in the free stream, γ = 1.4 is the heat capacity ratio, and
R∗ = 287.05 Jkg−1 K−1 is the specific gas constant of air. All dimensional quantities are denoted
by the superscript ∗. Schematics of the physical domains are shown in Fig. 1, where sketch (a)
depicts the flat-wall system where Klebanoff modes turn into TS waves and sketch (b) represents
the concave-wall system where Klebanoff modes turn into Görtler vortices. The steady compressible
laminar boundary layer forming over the plate is referred to as the base flow [46]. The free stream is
perturbed by small-amplitude, homogeneous disturbances of the convected gust type, i.e., vortical
perturbations which are purely advected by the free-stream base flow. The spatial coordinates and
all the boundary-layer lengths and wave numbers are scaled by the spanwise wavelength of the
gust, λ∗

z . The time is scaled by λ∗
z /U ∗

∞. The velocity components, the density, the viscosity and the
temperature are normalized by their free-stream values and the pressure is scaled by ρ∗

∞U ∗2
∞ , where

ρ∗
∞ is the density of the fluid in the free stream.

The focus of the present work is on the early stage growth of the laminar streaks in a pretransi-
tional boundary layer. As the amplitude of the perturbations is assumed small, we perform a linear
analysis that supports single monochromatic disturbances as the coupling between different modes
and secondary instability effects can only be captured in the nonlinear case [38]. Albeit idealized,
this assumption permits to elucidate important aspects of the receptivity and early stage growth of
the boundary layer streaks [43]. Moreover, we assume that the perturbations are of low frequency
because it is well known that low-frequency, free-stream vortical disturbances are the most likely
to generate streamwise-elongated structures in the boundary layer. These structures include laminar
streaks over flat plates [25,26,28,30,47], and Görtler vortices on concave surfaces [41,43,48]. The
spectra of streaks measured by Matsubara and Alfredsson [29] [Fig. 9(b) therein] showed a higher
energy content at low frequency and a lower energy content at high frequency compared to the free
stream.
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FIG. 1. Schematics of the physical domains. Flat-plate system (top) and concave-surface system (bottom).

The small-amplitude, noninteracting perturbations in the free-stream are modeled by a single
monochromatic perturbation of the gust type,

u − ı = εû∞ei(kzz−kxt ) + c.c., (1)

where u is the free-stream velocity vector, ı is the streamwise unit vector, ε ≪ 1 indicates the
amplitude of the gust, û∞ = {̂u∞, v̂∞, ŵ∞} = O(1), and c.c. its complex conjugate. The gust is
characterized by a large wavelength ratio λ∗

x/λ
∗
z ≫ 1 and a small frequency kx = ω∗λ∗

z /U ∗
∞ ≪ 1,

where ω∗ is the angular frequency. A Reynolds number Rλ ≡ U ∗
∞λ∗

z /ν
∗
∞ ≫ 1 is defined, where

ν∗
∞ is the kinematic viscosity of the fluid in the free stream. We investigate downstream locations

at which the base-flow boundary-layer thickness is δ = (2x/Rλ)1/2 = O(1) and the spanwise and
wall-normal diffusions are comparable. A distinguished scaling kx = O(R−1

λ ) emerges (LWG99),
as the boundary-layer disturbances evolve downstream on a length scale comparable with the gust
streamwise wavelength. The disparity between the spanwise and streamwise scales results in O(ε)
free-stream fluctuations generating O(ε/kx ) streamwise velocity disturbances within the boundary
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layer. The mass, momentum, and energy balances of the boundary-layer disturbances are described
by the compressible unsteady boundary-region equations [36]. The small disturbance amplitude
relative to that of the base flow allows for their linearization, i.e., for ε/kx ≪ 1 or, equivalently,
εRλ ≪ 1. Thorough discussions of these scaling relationships are found in LWG99 and RW7 and
the references therein. The linearization results in a one-way coupling between the base flow and
the superposed disturbances. The analysis of the nonlinear effects, which come into play when
εRλ = O(1), is beyond the scope of the present study. The influence of nonlinearity on the growth
of laminar streaks and Görtler vortices, where the coupling is two-way as the streaks generated
within the boundary layer also affect the free-stream disturbances, has been studied by Ricco et al.

[27], Marensi et al. [37], Xu et al. [44], Xu et al. [45], and Marensi and Ricco [49].

A. The laminar base flow

The steady compressible boundary-layer equations are cast into a more compact form by
applying the Dorodnitsyn-Howarth coordinate transformation [46],

Y (x, y) ≡
∫ y

0
ρ(x, y̆) dy̆. (2)

In the absence of a streamwise pressure gradient, a similarity solution exists and a wall-normal
similarity variable

η ≡ Y

(
Rλ

2x

)1/2

(3)

is defined. The streamwise velocity, the wall-normal velocity and the temperature of the base flow
are

U = F ′(η), V = (2xRλ)−1/2(ηcT F ′ − T F ), T = T (η), (4)

where the prime denotes differentiation with respect to η and

ηc ≡
1

T

∫ η

0
T (η̆)d η̆. (5)

The base-flow solution (4) satisfies the coupled streamwise momentum and energy equations

[(μ/T )F ′′]′ + FF ′′ = 0, (6a)

Pr−1[(μ/T )T ′]′ + FT ′ + (γ − 1)M2
∞(μ/T )(F ′′)2 = 0, (6b)

subject to the boundary conditions

F (0) = 0, F ′(0) = 0, F ′(∞) → 1,

T (0) = Tw, T (∞) → 1. (7)

The Prandtl number is Pr = 0.7. The dynamic viscosity has a power-law dependence on the
temperature [50],

μ = T n with n = 0.76. (8)

This relation is preferred to the Chapman law (n = 1) as a more accurate model in the supersonic
regime [46]. Appendix A presents a validation study of the computation of the laminar base flow.

B. The unsteady disturbance flow

The boundary-layer flow is decomposed as the sum of the base flow and the small-amplitude
perturbation flow,

{u, v, w, τ, p} = {U, V, 0, T, −1/2} + ε{̃u, ṽ, w̃, τ̃ , p̃}ei(kzz−kxt ) + c.c., (9)
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where

{̃u, ṽ, w̃, τ̃ , p̃} =

{
u0,

(
2xkx

Rλ

)1/2

v0, w0, τ 0,

(
kx

Rλ

)1/2

p0

}
(x, η). (10)

The streamwise coordinate is scaled by the gust streamwise wave number k∗
x = 2π/λ∗

x , i.e., x =
kxx = 2πx∗/λ∗

x = O(1), where λ∗
x is the gust streamwise wavelength.

Following Gulyaev et al. [51,52] and LWG99, the solution is expanded as a weighted sum of the
two-dimensional {u(0), v

(0), 0, τ (0), p(0)} and three-dimensional {u, v, w, τ , p} gust signatures.
The evolution of the former was considered by Ricco [53] for the incompressible case, and is
dominant in the outer part of the boundary layer. We focus on the three-dimensional velocity
components because they dominate over the two-dimensional components as they exhibit the
disturbance growth in the core of the boundary layer. Expanding the solution in terms of the
three-dimensional gust signatures yields

{u0, v0, w0, τ 0, p0} =
(

ŵ
∞ +

ikẑv
∞

γ

)⎧⎨
⎩

ikz

kx

u, ikz

√
2x

kxRλ

v, w,
ikz

kx

τ , iκz

√
kx

Rλ

p

⎫
⎬
⎭, (11)

where γ = (k2
x + k2

z )1/2. Their evolution is governed by the compressible linearized unsteady
boundary-region (CLUBR) equations [36].

The CLUBR equations describe the evolution of the disturbances in the region III of RW7, which
occupies locations where η = O(1) and x = O(1) downstream of the leading edge. The CLUBR
equations are the limiting form of the compressible Navier-Stokes equations where the streamwise
diffusion and the streamwise pressure gradient have been neglected. The boundary-layer thickness
is comparable to λ∗

z and the contribution of the spanwise diffusion to the momentum and energy
balances is taken into account. The wall-normal and spanwise diffusions are quantified by the
asymptotic parameters

κy =
ky√
kxRλ

=
2π

λ∗
y

(
ν∗

∞
ω∗

)1/2

= O(1), (12a)

κz =
kz√
kxRλ

=
2π

λ∗
z

(
ν∗

∞
ω∗

)1/2

= O(1). (12b)

Free-stream gusts with equivalent wave numbers κy = κz are considered. The initial and boundary
conditions are discussed in Sec. II B 1 and the modeling of the porous layer is presented in
Secs. II B 2 and II B 3. The CLUBR equations are given in Appendix B [41] and the details of
their derivation are found in Ricco [54].

1. Boundary and initial conditions

The CLUBR equations are subject to wall and free-stream boundary conditions that synthesize
how the boundary layer interacts with the porous wall and the external disturbance flow. Being
parabolic along x, the CLUBR equations also require initial conditions for x ≪ 1.

The no-slip wall boundary condition is applied to the streamwise and spanwise disturbance
velocities, i.e., u = w = 0 at η = 0. At the wall, the wall-normal velocity and the temperature are
related to the pressure because of the wall porosity, as follows:

v(η = 0) =
Av

(2x)1/2
p(η = 0), (13a)

τ (η = 0) =
Aτ

(2x)1/2
p(η = 0), (13b)
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where Av and Aτ are the scaled admittances, obtained in Sec. II B 3. The free-stream boundary
conditions are the same as in RW7,

{u, τ } → 0, (14a)
(

∂

∂η
+ |κz|(2x)1/2

)
{v, w, p} → {−1, iκy(2x)1/2, 0}ei(x+κy (2x)1/2η)e

−
(
κ2

y +κ2
z

)
x
, (14b)

as η → ∞, where η ≡ η − βc, and βc = limη→∞(η − F ). The wall-normal wave number κy only
appears in Eq. (14) and not in the CLUBR equations because the wall-normal length scale of
the free-stream flow is λ∗

y , while, within the boundary layer, the characteristic length scale is the
boundary-layer thickness.

The initial conditions are the same as in RW7. As they pertain to a nonporous wall, the wall
porosity increases smoothly from zero at small x to a finite value downstream according to the
function proposed by Negi et al. [55], as discussed in Sec. II B 3. A few comments about the initial
conditions are in order. The plate is assumed to be infinitely thin and therefore the free-stream base
flow is not distorted at leading order as the fluid encounters the flat plate. The only distortion of
the base-flow streamlines is produced by the thickening of the boundary layer. As the free-stream
disturbances are transported by the base flow, they are neither stretched nor tilted by the leading
edge. The leading-edge bluntness effects can play a central role on the free-stream distortion and
therefore on the boundary-layer response. This problem is however out of the scope of the present
study because these effects only occur when the characteristic dimension of the rounded leading
edge is comparable with the spanwise length scale [56–59]. Furthermore, the disturbance flow in
the very proximity of the leading edge is not considered because the inviscid flow outside of the
boundary layer is solved for x ≫ 1, i.e., at a distance much larger than the spanwise wavelength.
As discussed in LWG99, streamwise-decaying disturbances emerging from the interaction between
the free-stream vorticity disturbances and the leading edge, obtained by Choudhari [55] by using
the Wiener-Hopf technique, decay to a very small amplitude when x ≫ 1 and, therefore, they play
a negligible role in the boundary-layer response. As the initial conditions are obtained by taking
the limit x ≪ 1 of the CLUBR equations, they constitute the asymptotically rigorous upstream
behavior of the CLUBR solution at locations 1 ≪ x ≪ k−1

x or, in dimensional form, at locations
λ∗

z ≪ x∗ ≪ λ∗
x .

The base-flow solutions (4) are computed using a second-order accurate Keller-box method [50].
The CLUBR system, given in Appendix B, is solved by a second-order finite-difference scheme
that is central in η and backward in x. A standard block-elimination algorithm is utilized [50]. The
free-stream boundary conditions (14) are applied by a second-order finite-difference discretization
scheme. The pressure is computed on a grid staggered along the η direction with respect to that for
the velocity to avoid the pressure decoupling phenomenon.

2. The unsteady disturbance flow within the pores

The flow inside a pore in studied in this section. In the porous wall designed by Fedorov
et al. [9], the pressure fluctuations at the interface between the wall and the boundary layer
excite kinematic and thermal disturbances in long, thin cylindrical pores. The numerical studies
of Zhao et al. [18,19] showed that the effects of acoustic scattering between adjacent pores can
be neglected when the Helmholtz number He = ω∗H∗/c∗

w
< 4.21, where H∗ is the depth of the

pores and c∗
w

=
√

γR∗T ∗
w

the speed of sound in the pores. All the cases considered in the present
work comply with that condition. Hence, the properties of the porous layer can be studied by
considering the flow characteristics of an isolated pore. The equations that govern the propagation
of small-amplitude disturbances in a single dead-end circular pore of depth H∗ and radius R∗ are
reported in Appendix C. The linearized continuity, axial momentum and energy equations are cast
in cylindrical coordinates, and their solution yields an analytical radial distribution of the velocity
and temperature in the form of Bessel functions [9,60].
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The response of the pores is ruled by the frequency parameter kxRλ [9,41,61]. The disturbances
are not transmitted to the pores at very low frequencies, for which the frequency parameter kxRλ =
O(1) or smaller. The boundary-layer disturbances are expected to interact with the porous wall as
kxRλ increases and the magnitude of the spanwise diffusion, proportional to κz in Eq. (12), decreases.
We are therefore interested in investigating the behavior of the porous layer for kxRλ ≫ 1. The
terms of the momentum and energy balances in Eq. (C2) are scaled as in the boundary layer and the
parameter

Kv = R∗
(

ρ∗
w
ω∗

μ∗
w

)1/2

= R

(
kxRλ

μwTw

)1/2

≫ 1 (15)

is introduced, where ρ∗
w

and μ∗
w

are the base-flow density and dynamic viscosity at the wall.
The balance equations reveal a boundary-layer structure [62] for the velocity and temperature
fluctuations, whose values depend on the radial coordinate r, while the pressure is only a function
of the axial coordinate y and is the same inside and outside the boundary layer. The outer solutions
are obtained by imposing K−1

v
= 0, for which the full system (C2) in Appendix C reduces to the

equation for the pressure

d2 p̃

dy2
+ He2 p̃ = 0, (16)

which arises from a reduction of a Helmholtz equation. The outer solutions for the velocity and
pressure fluctuations are found,

p̃ = p̃out(y) = a cos [He(y + 1)], (17a)

ṽ = ṽout(y) = −i
d p̃

dy
= ia sin [He(y + 1)], (17b)

τ̃ = k2
x τ̃out(y) = k2

x (γ − 1)a
M2

∞H2

Tw

cos [He(y + 1)], (17c)

where a is a real constant. The pressure and temperature fluctuations are in phase in the outer region.
In the proximity of the wall, i.e., where r − 1 ≪ 1, an inner variable

rs = Kv (1 − r) = O(1) (18)

describes the inner solutions ṽin(rs, y) and k2
x τ̃in(rs, y). Upon introduction of the inner variable, the

momentum and energy balance equations take the form

−ĩvin +
d p̃out

dy
=

∂ 2̃
vin

∂r2
s

, (19a)

−ĩτin + i(γ − 1)
M2

∞L2

Tw

p̃out =
1

Pr

∂2τ̃in

∂r2
s

, (19b)

subject to the boundary conditions

ṽin(0; y) = τ̃in(0; y) = 0, (20a)

lim
rs→∞

ṽin(rs; y) = ṽout(y), (20b)

lim
rs→∞

τ̃in(rs; y) = τ̃out(y). (20c)

The inner solutions are

ṽin(r; y) = ṽout(y)[1 − exp(i3/2Kv (r − 1))], (21a)

τ̃in(r; y) = τ̃out(y)[1 − exp(i3/2Pr1/2Kv (r − 1))]. (21b)
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FIG. 2. (a) Radial distribution of the axial velocity within a pore at a given depth for Kv = 11 (grey for real
part and light blue for imaginary part) and Kv = 33 (black for real part and dark blue for imaginary part). The
Bessel-function solutions (C3a, solid lines) are compared with the asymptotic solutions (21a, dashed lines). (b)
Averaged Bessel-function solutions (C3a, solid lines), averaged asymptotic solutions (C21a, dashed curves),
and averaged Bessel-function solutions obtained with the asymptotic form of the Bessel functions for large
arguments (23, dash-dotted lines).

The solutions (21) represent azimuthal Stokes layers of velocity and temperature attached to the
pore wall. The cross-sectional averages of the axial velocity (21a) and the temperature perturbations
(21b) over the circular section of a pore are

〈̃vin〉(r; y) = ṽout(y)

[
1 + 2i

exp(−i3/2Kv ) + i3/2Kv − 1

K2
v

]
, (22a)

〈̃τin〉(r; y) = τ̃out(y)

[
1 + 2i

exp(−i3/2Pr1/2Kv ) + i3/2Pr1/2Kv − 1

PrK2
v

]
. (22b)

Figure 2(a) shows that the agreement between the Bessel-function solutions, given in Eq. (C3)
of Appendix C, and the asymptotic solution (21a) improves as Kv increases, the lines being
indistinguishable for Kv = 33. For Kv ≫ 1, the cross-sectional average of the Bessel-function axial
velocity (C4a) can also be obtained by using the asymptotic expansion for large arguments of the
Bessel function. The leading order terms [63]

Jm(ξ ) =
(

2

πξ

)1/2

cos
(
ξ −

mπ

2
−

π

4

)
, m = 0, 1, 2, . . . (23)

yield the relation

〈̃vin〉(y) = ṽout

[
1 −

cos (i1/2Kv − 3π/4)

i1/2Kv cos (i1/2Kv − π/4)

]
. (24)

The real and imaginary parts of Eqs. (C4a), (24), and (21) are normalized with respect to ṽout

and plotted in Fig. 2(b). The difference between the real parts becomes indiscernible for Kv > 4,
whereas the imaginary parts match excellently for Kv > 10. The ratio

〈̃vin〉
ṽout

= Av

p̃

ṽout
(25)

represents a normalized acoustic admittance, where the normalization factor is the large-Kv

limit of Av .
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FIG. 3. Real and imaginary parts of G and H as functions of Kv , given by the Bessel-function solutions
(31) and (29), respectively.

3. Porous admittance

Following Fedorov et al. [9], the wall-normal velocity disturbance and the temperature distur-
bance are related to the pressure disturbance as follows:

ṽ(η = 0) = Av p̃(η = 0), (26a)

τ̃ (η = 0) = Aτ p̃(η = 0), (26b)

where Av and Aτ are the complex admittances of the porous wall evaluated at the wall-boundary
layer interface (η = 0). They are derived in Appendix C. The velocity admittance is

Av = −φ
i�

L
[1 − F (i1/2Kv )] tanh �, (27)

where

� =
ikxM∞L

T
1/2
w

H(i1/2Kv ), (28)

H(i1/2Kv ) =
[

1 + (γ − 1)F ((iPr)1/2Kv )

1 − F (i1/2Kv )

]1/2

, (29)

and F is given by Eq. (C5). The porosity φ is defined as the ratio between the surface area of the
pores and the total surface area. By combining Eqs. (27) and (28), the admittance of the velocity is
rewritten as

Av = φ
kxM∞

T
1/2
w

G(i1/2Kv ) tanh �, (30)

where

G(i1/2Kv ) = [(1 − F (i1/2Kv ))(1 + (γ − 1)F ((iPr)1/2Kv ))]1/2. (31)

Figures 3(a) and 3(b) show the real and imaginary parts of G and H, respectively. The thermal
admittance (C10b) reads

Aτ = (γ − 1)
k2

x M2
∞L2

Tw

[1 − F ((iPr)1/2Kv )]. (32)
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By introducing the expressions of the boundary-layer disturbances (11) and by using Eq. (12), one
finds

v(η = 0) =
kxκzAv

(2x)1/2kz

p(η = 0) =
(

kx

2xRλ

)1/2

Av p(η = 0), (33a)

τ (η = 0) =
kxAτ

Rλ

p(η = 0). (33b)

The wall boundary conditions (33a) and (33b) are rewritten by using Av = (kxR−1
λ )1/2Av and

Aτ = (kxR−1
λ )Aτ in Eqs. (13a) and (13b). The velocity admittance Av defined in Eq. (30) is

O(kx ) and the thermal admittance Aτ (32) is O(k2
x ). The coefficients in front of the pressure in

Eqs. (33a) and (33b) are O(k3/2
x R−1/2

λ ) and O(k3
x R−1

λ ), respectively. The contribution of Aτ to the
temperature fluctuations is thus much weaker than the contribution of Av to the velocity fluctuations
and therefore negligible. However, the porous wall affects the temperature fluctuations indirectly
because of the coupling between the wall-normal momentum equation and the energy equation.
For typical Klebanoff modes and Görtler vortices kxRλ = O(1), Av = O(R−2

λ ), Av = O(R−4
λ ), and

wall porosity has a negligible effect on both the velocity and temperature fluctuations. As shown in
Sec. II B 2 the pores begin interacting with the disturbance flow when kxRλ ≫ 1. Since the pressure
and temperature fluctuations are in phase within the pores, the adiabatic boundary condition can be
imposed at the wall in accordance with the homogeneous Neumann boundary condition at the dead
end of the pores, as discussed in Appendix C. Since the upstream boundary conditions for x ≪ 1
are not compatible with a nonzero wall-normal velocity at η = 0, a short smoothing region along
the streamwise direction is introduced between two streamwise coordinates x1 and x2 in the vicinity
of the leading edge. In this region, the velocity admittance varies proportionally to [55]

S(x) =

⎧
⎨
⎩

0, for x � x1,[
1 + exp

(
1

x̃−1 + 1
x̃

)]−1
, for x1 < x < x2,

1, for x � x2,

(34)

where x̃ = (x − x1)/(x2 − x1), and x1 = 0.005. The end point is x2 = 0.01, if exception is made for
the analysis at the end of Sec. III A, where the effect of x2 is studied. The piecewise function (34)
can be physically interpreted as a variation of the wall porosity along the smoothing region. If we
assume the pores to be aligned in equally spaced rows and columns, such variation may be caused
by pores of constant radius R∗ becoming more and more packed as the distance d∗ between the
centres of adjacent pores decreases, or by the gradual increase of the pore radius. In both cases, the
porosity in Eq. (30) can be written as φ = πR∗2

f S(x)/d∗2
f , where the subscript f denotes quantities

at the downstream end of the smoothing region. If the radius is kept constant between x1 and x2,
the interpore distance is d∗(x) = d∗

f /
√

S(x). The porosity at the end of the smoothing region is
φ = πR∗2

f /d∗2
f . As only regularly spaced circular pores are considered, the porosity may attain a

maximum theoretical value of π/4 when R∗
f = d∗

f /2.

III. RESULTS

The effectiveness of the porous wall depends on its ability to transduce a pressure disturbance
into a wall-normal velocity disturbance, as described by Eq. (33a). In the present coatings, the phase
velocity of the disturbances is equivalent to the local sound speed [20]. For Kv ≫ 1, a dimensional
analysis of the boundary condition (33a) and the velocity admittance (30) yields

v

p
= O

((
k3

x

Rλ

)1/2
M∞

T
1/2
w

)
= O

(
ω∗3/2λ∗

z

U ∗
∞c∗

w

ν∗1/2
∞

)
. (35)

As a result, the pores interact with the boundary layer when

ω∗3/2λ∗
z is comparable with U ∗

∞c∗
w
ν∗−1/2

∞ . (36)
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FIG. 4. Schematic of flow regimes and the effect of wall porosity, as described by relation (36).

A visual representation of relation (36) is shown in Fig. 4. The free-stream velocity, the free-stream
kinematic viscosity and the speed of sound in the porous layer define the threshold above which
the boundary-layer disturbances are affected by the porous layer. For given free-stream conditions,
the effect of the porous layer is more intense at lower c∗

w
. For a given λ∗

z and constant free-stream
conditions, the minimum frequency at which a disturbance is affected grows as T

∗1/3
w . The minimum

wavelength for which a disturbance is attenuated at a given frequency increases as T
∗1/2
w . Both

hyperbolas shift away from the origin as c∗
w

increases. Relation (36) also shows that the variation of
the frequency is more influential on the performance of the porous wall than that of the spanwise
wavelength.

The physical parameters of the present study are listed in Table I. These values are representative
of supersonic quiet tunnel conditions, such as those of the Sandia Hypersonic Wind tunnel and the
Boeing Mach 6 quiet tunnel [64]. The stagnation temperature of 400 K and the wall-temperature
ratio T ∗

w
/T ∗

ad,w = 0.8 (where T ∗
ad,w is the adiabatic-wall temperature) are given by Schneider [3]

Casper et al. [64] Shiplyuk et al. [65], and Yu et al. [66].

TABLE I. Physical parameters for wind tunnel conditions.

Physical parameter Symbol Value SI unit

Mach number M∞ 6 –
Total (stagnation) temperature T ∗

o 400 K
Static pressure p∗

∞ 633 Pa
Static temperature T ∗

∞ 49 K
Free-stream velocity U ∗

∞ 841 ms−1

Free-stream kinematic viscosity ν∗
∞ 6.3 × 10−5 m2s−1

Unit Reynolds number R∗ = U ∗
∞/ν∗

∞ 13.5 × 106 m−1

Recovery temperature T ∗
ad,w 343 K

Wall temperature T ∗
w

= 0.8T ∗
ad,w 274 K

Pore radius R∗
f 90 µm

Inter-pore distance d∗
f 210 µm

Pore depth H∗ 1.5 mm
Porosity φ 0.58 –
Velocity admittance Av −8.82 × 10−4 + 1.434 × 10−3 i –
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FIG. 5. Effect of the frequency on the attenuation streamwise velocity (a–c) and temperature (d) for λ∗
z =

0.03 m (Rλ = 418 000) at ω∗/2π = 6730 Hz (a), ω∗/2π = 7570 Hz (b), and ω∗/2π = 8600 Hz (c, d). The
solid (φ = 0) and porous (φ = 0.58) wall cases are represented with black and red curves, respectively.

A. Klebanoff modes

The solution of the CLUBR equations for a flat-plate boundary layer is computed for a wide
range of disturbance frequencies and spanwise wavelengths. Two wall-porosity conditions are
considered: a solid plate with φ = 0 and a porous plate with φ = 0.58. Our computations reveal that
the wall porosity does not affect the growth of the Klebanoff modes for very low frequencies and
very short spanwise wavelengths [kxRλ = O(1), κz = O(1)]. Under these conditions, the spanwise
viscous diffusion plays a significant role because λ∗

z is comparable to the boundary-layer thickness
δ∗, which is typically a few millimeters [8,67–69]. The spectrum of free-stream disturbances is
however wide and encompasses a range of spanwise wavelengths and frequencies. We investigate
the response of the boundary layer to free-stream gusts with spanwise wavelengths that are larger
than the boundary-layer thickness, i.e., λ∗

z = 0.03 m and Rλ = R∗λ∗
z = 418 000. As kxRλ increases

and κz decreases, the effect of the porous wall becomes relevant. Its response to increasing the
disturbance frequency is reported in Figs. 5(a)–5(c), which show the downstream evolution of the
peak of the streamwise velocity fluctuations, |u|max, for κz = 0.008, 0.0075, and 0.007, respectively.
Under these conditions, the scaled admittance Av is −8.82 × 10−4 + 1.434 × 10−3 i. The growth of

073903-13



PIERRE RICCO AND LUDOVICO FOSSÀ

FIG. 6. Effect of the adjustment-region length in the vicinity of the leading edge on the attenuation of the
Klebanoff modes. x1 = 0.005 is kept constant and x2 is increased to 0.5 (a) and 1 (b). The solid (φ = 0) and
porous (φ = 0.58) wall cases are represented by the black and red curves, respectively.

the Klebanoff modes is reduced by the porous wall up to about x = 5. The peak of the temperature
fluctuations, shown in Fig. 5(d) for κz = 0.007, is also reduced. The attenuation becomes more
significant as ω∗ increases and κz decreases, meaning that the pores absorb and dissipate the energy
of the Klebanoff modes when the spanwise diffusion is small. The effectiveness of the porous layer
is expected to improve at frequencies higher than those considered here. However, increasing kx

beyond 0.3 might lead to a regime for which the second-order perturbation discussed in Sec. II B
become important. The growth of the streamwise velocity and temperature fluctuations becomes
exponential further downstream, where the receptivity of highly oblique Tollmien-Schlichting
waves sets in. This regime is studied in Sec. III B. The results reported in Fig. 5 were computed by
considering the leading-edge adjustment region given by Eq. (34), extending between x1 = 0.005
and x2 = 0.01. The same case with κz = 0.007 and Rλ = 418000 is computed for larger x2, i.e.,
x2=0.5 [Fig. 6(a)] and x2=1 [Fig. 6(b)]. The growth of the Klebanoff modes is shown in Fig. 6.
Extending the length of the adjustment region results in a delay of the attenuation. Albeit delayed,
the damping of the Klebanoff modes is still appreciable in the region x � 4. More insights on the
effect of wall porosity on the Klebanoff modes for κz ≪ 1 can be inferred from the wall-normal
profiles of the velocity components, the temperature and the pressure. The profiles for |u|, |v|, |τ |,
and |p| at x = 2 for the case κz = 0.007, Rλ = 418 000 are shown in Fig. 7. The streamwise velocity,
the temperature, and the pressure are markedly reduced by the porous wall. The peaks of |u| and |τ |
are decreased and slightly shifted farther from the wall. The wall-normal gradient of |u| is attenuated
by the porous layer. The wall-normal velocity component |v| is enhanced in the proximity of the
wall [inset of Fig. 7(b)], but is mostly unaffected at larger wall-normal locations. The spanwise
velocity component (not shown) is unchanged, which is consistent with the spanwise momentum
balance being independent of u, v, τ , and p when κz ≪ 1 [36]. The pressure distribution retains
its shape and is uniformly attenuated when the wall is porous. The results of Fig. 5 are computed
at a fixed wall temperature ratio Tw/Tad,w = 0.8. As shown in the schematic of relation (36) of
Fig. 4, the theory indicates that a lower wall temperature increases the range of ω∗ and λ∗

z for which
the pressure fluctuations are effectively transduced into wall-normal velocity fluctuations. The
wall-normal profiles for the boundary-layer fluctuations at M∞ = 6, κz = 0.007, and Rλ = 418 000
are computed for five different wall temperature ratios Tw/Tad,w and reported in Fig. 8. The graphs
in the top row show the |u| profiles over solid [Fig. 8(a)] and porous [Fig. 8(b)] flat plates. Wall
cooling uniformly reduces the amplitude of the velocity and temperature fluctuations in the solid
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FIG. 7. Wall-normal profiles of the streamwise velocity (a), spanwise velocity (b), temperature (c), and
pressure (d) disturbances at x = 2 for kz/kx = 0.3, κz = 0.007, and Rλ = 418000. The solid (φ = 0) and porous
(φ = 0.58) wall cases are represented with black and red curves, respectively.

and porous cases. In the solid-wall case, wall cooling causes the peak of the wall-normal profiles
to shift farther from the wall, the wall-shear stress is attenuated, and the temperature fluctuations
are reduced more than the velocity fluctuations, with the exception of the near-wall region where
they slightly increase. The effect of wall cooling is more intense on the temperature fluctuations
than on the velocity fluctuations when the wall-temperature ratio is reduced from 0.8 to 0.4. When
the wall is porous, an inflection point appears close to the wall for Tw/Tad,w = 0.4, and a second
shorter peak in the velocity distribution grows in the near-wall region between Tw/Tad,w = 0.3 and
Tw/Tad,w = 0.2. Although the amplitude of the main velocity peak in the porous case is reduced by
wall cooling, the wall-shear stress increases and the intensity of the secondary temperature peak,
located at the wall, exceeds that of the main temperature peak.

B. Tollmien-Schlichting waves

For low κz values, the initial algebraic growth of the compressible Klebanoff modes is followed
downstream by the exponential growth of highly oblique Tollmien-Schlichting (TS) waves, a
receptivity mechanism first discovered by RW7. Numerical evidence of this receptivity mechanism
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FIG. 8. Effect of wall cooling on the streamwise velocity (top) and temperature (bottom) three-dimensional
gust signatures profiles at x = 2 for kx/kz = 0.3, κz = 0.007, and Rλ = 418 000. Solid and porous results are
shown with solid and dashed lines, respectively.

is shown in Fig. 5 for x > 6, where the exponential growth occurs. Although the amplitude of the
Klebanoff modes is attenuated, the porous wall enhances the initial amplitude of the TS waves,
as also schematically illustrated in Fig. 4. Our numerical result confirms the experimental findings
of Shiplyuk et al. [65] and Lukashevic et al. [70]. The theoretical results of Michael and Stephen
[71] also reported a larger TS-wave growth rate, although the receptivity was not included in their
analysis. The mathematical framework utilized by RW7 to analyze this receptivity mechanism,
based on the triple-deck formalism, is extended to include wall porosity. The objectives are to verify
the numerical results and to gain further insight into the modified flow instability. As the theoretical
analysis is valid for κz ≪ 1, a small value of κz = 0.0005 is chosen for a quantitative comparison
between the theoretical results and the computational data obtained by solving the CLUBR equa-
tions. The receptivity mechanism operates as follows. RW7 showed that the unsteady free-stream
perturbations excite quasi three-dimensional Lam-Rott boundary-layer eigensolutions [72], which
develop downstream together with the Klebanoff modes. Goldstein [73] first discovered that these
low-amplitude decaying eigensolutions, believed until then to be innocuous for the flow instability,
can turn into exponentially growing TS waves. For relatively high-frequency acoustic oscillations,
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FIG. 9. Schematic of triple-deck interactive regime of leading-edge receptivity mechanism in the presence
of a porous surface. The thicknesses of the decks is out of scale.

Goldstein [73] proved that the wavelength shortening of these eigensolutions indeed causes the
generation of a streamwise pressure gradient that is responsible for the instability. RW7 instead
showed that, in the low-frequency regime proper of the Klebanoff modes, a spanwise pressure
gradient is induced. This pressure gradient interferes with the viscous flow by engendering a span-
wise velocity component. As this component reaches the order of magnitude of the streamwise and
wall-normal velocity components, a triple-deck interacting regime sets in and a spatially growing
oblique TS wave is triggered. This receptivity mechanism is similar to the leading-edge adjustment
discovered by Goldstein [73] in that the Lam-Rott eigensolution is central for the boundary-layer
dynamics. Yet, it is different because the spanwise pressure gradient is responsible for triggering the
instability, while the streamwise pressure gradient is negligible. The schematic in Fig. 9 illustrates
these physical interactions. In the case of a porous wall, the wall-normal velocity near the wall
is not only altered through continuity by the spanwise velocity generated by the induced spanwise
pressure gradient, but also by the wall pressure via the admittance relationship (13a). The triple-deck
theory has the advantage of revealing the physical mechanism responsible for engendering the
first-mode growth, while this result is not achieved by performing finite-Reynolds-number stability
analysis or by solving the complete Navier-Stokes equations. The triple-deck analysis of RW7 is
modified to investigate how a porous surface alters the dynamics of exponentially growing unstable
waves. Analogously to RW7, an asymptotic eigensolution of the CLUBR equations is sought in
the limits κz ≪ 1 and x ≫ 1. The relevant class of eigensolutions is the one discovered by Lam
and Rott [72] (refer also to Ackerberg and Philipps [74]). These eigensolutions are proportional to
exp(−ψ̂x3/2), where ψ̂ is an unknown complex eigenvalue [73,74]. The eigensolutions are governed
by the boundary-layer equations and the pressure disturbances need not be solved (LWG99). The
boundary layer splits up into two decks: a main deck and a thin near-wall lower-deck. In the main
deck, η = O(1) and

{u, v,w, τ } =
{

F ′′(η)

T
,−

3

2
ψ̂

√
xF ′(η), 0,−

T ′(η)

T

}
exp(−ψ̂x3/2) + . . . (37)
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satisfy the leading-order balance in the CLUBR equations. As shown by RW7, a triple-deck interac-
tive regimes ensues because the wall-normal displacement induced downstream by the perturbation
generates an unsteady pressure. This interactive regimes occurs where

x = O
(
κ−1

z

)
. (38)

The decaying Lam-Rott perturbation evolves into a spatially growing, highly oblique TS wave at
the locations specified by Eq. (38) when kx = O(R−1/5

λ ) or κz = O(R−2/5
λ ). As the induced pressure

disturbance now plays an active role, the porosity of the wall affects the flow field. The streamwise
coordinate

x1 = κzx = O(1) (39)

can be introduced because of Eq. (38) and κz ≪ 1. An interactive triple-deck structure emerges,
consisting of a lower deck η = O(κ1/2

z ), a main deck η = O(1), and an upper deck η = O(κ−1/2
z ).

In the main deck, the solution expands as

{u, v,w, p, τ } =
{
u1(x1, η), κ−1/2

z v1(x1, η),w1(x1, η), κ−5/2
z p1(x1), τ1(x1, η)

}
E + . . . , (40)

where

E = exp

(
i

κ
1/2
z

∫ x

0
α1(x1)dx̆

)
. (41)

By substituting Eq. (40) into the CLUBR equations and by solving the resulting equations at leading
order, one finds

{u1, v1,w1, τ1} = {A(x1)F ′′/T,−iα1A(x1)F ′, p1(x1)T/(iα1F ′),−A(x1)T ′/T }, (42)

where A(x1) is an arbitrary function of x1. In the lower deck, we introduce η = κ−1/2
z η = O(1) and

the leading-order solution is expressed as

{u, v,w, τ } =
{
u1(x1, η), v1(x1, η), κ−1/2

z w1(x1, η), κ1/2
z τ 1(x1, η)

}
E + . . . . (43)

Inserting Eq. (43) into the CLUBR equations yields

iα1u1 +
1

Tw

∂v1

∂η
+ w1 = 0,

i(−1 + F ′′(0)α1η )u1 +
F ′′(0)

Tw

v1 =
μw

2x1Tw

∂2u1

∂η2
,

i(−1 + F ′′(0)α1η )w1 = Tw p1 +
μw

2x1Tw

∂2
w1

∂η2
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(44)

The pressure p1 in the lower deck is solely a function of x1. Enforcing the no-slip condition on the
streamwise and spanwise velocity components (u1 = 0, w1 = 0) in Eq. (44) yields

∂v1

∂η

∣∣∣∣∣
η=0

= 0,

F ′′(0)v1|η=0 =
μw

2x1

∂2u1

∂η2

∣∣∣∣∣
η=0

,

Tw p1 +
μw

2x1Tw

∂2
w1

∂η2

∣∣∣∣∣
η=0

= 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(45)
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By differentiation of the first equation in Eq. (44) and by use of the second and third equations in
Eq. (45), one obtains

2ix1α1F ′′(0)

μw

v1|η=0 +
1

Tw

∂3
v1

∂η3

∣∣∣∣∣
η=0

−
2x1T 2

w

μw

p1 = 0. (46)

Eliminating p1 from Eq. (44) shows that v1 satisfies
[

∂2

∂η2
−

2ix1Tw

μw

(F ′′(0)α1η − 1)

]
∂2

v1

∂η2
= 0, (47)

which has solution

∂v1

∂η
=

∫ η̂

η0

Ai(η̆)d η̆, (48)

where

η̂ = (2iF ′′(0)α1x1Tw/μw )1/3η + η0, η0 = −(α1F ′′(0))−1(2iF ′′(0)α1x1Tw/μw )1/3. (49)

Differentiation of Eq. (48) yields

∂3
v1

∂η3

∣∣∣∣∣
η=0

=
(

2iF ′′(0)α1x1Tw

μw

)2/3

Ai′(η0). (50)

At the wall, the wall-normal velocity component and the pressure are related through Eqs. (13a) and
(13b). By use of Eqs. (39), (40), and (43), it follows that

v1|η=0 =
Av

κ2
z

(
kx

2x1Rλ

)1/2

p|η=0 =
Av p1

κ2
z (2x1)1/2 . (51)

In the case of oblique TS waves, for which κz ≪ 1 and x ≫ 1, an admittance Av =
O(R−1/2

λ k−3/2
x )(Av = O(κ2

z ) ≪ 1) is sufficient to alter the dynamics of the growing waves. A scaled
admittance Ãv = Avκ

−2
z = O(1) is defined, and thus

v1|η=0 =
Ãv p1

(2x1)1/2 . (52)

The wall-normal velocity component and the pressure at the wall can now be determined. By
substituting Eq. (52) into Eq. (46), it follows that

(
iα1F ′′(0) −

(2x1)1/2T 2
w

Ãv

)
v1|η=0 +

μw

2x1Tw

∂3
v1

∂η3

∣∣∣∣∣
η=0

= 0. (53)

By substitution of Eq. (50) into Eq. (53), an expression for the wall-normal velocity at the wall is
found:

v1|η=0 =
(2iF ′′(0)α1x1Tw/μw )2/3Ai′(η0)μwÃv

2x1Tw

(
T 2

w
(2x1)1/2 − iÃvα1F ′′(0)

) . (54)

By use of Eq. (52), the pressure in the lower deck is obtained:

p1|η=0 =
(2iF ′′(0)α1x1Tw/μw )2/3Ai′(η0)μw

(2x1)1/2Tw

(
T 2

w
(2x1)1/2 − iÃvα1F ′′(0)

) . (55)
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Matching ∂v1/∂η in Eq. (48) with the main-deck solution (42) yields
∫ ∞

η0

Ai(η̆)d η̆ = −iF ′′(0)α1A(x1). (56)

In the upper deck the appropriate wall-normal variable is η̃ = κ1/2
z η = O(1), and the solution

expands as

{u, v,w, p, τ } =
{
κ1/2

z ũ1(x1, η̃), κ−1/2
z ṽ1(x1, η̃), w̃1(x1, η̃), κ−5/2

z p̃1(x1, η̃), 0
}
E + . . . . (57)

Inserting Eq. (57) into the CLUBR equations leads to

iα1ũ1 +
∂ ṽ1

∂η̃
+ w̃1 = 0, ũ1 = 0, iα1̃v1 +

1

2x1

∂ p̃1

∂η̃
= 0, iα1w̃1 − p̃1 = 0. (58)

These equations can be reduced to a Laplace equation for p̃1,

∂2 p̃1

∂η̃2
− 2x1 p̃1 = 0,

whose solution is p̃1 = p1(x1)exp(−
√

2x1η̃). The vertical velocity behaves as ṽ1 →
−ip1/(α1

√
2x1) for η̃ → 0, and matching it with the main-deck solution yields

p1 = α2
1A(x1)

√
2x1. (59)

Eliminating A from Eqs. (56) and (59) yields

�(x1, α1) ≡
∫ ∞

η0

Ai(η̆)d η̆ −
(

μw

2α1x1Tw

)1/3 (iF ′′(0))5/3
Ai′(η0)

iÃvα1F ′′(0) − (2x1)1/2T 2
w

= 0, (60)

which is the dispersion relation that determines the complex wave number α1 = α1(x1).
The admittance Ãv in Eq. (60) is absent in the dispersion relation as x1 → 0, so Ai′(η0) → 0

as x1 → 0. It follows from Eq. (54) that v1 goes to zero at the wall as x1 → 0 and the Lam-Rott
eigensolutions are therefore not influenced by the porosity at leading order. Equation (60) reduces
to the dispersion relation found by RW7 for a solid wall when Ãv = 0. The Airy function and its
derivative are computed by an in-house code, based on the method of Gil et al. [75]. The growth rate
and the wave number are given by −Im(α1)/κ1/2

z and Re(α1)/κ1/2
z , respectively, and are also found

numerically from the CLUBR equations as Re(ux/u) and Im(ux/u) (where the subscript x indicates
the derivative with respect to x).

The solutions have been first computed for Ãv = O(1) and M∞=2, 3, and 4 on an adiabatic
wall. The free-stream disturbances are assumed to be the same in all cases and a porous wall of
fixed R∗

f , φ, and H∗ is considered. The Mach number and Reynolds number vary together as the
free-stream velocity U ∗

∞ increases. The wave number and growth rate of the CLUBR solutions
and the triple-deck solutions are compared in Fig. 10 for κz = 0.0005 at M∞ = 2, 3, and 4. The
triple-deck analysis predicts the growth rate and the wave number of the TS instability in the solid
and the porous cases, while the CLUBR solutions also give the onset of the instability. The growth
rate, which is mildly negative upstream, suddenly increases as the TS waves are triggered, while
the wave number settles to an almost constant value. The agreement between the CLUBR solutions
(solid lines) and the triple-deck solutions (dashed lines) improves as the Mach number increases.
The porous wall enhances the TS-wave growth rate and shifts the onset of the instability upstream,
while the wave number is unaffected. The impact of the porous wall, however, diminishes as the
Reynolds and Mach numbers increase with the free-stream velocity. For the flow conditions studied
in Fig. 10, no effect of the porous wall is found at M∞ = 6. The case investigated in Sec. III A is
also studied (M∞ = 6, κz = 0.007, Tw = 0.8Tad,w = 5.62, Ãv = −18.00 + 29.26 i). As given by the
relation (39), the onset of the TS waves shifts upstream over both the porous and the solid surfaces
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FIG. 10. Onset of the oblique TS waves far downstream for κz = 0.0005 on solid (black) and porous
(red) walls. The solid lines indicate the boundary-region solutions and the dashed lines denote the triple-deck
solutions. The three free-stream conditions at different Mach numbers are simulated by varying the free-stream
velocity U ∗

∞ on adiabatic wall conditions.

when κz increases slightly. The boundary-region and the triple-deck results, shown in Fig. 11, still
show a satisfactory agreement for a relatively larger κz and x > 14. The porous wall has an intense
effect on the growth rate before the exponential growth of the TS waves sets in. Once the TS-wave
growth is established, the effect of porosity is mild.
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FIG. 11. Onset of the oblique TS waves for κz = 0.007 on solid (black) and porous (red) walls. The solid
lines indicate the boundary-region solutions and the dashed lines the triple-deck solutions. The results are
computed for the flow conditions discussed in Sec. III A: M∞ = 6, Tw = 5.62, and κz = 0.007.

C. Effect of wall curvature at moderate Görtler number

The combined effect of wall porosity and wall curvature is considered. As proved by Hall [76],
in the limit of large Reynolds number and large curvature radius, the curvature does not affect
the base flow and the centrifugal effects are distilled in two terms in the wall-normal momentum
boundary-region equation (B3) that are proportional to the Görtler number

G =
1

rc

(
Rλ

k3
x

)1/2

, (61)

where rc = r∗
c /λ∗

z is the scaled wall curvature radius [41]. The evolution of the boundary-layer
perturbations was computed for κz = 0.007, Rλ = 418 000, M∞ = 6 and two different Görtler
numbers, G = 2.41 and G = 12, which correspond to rc = 100 and rc = 20, respectively. Under
these conditions, the effect of curvature enhances the growth of the velocity disturbances compared
to the flat-plate case. Since both M∞ and kxRλ are relatively high, the onset of exponentially growing
Görtler vortices was not observed [42]. The downstream growth of |u|max is shown in Figs. 12(a) and
12(b). The flat-plate (G = 0) results are plotted in light colors for comparison. The fluctuations on
the concave plate are enhanced downstream of x = 3 (G = 2.41) and x = 2 (G = 12) with respect
to those on the flat plate. The porous wall reduces the amplitude of the velocity disturbances with
the centrifugal effects during their initial evolution, up to about x = 4. Flows with higher Görtler
numbers were not investigated as values of rc < 20 might invalidate the hypothesis rc ≫ δ.

The growth rate of |u| is shown in Figs. 12(c) and 12(d). Although the amplitude of |u|max is
reduced up to x = 4, the porous wall enhances its growth downstream of x = 2 up to x = 10 and
attenuates it further downstream. Additional research is necessary to evince the effect of nonlinearity
at these downstream locations because the magnitude of the fluctuations may be too large for the
nonlinear interactions to be considered negligible.

IV. CONCLUSIONS

The effect of regular-microstructure porous coatings on the receptivity of supersonic pretransi-
tional boundary layers to free-stream vortical disturbances has been studied. We have focused on the
downstream evolution of Klebanoff modes over flat and concave surfaces and Tollmien-Schlichting
waves generated by the external perturbations. We have used asymptotic and numerical methods to
study these low-frequency disturbances in the limits of large Reynolds number and small amplitude.
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FIG. 12. Effect of the porous wall on a boundary layer G = O(1) for κz = 0.007, Rλ = 418 000, and
M∞ = 6. The black and red curves refer to the solid and porous cases, respectively. The curves for the flat-plate
case G = 0 are drawn in light colors.

The downstream development of the Klebanoff modes is largely unaffected by the wall porosity
when the spanwise wavelength of the oncoming perturbation is of the same order of magnitude of the
boundary-layer thickness. As either the frequency or the spanwise wavelength of the disturbances
increases, the wall-normal velocity and the pressure interact at the wall and the boundary-layer
streamwise velocity and temperature fluctuations are attenuated. This beneficial effect is enhanced
further by wall cooling.

The growth rate of Tollmien-Schlichting waves, triggered by a leading-edge adjustment mecha-
nism, is enhanced by the wall porosity, and the location of instability moves upstream. These waves
are the first modes of compressible instability, so this finding confirms previous experimental results.
A triple-deck asymptotic analysis quantitatively confirms the numerical results and reveals how the
physical mechanism of instability is altered in the presence of wall porosity.

The porous layer also reduces the amplitude of the streaks over concave surfaces during their
initial development and the growth rate of the streamwise velocity fluctuations further downstream.

The present work has focused on the linear response of boundary layers over porous walls to
a monochromatic vortical disturbance. The full spectrum of free-stream disturbances, including
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FIG. 13. Comparison of our base-flow numerical solution (4) (solid lines) with the hot-wire data by
Graziosi [68, p. 85 and p. 110] for M∞ = 3, Pr = 0.72, and Tw/Tad,w = 1.1.

acoustic and temperature fluctuations, and the nonlinear interaction of different modes should be
considered in a more realistic context. Some of these aspects have been investigated by Zhang
et al. [38], Xu et al. [44], and Xu et al. [45]. We plan to investigate the effect of wall porosity on
the nonlinear compressible flows studied by Marensi et al. [37] and to include higher-frequency
second-mode instability in the analysis [61]. Another important avenue for research is the impact of
wall porosity on the secondary instability and on the final stages of transition with the objective of
precisely assessing how the porous wall influences the location of transition.

Our theoretical and numerical results require further numerical and experimental validation.
Direct numerical simulations and wind tunnel or in-flight measurements of the receptivity of
supersonic boundary layers to free-stream vortical disturbances remain ambitious challenges.
We hope our study will stimulate further research on the boundary-layer control via porous
surfaces.
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APPENDIX A: VALIDATION OF THE LAMINAR BASE-FLOW COMPUTATION

Our numerical solutions (4) of the base-flow system (6) are compared to numerical and experi-
mental data available in the literature, retrieved by the authors by using an image-digitizing software.
The numerical profiles are plotted versus the similarity variable

η̃ =
y

x
R1/2

x = 21/2
∫ η

0
T (η̆)d η̆, (A1)

where Rx = U ∗
∞x∗/ν∗

∞.
Our numerical solutions are first compared in Fig. 13 with the hot-wire data by Graziosi [68,

p. 85 and p. 110] (refer also to Graziosi and Brown [8]) for M∞ = 3, Pr = 0.72, Tw/Tad,w = 1.1
and at different unit Reynolds numbers R∗ = U ∗

∞/ν∗
∞ and streamwise locations R1/2

x . Our solutions
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FIG. 14. Comparison of our base-flow numerical solutions (4) (solid lines) with the numerical results by
van Driest [[77], pp. 40–41] (dashed lines) for a boundary layer over an adiabatic flat plate (Pr = 0.75).

(solid lines), plotted against the local Mach number M/M∞ = U/T 1/2 in Fig. 13(a), show a
satisfactory agreement with the experimental data. Other experimental data at fixed R∗, plotted
against U/T and shown in Fig. 13(b), show excellent agreement for 3 � η̃ � 7 and adequate
agreement for 7 � η̃ � 10 (ρT = 1 for a perfect gas has been used to convert ρU given by Graziosi
and Brown [8]).

Our velocity and temperature profiles (4) (solid lines) and those computed by van Dri-
est [77, pp. 40–41] (dashed lines) for a boundary layer over an adiabatic plate with Pr =
0.75 are shown in Fig. 14. Results were generated by modeling the dynamic viscosity with
Sutherland’s law μ = T 3/2(1 + χ )/(T + χ ), where χ = 0.505, as in van Driest [77]. A good
agreement is found for both the velocity (left) and temperature (right) profiles at all the Mach
numbers.

Figure 15 shows that good agreement is also obtained between our solutions and the velocity
profiles by Stewartson [46, p. 40] for a boundary layer with Pr = 1 flowing over an adiabatic plate.
The dynamic viscosity was computed by using the power law μ = T n, where n = 0.76.

FIG. 15. Comparison of our base-flow numerical solutions (4) (solid lines) with the numerical results by
Stewartson [46, p. 40] (dashed lines) for a boundary layer over an adiabatic flat plate (Pr = 1.0).
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APPENDIX B: THE COMPRESSIBLE LINEARIZED UNSTEADY BOUNDARY

REGION EQUATIONS

In this Appendix, the CLUBR equations, derived by RW7 and Viaro and Ricco [41], are
reported.

– Continuity equation

ηcT ′

2xT
u +

∂u

∂x
−

ηc

2x

∂u

∂η
−

T ′

T 2
v +

1

T

∂v

∂η
+ w +

(
i

T
−

FT ′

2xT 2

)
τ +

F ′

T

∂τ

∂x
+

F

2xT

∂τ

∂η
= 0. (B1)

– Streamwise momentum equation

(
−i −

ηcF ′′

2x
+ κ2

z μT

)
u + F ′ ∂u

∂x
+

(
−

F

2x
−

μ′T ′

2xT
+

μT ′

2xT 2

)
∂u

∂η
−

μ

2xT

∂2u

∂η2
+

F ′′

T
v

+
(

FF ′′

2xT
−

μ′′T ′F ′′

2xT
+

μ′T ′F ′′

2xT 2
−

μ′F ′′′

2xT

)
τ −

F ′′

2xT

∂τ

∂η
= 0. (B2)

– Wall-normal momentum equation

1

(2x)2

(
T F + ηc(FT ′ − T F ′) − η2

c T F ′′)u +
μ′T ′

3x

∂u

∂x
+

1

12x2

[
μ + ηcT

(
μ

T

)′]
∂u

∂η

+
ηcμ

12x2

∂2u

∂η2
−

μ

6x

∂2u

∂x∂η
+

(
−i +

F ′

2x
−

T ′F

2xT
+

ηcF ′′

2x
+ κ2

z μT

)
v + F ′ ∂v

∂x

+
(

−
F

2x
−

2μ′T ′

3xT
+

2μT ′

3xT 2

)
∂v

∂η
−

2μ

3xT

∂2
v

∂η2
+

μ′T ′

3x
w −

μ

6x

∂w

∂η

+
1

(2x)2

[
ηc(FF ′)′ − FF ′ −

T ′F 2

T
− μ′F ′′ − ηcT

(
μ′F ′′

T

)′
+

4

3

(
μ′T ′F

T

)′]
τ

−
μ′F ′′

2x

∂τ

∂x
+

[
−

μ′ηcF ′′

(2x)2 +
4

3

μ′T ′F

(2x)2T

]
∂τ

∂η
+

1

2x

∂ p

∂η
+

G
√

2x

(
2F ′u −

(F ′)2

T
τ

)
= 0, (B3)

where the terms that distill the effect of the curvature are enclosed in the box [41] and the Görtler
number G is defined in Eq. (61).

– Spanwise momentum equation

− κ2
z

ηcμ
′T T ′

2x
u + κ2

z

μT

3

∂u

∂x
− κ2

z

ηcμT

6x

∂u

∂η
+ κ2

z μ′T ′
v + κ2

z

μ

3

∂v

∂η
+

(
−i +

4

3
κ2

z μT

)
w + F ′ ∂w

∂x

−
(

F

2x
+

μ′T ′

2xT
−

μT ′

2xT 2

)
∂w

∂η
−

μ

2xT

∂2
w

∂η2
− κ2

z T p + κ2
z

μ′T ′F

3x
τ = 0. (B4)

– Energy equation

−
ηcT ′

2x
u + (γ − 1)M2

∞
μF ′′

xT

∂u

∂η
+

T ′

T
v +

[
−i +

FT ′

2xT
− (γ − 1)M2

∞
μ′(F ′′)2

2xT

−
1

2xPr

(
μ′T ′

T

)′
+

μκ2
z T

Pr

]
τ + F ′ ∂τ

∂x
+
(

−
F

2x
−

1

Pr

μ′T ′

2xT
+

1

Pr

μT ′

2xT 2

)
∂τ

∂η
+

1

Pr

μ

2xT

∂2τ

∂η2
= 0.

(B5)
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APPENDIX C: ADMITTANCES OF THE POROUS WALL

We consider a single pore oriented along the wall-normal direction y and located underneath the
wall [9,60,78,79]. The depth of the pore H∗ is much larger than its radius R∗, and the propagation of
the disturbances is described in a cylindrical coordinate system. Since the pore is long and thin, and
the average velocity is zero therein, one can assume that the radial and azimuthal components of
the velocity disturbance are zero. The dynamic viscosity and the thermal conductivity are assumed
constant, as the perturbations of the temperature field are small in amplitude. The axial coordinate
is scaled with H∗ and the radial coordinate is scaled with R∗. The time is scaled by the angular
frequency ω∗ and the pressure is scaled by ρ∗

w
(H∗ω∗)2, where the density ρ∗

w
is the density at the

boundary-layer interface. These scaled quantities are denoted by the superscript •. The pore has an
open end at y• = 0 and is closed at y• = −1.

Since r∗/H∗ ≫ 1 one can assume the pressure disturbance to propagate as a planar wave along
the pore [79,80]. Harmonic disturbances of the type

p•(y•; t•) = p̃•(y•)e−it•
, (C1a)

v
•(r•; y•; t•) = ṽ

•(r•; y•)e−it•
, (C1b)

τ •(r•; y•; t•) = τ̃ •(r•; y•)e−it•
(C1c)

are introduced in the continuity equation, the axial momentum and energy equations, and the perfect
gas equation, which take the linearized form

−ĩρ• +
∂ ṽ

•

∂y• = 0, (C2a)

−ĩv• +
d p̃•

dy• =
1

K2
v

(
∂ 2̃

v
•

∂r•2
+

1

r•
∂ ṽ

•

∂r•

)
, (C2b)

−τ̃ • = −(γ − 1)He2 p̃• +
1

Pr

1

ik2
v

(
∂2τ̃ •

∂r•2
+

1

r•
∂τ̃ •

∂r•

)
, (C2c)

γ He2 p̃• = ρ̃• + τ̃ •, (C2d)

where He = ω∗H∗/c∗
w

= O(1) is the Helmholtz number of the pore and Kv is defined in Eq. (15).
The solutions that satisfy no-slip and isothermal boundary conditions at the wall are

ṽ
•(r•, y•) = −i

d p̃•

dy•

[
1 −

J0(i1/2Kvr•)

J0(i1/2Kv )

]
, (C3a)

τ̃ •(r•, y•) = (γ − 1)He2 p̃•
[

1 −
J0((iPr)1/2Kvr•)

J0((iPr)1/2)

]
, (C3b)

where J0 and J1 are the Bessel functions of the first kind of order 0 and 1, respectively.
The cross-sectional averages of the velocity and temperature solutions are

〈̃v•〉(y•) = −i
d p̃•

dy• [1 − F (i1/2Kv )], (C4a)

〈̃τ •〉(y•) = (γ − 1)He2 p̃•[1 − F ((iPr)1/2Kv )], (C4b)

and F is a complex function,

F (ξ ) =
2J1(ξ )

ξJ0(ξ )
= 1 +

J2(ξ )

J0(ξ )
. (C5)

The pressure disturbance satisfies the equation [79]

d2 p̃•

dy•2
− �• 2 p̃• = 0. (C6)
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The solution to Eq. (C6) is

p̃•(y•) = a[e−�•(y•+1) + e�•(y•+1)], (C7)

where a is a real constant and �• is the propagation constant defined as

�• = i(Z•
1Y •

1 )1/2, (C8)

Z•
1 and Y •

1 are the nondimensional series impedance (dynamic density) and shunt admittance
(dynamic compressibility),

Z•
1 = [1 − F (i1/2Kv )]−1, (C9a)

Y •
1 = He2[1 + (γ − 1)F ((iPr)1/2Kv )]. (C9b)

The velocity and temperature admittances at the pore inlet (y• = 0) is given by the ratios of the
velocity and temperature to pressure

A•
v
(0) =

〈̃v•〉(0)

p̃•(0)
= −

�•

iZ•
1

tanh (�•), (C10a)

A•
τ (0) =

〈̃τ •〉(0)

p̃•(0)
= (γ − 1)He2[1 − F ((iPr)1/2Kv )]. (C10b)

The velocity admittance (C10a) is expressed by means of either the propagation constant or the
characteristic impedance Z• = (Z•

1 /Y •
1 )1/2. The former is preferable, since it removes the ambiguity

on the choice of the branch of the complex square root [81].
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