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Abstract: AlxGa1−xAsySb1−y grown lattice-matched to InP has attracted signiĄcant research

interest as a material for low noise, high sensitivity avalanche photodiodes (APDs) due to its very

dissimilar electron and hole ionization coefficients, especially at low electric Ąelds. All work

reported to date has been on Al concentrations of x= 0.85 or higher. This work demonstrates that

much lower excess noise (F= 2.4) at a very high multiplication of 90 can be obtained in thick

Al0.75Ga0.25As0.56Sb0.44 grown on InP substrates. This is the lowest excess noise that has been

reported in any III-V APD operating at room temperature. The impact ionization coefficients for

both electrons and holes are determined over a wide electric Ąeld range (up to 650 kV/cm) from

avalanche multiplication measurements undertaken on complementary p-i-n and n-i-p diode

structures. While these ionization coefficients can Ąt the experimental multiplication over three

orders of magnitude, the measured excess noise is signiĄcantly lower than that expected from the

β/α ratio and the conventional local McIntyre noise theory. These results are of importance not

just for the design of APDs but other high Ąeld devices, such as transistors using this material.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.

Further distribution of this work must maintain attribution to the author(s) and the published article’s title,

journal citation, and DOI.

1. Introduction

There is signiĄcant interest in LiDAR systems for applications ranging from space-borne

instruments for greenhouse gas emissions to accurate 3D sensing and mapping in urban

environments for next-generation fully autonomous vehicles [1,2]. For these photon-starved

applications, the detector requirements can be fulĄlled by avalanche photodiodes (APDs). These

can provide higher sensitivity than conventional p-i-n diodes due to their internal multiplication,

which is provided by the process of impact ionization [3]. However, the stochastic nature of this

process results in an excess noise factor (F), which increases with multiplication as described by

McIntyreŠs local Ąeld theory [4]:

F = kM +

(︃
2 −

1

M

)︃
(1 − k) (1)
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Where M is the device multiplication factor and k =β/α, with β and α denoting the impact

ionization coefficients for holes and electrons respectively. The value of F limits the maximum

multiplication achievable while maintaining a large signal to noise ratio (SNR), necessitating the

use of avalanche materials with a small k. A small k reduces the effects of carrier feedback in

impact ionization. This results in lower noise and improved bandwidth [5]. Since the α and β in

most semiconductors tend to become similar as the electric Ąeld increases, low noise APDs have

tended to have thick avalanching regions to allow operation at lower electric Ąelds.

While silicon has excellent excess noise properties due to its small k, it is not able to detect

photons beyond 1000 nm [6] and attempts to integrate it with a Ge absorber result in high dark

currents and a poor quantum efficiency [7Ű9]. APDs capable of operating at telecommunications

wavelengths of 1550 nm have therefore relied on a narrow band gap InGaAs absorber and a

wider band gap multiplication layer, all grown lattice-matched on an InP substrate. These

are incorporated into a separate absorption, charge and multiplication (SACM) heterojunction

conĄguration with a low electric Ąeld in the absorber to reduce the tunnelling current and a high

electric Ąeld in the multiplication region to provide the gain. The InP or InAlAs commonly

used as the multiplication region in these structures however has excess noise that is fairly high

[10,11] due to the similar values of α and β. Low noise APDs capable of operating at 1550 nm

have been demonstrated by the use of narrow band gap materials such as HgCdTe [12Ű14] and

InAs [15], but these tend to require cooling to reduce the dark currents. AlxIn1−xAsSb grown

lattice-matched to GaSb has demonstrated excellent APD performance at room temperature

with absorption that extends beyond 1500 nm [16Ű18], but requires more complicated growth

techniques and is not compatible with a conventional InP based photonics platform. In the last few

years, AlxGa1−xAsySb1−y has established itself as a signiĄcantly better low noise multiplication

material than InP and InAlAs as it can also be grown lattice-matched to InP and combined with

an InGaAs [19,20] or GaAsSb [21Ű23] absorption layer.

Research into the ionization properties of AlxGa1−xAsySb1−y has so far has been limited

to high-Al alloys with x of 1.0 - 0.85. Initial work by Yi et al. on AlAsSb showed that β

was much lower than α [24], corresponding to extremely low excess noise equivalent to a k

value of 0.005 in a 1550 nm p-i-n structure [25]. However, the high Al content of these alloys

resulted in high surface leakage dark current and poor device reliability due to surface oxidation.

Al0.85Ga0.15As0.56Sb0.44 does not oxidize as readily, and Lee et al. showed that nominally

1000 nm avalanching region p-i-n structures grown as a digital alloy (DA) and random alloy (RA)

showed low excess noise behavior with k= 0.01 [26] and k= 0.02 [27] respectively. Even thinner

600 nm avalanching region Al0.85Ga0.15As0.5 6Sb0.44 p-i-n diodes have shown relatively low noise

in this alloy system [28,29]. Extraction of the ionization coefficients in this material over a wide

electric Ąeld range [30] showed that the α remained the same as that of AlAsSb at low electric

Ąeld but that β had increased slightly. There are a number of reasons why an even lower Al

composition alloy multiplication region may be better. The grading scheme from the InGaAs or

GaAsSb absorber to the Al0.85Ga0.15As0.56Sb0.44 multiplication region can be complicated due

to the large conduction band discontinuity, so using AlxGa1−xAsySb1−y with lower Al content as

the multiplication region would be beneĄcial. Further decreasing Al content may also mitigate

the effects of oxidation and high surface leakage currents and reduce the operating voltage of

the APD. This study investigates the impact ionization characteristics of complementary p-i-n

and n-i-p structures of Al0.75Ga0.25As0.56Sb0.44 (hereafter Al0.75Ga0.25AsSb). Multiplication

has been measured under pure electron (Me) and pure hole (Mh) injection conditions for the

p-i-n and n-i-p structures respectively. Impact ionization coefficients are determined from the

multiplication measurements using a ŚlocalŠ model [31], where the carrier ionization probability

for a given position within a device is assumed to be only a function of the electric Ąeld at that

point, and no allowance is made for any Śdead-spaceŠ or history dependence of the carrier energy

[32]. The dark currents and excess noise characteristics are reported for this alloy composition
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for the Ąrst time. This work provides important information on the AlxGa1−xAsySb1−y alloy

system, which will inform the design of high-performance SWIR APDs. While APDs require

information about the ionization behaviour at high multiplication values, other devices such

as high frequency double heterojunction bipolar transistors (DHBTs) on InP are also likely to

beneĄt from an accurate understanding of this behaviour at low electric Ąelds [33].

2. Wafer details

The Al0.75Ga0.25AsSb homojunction p-i-n and n-i-p structures (P1 and N1 respectively) are

shown schematically in Fig. 1(a) with p+ and n+ cladding layer dopings of ∼2×1018cm−1 and

thicknesses of 300 nm. The unintentionally doped intrinsic regions were nominally 1500 nm thick.

Growth was undertaken at a temperature of 500°C on epi-ready n− InP (001) (p-i-n structure)

and p− InP (001) (n-i-p structure) substrates, in a Veeco GEN930 MBE reactor where both As2

and Sb2 Ćuxes are supplied using valved cracker cells. The Al0.75Ga0.25AsSb was grown as a

short period superlattice (∼1.3 nm period) with rapidly alternating layers of AlGaAs (0.17 nm)

and AlGaSb (1.13 nm) in order to meet the conditions of lattice-matching. Further details of

this digital growth technique can be found in Yi et al. [24]. The wafers also had highly doped

20 nm top and 400 nm bottom InGaAs contact layers. Mesa diodes of 90, 140, 240, and 440 µm

Fig. 1. a) A schematic diagram of P1 and N1. b) Forward and reverse bias dark current

data for P1 and N1 for 240 µm diameter devices. c) Capacitance-voltage data for 240

µm diameter devices. d) Photocurrent spectra for P1 and N1 compared to those for

Al0.85Ga0.15As0.56Sb0.44 and AlAsSb.
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diameter with annular optical windows were fabricated using standard wet etching in a solution

composed of [1 ml HCl]: [8 ml H2O2]: [80 ml H2O]. Ti/Au was used for the top and bottom

metal contacts. The mesa sidewalls were passivated with SU-8 and coated with gold to prevent

light from falling on them.

3. Experimental methods and results

In Fig. 1(b), forward current-voltage (I-V) measurements show negligible series resistance and

scaled with area with an ideality factor of ∼1.8 at high bias. However, the reverse dark currents

for both P1 and N1 scaled with device perimeter, indicating that surface leakage effects dominate,

and that the bulk dark currents are signiĄcantly lower. The breakdown voltages for P1 (69 V) and

N1 (68 V) were similar.

Capacitance-voltage (C-V) measurements were performed at a frequency of 1 MHz using an

HP4275 LCR meter. Device region widths and dopings were extracted from these and using a

dielectric constant of 11.7, interpolated from those of AlAsSb [24] and GaAsSb [34], giving

intrinsic region (i-region) thicknesses of 1500 nm (P1) and 1440 nm (N1) with a background

doping of 1.5×1016 cm−3 for both structures. This small difference in thickness accounts for the

difference in breakdown voltage between P1 and N1. As shown in Fig. 1(c), the capacitance

decreases signiĄcantly with reverse bias up to approximately 30 V, indicating that the i-regions of

the structures are not fully depleted before this point. The capacitance changes very little once

the depletion reaches the heavily doped cladding layers. The wavelength dependent photocurrent

spectra for P1 and N1 were measured using a tungsten halogen bulb and a monochromator

(Fig. 1(d)) at a reverse bias voltage at which the i-regions were just fully depleted. This data

conĄrms the expected decrease of the band gap with decreasing Al content from the change in the

absorption cut-off compared to reports in the literature [35] and with measurements undertaken

on a 1550 nm thick homojunction AlAsSb p-i-n from Yi et al. [25]. P1 and N1 have a similar

cutoff at ∼870 nm suggesting that the alloy compositions are identical, however P1 has a higher

short wavelength response. This is presumably due to the longer electron diffusion lengths (Le)

in the top p+ doped cladding layer, relative to the minority hole diffusion length in the top n+

layer in N1.

Figure 2(a) shows photocurrent versus reverse bias voltage for P1 and N1 undertaken with

light from a Ąbre-coupled 455 nm LED. These measurements were performed using a phase

sensitive technique to remove the contribution of any DC dark currents. This wavelength ensures

ŚpureŠ injection conditions, where more than 99% of photogenerated carriers are generated in

the top p+ (n+) cladding layers and only electrons (holes) diffuse into the high electric Ąeld

avalanching region in the p-i-n and n-i-p structures respectively. The photocurrent in the p-i-n

increases rapidly initially with reverse bias unlike that in the n-i-p, leading us to conclude that the

background doping in the intrinsic region is p-type, similar to that seen in higher Al compositions

[24]. The movement of the depletion edge with bias towards the source of optically generated

carriers can lead to an increasing photocurrent [36]. The challenge in the p-i-n structure is to

separate the increase in photocurrent due to electron-initiated multiplication (Me) from this other

mechanism. The movement of the depletion edge with bias is much less signiĄcant in the n-i-p

structure and this can be easily corrected for using a simple linear Ąt [36], allowing hole-initiated

multiplication (Mh) to be accurately determined.

In order to simulate the bias dependent photocurrent, we require information about the minority

carrier diffusion lengths for electrons (Le) and holes (Lh), the rate of movement of the depletion

edge and the ionization coefficients α and β. The photocurrent of the structure shown in Fig. 1(a)

was simulated using a Silvaco TCAD model with the absorption coefficient of the 455 nm light

(γ), Le, Lh, α and β used as Ątting parameters until good agreement with the experimentally

measured photocurrent shown in Fig. 2(a) could be obtained. The red line in Fig. 2(a) shows
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Fig. 2. a) P1 and N1 photocurrent under 455 nm illumination, shown with Silvaco TCAD

simulation of the primary and multiplied photocurrents. b) Multiplication factor versus

reverse bias voltage for P1 and N1 under 455 nm illumination.

that the simulated photocurrent using γ= 1.5× 105 cm−1, Le = 264 nm, Lh = 100 nm and impact

ionization coefficients given by the Chynoweth expressions [37] in Eqs. (2) and (3) gives excellent

agreement with experimental measurements from 0 V to 70 V.

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

6.87 × 105 exp

(︃
−
(︂

1.21×106

E

)︂1.43
)︃

cm−1

when E<500kV/cm

10.0 × 105 exp

(︃
−
(︂

1.30×106

E

)︂1.43
)︃

cm−1,

when 500kV/cm<E<650kV/cm

(2)

β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

3.12 × 105 exp

(︃
−
(︂

1.70×106

E

)︂1.44
)︃

cm−1,

when E<500kV/cm

5.62 × 105 exp

(︃
−
(︂

1.92×106

E

)︂1.38
)︃

cm−1,

when 500kV/cm<E<650kV/cm

, (3)

where E is the electric Ąeld in kV/cm.

The bias dependence of the primary photocurrents is obtained by switching off the ionization

process in the model and is shown by the green lines in Fig. 2(a). The actual avalanche

multiplication is obtained by taking the difference between the measured photocurrent and the

simulated primary photocurrent from Silvaco TCAD as shown in Fig. 2(b).

The α and β from Eqs. (2) and (3) for Al0.75Ga0.25AsSb are shown in Fig. 3(a) together with

data for AlAsSb [24] and Al0.85Ga0.15As0.56Sb0.44 [30]. Both α and β appear only marginally

larger in Al0.75Ga0.25AsSb when compared to Al0.85Ga0.15As0.56Sb0.44. Similar behavior has

been reported in AlGaAs and AlGaInP lattice-matched to GaAs [38], in which the ionization

coefficients do not vary signiĄcantly between alloys of high Al content. Figure 3(b) shows Me-1

and Mh-1 from Fig. 2(a) plotted on a log-scale to emphasize the agreement of the simulated

multiplication with experimental results over three orders of magnitude. Also shown are the

multiplication curves obtained by using a random path length model [31] and the ionization
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Fig. 3. a) Impact ionization coefficients for Al0.75Ga0.25AsSb, AlAsSb [24] and

Al0.85Ga0.15AsSb [30]. b) Multiplication data for P1 and N1 under pure injection conditions

shown with data simulated by an RPL model, in the form log(M-1).

Fig. 4. a) Excess noise for P1 compared with a Hamamatsu Silicon device [6] a Hamamatsu

InGaAs/InP device [39], a HgCdTe [12] device, and an Al0.85Ga0.15As0.56Sb0.44 SACM

APD [22]. b) Excess noise for N1, shown on a different scale due to the much higher noise.

Dashed lines in (a) are the excess noise predicted by McIntyreŠs local model for k= 0 to 0.1

in step of 0.01. Long dash and medium dash line in Fig. 4(b) represents McIntyreŠs local

model for k= 15 and 50. Predicted excess noise data for N1 and P1 using a local model and

an RPL model with a hard ionization threshold energy of 3.6 eV are also shown.

coefficients with accurate knowledge of the electric Ąeld proĄles in the structures investigated

(including the background doping in the intrinsic region and depletion into the doped cladding

layers). The impact ionization coefficients were assumed to be a function only of the local electric

Ąeld (meaning that dead-space effects are not considered) in the structures. Excellent agreement

can be seen between the experimental results and the simulation over three orders of magnitude.

The excess noise measurements were performed using the TIA-based system of Lau et al.

[40], at a centre frequency of 10 MHz with illumination from the 455 nm LED. The excess noise

measured under pure electron injection conditions in P1 (Fe) has sub-McIntyre characteristics

with F remaining below the k= 0 limit of 2 up to M> 60, and then increasing linearly to F= 2.45

at M= 90. This excess noise is shown in Fig. 4(a) together with measurements on a Hamamatsu

InGaAs/InP APD at 1550 nm [39]. Figure 4(a) also shows the excess noise obtained in a recently

reported Al0.85Ga0.15As0.56Sb0.44 SACM-APD [22], in a HgCdTe APD [12] operating at 90 K
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and a Hamamatsu silicon device [6]. The excess noise shown in this work is ∼10 times lower

than a commercially available InGaAs/InP SACM-APD [39] at M= 30 and is ∼32% lower than

that reported in the Al0.85Ga0.15As0.56Sb0.44 device [22]. It is even lower than the excess noise

reported for good low noise commercial silicon APDs operating at ∼420 nm for M < 90 whilst

having a much lower operating voltage. Combined with an InGaAs or GaAsSb absorber, the

Al0.75Ga0.25AsSb should not only give the lowest excess noise reported SWIR SACM-APD at

room temperature to date, but it can potentially work as a better low noise APD in the visible-NIR

with a reach through design than most commercial silicon APDs.

4. Discussion

The exact mechanism responsible for the reduction in F relative to Al0.85Ga0.15As0.56Sb0.44 is as

yet unclear. It may be due to the thicker avalanching region (1500 nm) and hence lower electric

Ąelds in the Al0.75Ga0.25AsSb devices measured in this work, but it may be also related to the

shape of the ionization probability density function (PDF) in this alloy. Recently, Lewis et al.

[29] showed that Al0.85Ga0.15As0.56Sb0.44 gives rise to lower excess noise than predicted by the

α/β ratio alone due to the non-exponential Weibull-Fréchet ionization PDF. A more ŚpeakedŠ

ionization PDF may also exist in Al0.75Ga0.25As0.56Sb0.44 which may explain this even lower

excess noise. Excess noise measurements with pure hole injection in N1 gives an extremely

high F of 90 at M = 4 (Fh Fig. 4(b)), with an equivalent effective keff of 50. Neither a ŚlocalŠ

model [31] or an RPL model incorporating a ŚhardŠ dead-space can simulate the excess noise

behavior in the Al0.75Ga0.25AsSb alloy for P1 or N1 as shown in Fig. 4. A local model for Fe

(black line in Fig. 4(a)) signiĄcantly overestimates the noise and even a hard threshold energy

of Eth= 3.6 eV (red line) does not Ąt the experimental results. A local model for Fh (effectively

the noise due to the α/β ratio) predicts a much lower excess noise in N1 as shown by the green

line in Fig. 4(b) and including any dead-space effects will only reduce this excess noise further,

making the difference with experiments even larger. Ongoing work on the extraction of the

Weibull-Fréchet ionization PDF in this alloy is made more complicated by the presence of the

background doping and non-constant electric Ąeld. Impressively, this material shows comparable

excess noise (F ≤ 1.3 up to M = 20) at room temperature to that observed in HgCdTe [12] at

T= 90 K. This suggests that Al0.75Ga0.25AsSb may be used to produce ultra-low noise devices

with performance which has not been previously achieved without cooling.
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