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Abstract: Task allocation in edge computing refers to the process of distributing tasks among the

various nodes in an edge computing network. The main challenges in task allocation include

determining the optimal location for each task based on the requirements such as processing power,

storage, and network bandwidth, and adapting to the dynamic nature of the network. Different

approaches for task allocation include centralized, decentralized, hybrid, and machine learning

algorithms. Each approach has its strengths and weaknesses and the choice of approach will depend

on the specific requirements of the application. In more detail, the selection of the most optimal task

allocation methods depends on the edge computing architecture and configuration type, like mobile

edge computing (MEC), cloud-edge, fog computing, peer-to-peer edge computing, etc. Thus, task

allocation in edge computing is a complex, diverse, and challenging problem that requires a balance

of trade-offs between multiple conflicting objectives such as energy efficiency, data privacy, security,

latency, and quality of service (QoS). Recently, an increased number of research studies have emerged

regarding the performance evaluation and optimization of task allocation on edge devices. While

several survey articles have described the current state-of-the-art task allocation methods, this work

focuses on comparing and contrasting different task allocation methods, optimization algorithms, as

well as the network types that are most frequently used in edge computing systems.

Keywords: task offloading; edge computing; task allocation; optimization algorithms

1. Introduction

Edge computing refers to a type of computing that is decentralized and allows for
data processing to occur closer to the data source, rather than relying on centralized data
centers [1]. This approach is particularly advantageous for applications that demand a
high bandwidth and low latency, such as autonomous vehicles, Internet of Things systems,
and augmented reality applications at the edge of the network [2]. In edge computing,
the distribution of tasks among the various nodes in a network is referred to as task
allocation. Choosing the best place for each task is one of the primary difficulties of task
allocation in edge computing. This is because the different tasks demanding varying
amounts of computing power, storage, and network bandwidth. A work that needs real-
time processing, for instance, could need to be assigned to a node with high computing
power, while a task that needs a lot of storage would need to be assigned to a node with a
lot of storage space. Additionally, tasks that are sensitive to network latency may need to
be allocated to nodes that are close to the source of the data. This necessitates a trade-off
between the node’s computing power, energy usage, and network delay. In Figure 1, we
can see the architecture of and edge–fog–cloud computing system.
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Figure 1. Edge, fog, and cloud computing architecture.

Furthermore, task allocation in edge computing is dealing with the dynamic nature
of the network. Edge computing networks are often composed of a large number of
devices that can join or leave the network at any time. This means that the number
of available resources and the location of those resources can change frequently. Task
allocation algorithms must thus be able to adapt to these changes and decide in real time.
Furthermore, several competing goals may need to be taken into account, including energy
efficiency, data privacy and security, and QoS assurances.

In edge computing, there are several methods for allocating tasks, each with its
advantages and disadvantages. Using a central algorithm that makes decisions based on
the network’s present state is a common strategy. This strategy calls for a central controller
to keep an eye on the network and decide how to distribute the computational tasks. This
strategy, however, may be susceptible to network outages and result in a decision-making
bottleneck. Also, it may not be feasible to have a central controller in large-scale edge
computing networks. Additionally, the use of a decentralized algorithm allows each node
in the network to make decisions about task allocation independently. This strategy is
predicated on the notion that every node has a local view of the network and can take
decisions based on that perspective. This approach can be more robust to network failures
and can lead to faster decision making. However, it may lead to sub-optimal solutions due
to lack of global information [3–9].

The algorithms that adopt both centralized and decentralized techniques are called
hybrid. These algorithms are designed to take advantage of the strengths of both centralized
and decentralized approaches. For example, a hybrid algorithm might use a centralized
algorithm to make high-level decisions about task allocation, while allowing each node to
make low-level decisions based on its local view of the network. This approach can produce
more effective solutions by balancing the trade-offs between centralized and decentralized
methods. Utilizing machine learning methods to enhance work allocation is another current
strategy. Algorithms that use machine learning can learn from past data and forecast how
the network will behave in the future [10]. As a result, the algorithm may be able to allocate
tasks more precisely. The network’s energy usage may also be optimized using machine
learning methods. For instance, a machine learning algorithm may be taught to predict
how much energy various nodes will need and make decisions about task allocation based
on that prediction.

This work examines the current methods for task allocation on edge devices. We
evaluate the key techniques discussed in the literature to see how effective each of them is
for edge computing and which would be most helpful for future research. We examine and
evaluate the corpus of contemporary research on workload distribution on edge intelligence
devices. Our work provides a thorough assessment of the main methods and algorithms
used in edge computing for efficiently executing difficult workloads [11–79].
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The main contribution of this paper is that it provides a review of the state-of-the-
art task allocation methods. More precisely, this paper only used research published in
the last three years and it highlights the most frequently used task allocation methods
and optimization algorithms in combination with the network types which are used in
edge computing systems according to the application and the task allocation algorithm
used. The purpose of this work was to show the task allocation and all the optimization
algorithms and methods that have been, very recently, the most frequently used in order
to advance the current understanding of choice-making when it comes to adopting the
optimal task allocation method, algorithm, and networks according to the use case. All the
task allocations methods reviewed in this paper tried to give a solution to the edge servers
or the devices located in the edge computing layer by distributing their workloads to the
end devices, fog layer devices, and cloud computing layer devices in order to provide
optimizations according to the use cases of the applications.

The document is divided into six sections. The systematic literature review (SLR)
approach employed in this article is described in Section 2, including the definition of
research questions (RQs). Next, in Section 3, we provide the list of findings in the literature.
In Section 4, we provide a summary of the collected papers. In Section 5, we provide a
critical discussion of our findings and identify future work challenges. We finally conclude
this review in Section 6.

2. Methodology and Research Questions

Conducting a thorough assessment of the existing literature is commonly achieved
through a systematic literature review (SLR), which is recognized as one of the most
widely used approaches [80–83]. This type of study requires a clearly defined process
to accurately identify relevant research. A review should follow a specific protocol to
effectively collect and assess previous works. The methodology which was followed in this
paper incorporates four steps: first, recognize the research questions; second, explain the
literature sources and the search string; third, select applicable studies; and fourth, assess
the studies gathered and extract the necessary data before combining them.

This review aims to identify the task allocation approaches on edge devices. Thus, the
RQs defined are the following:

• RQ1: What are the contemporary task allocation techniques in edge computing?

• RQ2: What are the most frequently used task allocation optimization algorithms used
in edge computing?

• RQ3: What are the most used computer networks in edge computing?

The following method was employed to create a search string clearly corresponding
to our RQs. The key search terms first and foremost need to be RQs-specific. Then, further
search terms are obtained utilizing previously examined documents. The next stage is to
search for alternative spellings and synonyms for the main keywords. The final step is to
combine the keywords to create the search string.

3. Research Process

To better understand task allocation in edge computing, in the following review, we
will examine the most recent papers that refer to the specific topic. To achieve this, we
conducted an extensive search in the Scopus search engine [84] for papers relevant to “task
allocation on edge computing”. Therefore, search terms such as “task allocation” and “edge
computing” are used to search in the titles, abstracts, and keywords of publications. We
narrowed the search to the years after 2020 to catch out on the latest technologies in the
field we are examining. The initial search yielded back 218 documents. Consequently,
using the following inclusion/exclusion criteria:

• In cases where the study has a conference version and a journal version of a study, the
journal version is retained while the conference version is discarded.
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• If there are multiple published versions of a study, only the latest or most recent
version is retained.

• If a study is available in multiple sources, only one version is included.

Exclusion criteria were also used to omit research that did not meet the requirements
for inclusion. The following are the specific exclusion criteria:

• Papers not available on an open access basis or through our university access systems
that are opening the vast majority of the reputable editor houses and journal titles
were not included in the final literature corpus.

• Only documents written in the English language were used.
• Only papers related to computer science were included; works that were only periph-

eral to edge computing were excluded.
• Papers dealing with very specific datasets were excluded. We focused on conceptual

papers, case studies, methodological papers, and position papers.

We do acknowledge that potentially missing a relatively minor number of papers that
we excluded from our systematic review approach due to the unavailability of access to the
sources, these were published, and may have a minimal impact on the completeness of the
corpus and thus on our results. We would argue, however, that our Universities’ journal
access agreements in Greece and the UK are very inclusive and only miss very specialized
and small publishers. We anticipate that this had an extremely limited impact on our work.

In this research, we used the following keywords (with logical connectives) and their
combinations: edge computing, task allocation, IoT, energy utilization, mobile edge com-
puting, computation offloading, integer programming, resource allocation, resource man-
agement, antennas, reinforcement learning, task analysis, fog computing, energy efficiency,
green computing, task offloading, UAV, 5G mobile communication systems, cloud comput-
ing, data handling, job analysis, MEC, network architecture, cloud-computing, computing
environments, deep learning, edge server, fog, learning algorithms, big data, computation-
intensive task, computational modeling, computing resource, energy consumption, learning
systems, multi-agent systems, optimization, QoS, servers, task allocation algorithm, and
total energy consumption.

To answer RQ1, the task allocation methods are categorized according to the following
methods:

1. Resource-aware task allocation: Allocating tasks depending on the resources that
are currently accessible on edge devices, such as processing power, memory, and
battery life.

2. Distributed task allocation: Allocating tasks across a network of edge devices to
optimize the performance and reduce latency.

3. Dynamic task allocation: Adapting task allocation in real-time based on changes in
device performance or network conditions.

4. Machine learning-based task allocation: Using machine learning algorithms to predict
resource utilization and allocate tasks accordingly.

5. Energy-efficient task allocation: Allocating tasks in a way that minimizes energy
consumption in edge devices.

6. Quality of service (QoS)-aware task allocation: Allocating tasks based on the required
QoS levels for different tasks.

7. Collaborative task allocation: Allocating tasks across a network of edge devices by
taking into account the collaboration between devices.

8. Context-aware task allocation: Allocating tasks based on the context of the edge
devices, such as location, available resources, and user preferences.

Table 1 and Figure 2 present a comparative analysis of those papers based on the
classification and contextualization of their key results. Note that the columns in Table 1
are directly related to the answers addressing our RQs.
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Table 1. Summary of task allocation methods in edge computing.

Proposed Task Allocation
Optimization (RQ2)

Applied Network Type (RQ3)

Distributed task allocation
[18] FL WHAB
[22] OFB VANETs
[24] GT, RL MEC
[29] MVAA MEC
[45] PSO IoT
[50] GT IoT
[55] Hybrid MEC
[59] CW Blockchain
[61] BSUB MEC
[63] FL MEC
[31] DLA IoT
[33] RL EC
[34] CFG C-RAN
[35] AsP IoT
[36] GSO MEC, Fog
[65] AsP NDN-IoT
[66] AB, GA Wireless, cellular, satellite
[67] Heuristic MEC

Collaborative task allocation
[12] PFA EC
[77] MINLP EC
[17] ACO IoT
[27] Heuristic IoT

Context-aware task allocation
[52] DFD DAG
[69] GT IoT, 5G
[78] LPA MEC

Energy-efficient task allocation
[68] MAPE-K IoT
[11] Lyapunov MEC
[19] Bi-Level MEC
[25] DRL IoV
[30] QT 5G
[43] PSO IoT
[47] ILP MEC
[71] JTORA MEC
[73] hybrid RF-FSO Industrial IoT

Dynamic task allocation
[13] MPSO VVECNs, VANETs
[79] MH IoV
[20] AA Fog
[23] DP MEC
[41] DRL IoT
[44] ECTA EC
[46] AA Fog
[49] ILP
[56] GA, GEN IoT
[60] PSO EC
[64] BPSO
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Table 1. Cont.

Proposed Task Allocation
Optimization (RQ2)

Applied Network type (RQ3)

Machine learning-based task allocation
[28] DQN-D EC
[54] IoT
[38] MARL IoT
[42] ACO IoT, 5G
[51] FLOM-Opt
[53] Q-Learning IoT, IoV
[57] MA IoT
[58] Heuristic, RL EC

Quality of service task allocation
[26] EC
[32] MMAS EC
[48] QT EC, IoT

Resource-aware task allocation
[76] MAPPO MEC
[62] MDP EC
[14] MAP VEC
[75] JTORA VEC
[72] JTORA MEC
[74] JTORA MEC
[15] DNF
[16] MARL MEC
[21] JTORA NOMA-MEC
[37] EC
[39] ELB
[40] Knapsack MCS
[70] EC, 5G

The task allocation methods (RQ1) covered by the papers we examined are shown in
Figure 3. Most of the papers use distributed task allocation (26.1%), followed by resource-
aware (18.8%) task allocation. Dynamic task allocation (15.9%), energy-efficient (13.2%), and
machine learning (11.6%) task allocation followed next. Collaborative (5.8%), quality-of-
service (4.3%), and context-aware (4.3%) task allocation are the methods that are mentioned
less. It is also very important to note that, in many papers more than one task allocation
methods was used and applied.

Regarding the task allocation optimization algorithms (RQ2), as shown in Figure 4,
the most frequently used is the swarm optimization in various forms (10.1%), various
methods of reinforcement learning (10.1%). JTORA (7.2%), multi-agent methods (5.8%),
the game theory (4.3%), the heuristic approach (4.3%), and the auction algorithm (4.3%).
We also identified the use of many other task allocation optimization algorithms that were
unique; these cases refer to 53.8% of the sample examined. We should note again that many
authors in their works implemented more than one optimization algorithm to illustrate the
effectiveness of each optimization algorithm.

The communication network types (RQ3) are illustrated in Figure 5. Most papers
applied IoT networks (27.6%), followed by mobile edge computing (MEC) networks (26.1%),
EC networks (18.8%), vehicular networks (10.1%), and 5G networks (5.8%). The rest are
illustrated as one category ’various kinds of networks’ (11.6%).
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Figure 2. The classification mind map from the analysis of papers in task allocation methods in edge

computing.
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Figure 3. Percentages of the task allocation methods used.

Figure 4. Percentages of allocation optimization methods used.

Figure 5. Percentages of communication networks used in task allocation.
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4. Literature Review and Data Extraction

This section presents a classification of the task allocation methods used in the recent
literature. Each task allocation method in combination with the computer network type
and the deep learning compression methods has its own strengths and it is used to address
different objectives such as minimized computational power, energy consumption, and
network delay.

4.1. Distributed Task Allocation

Applying edge computing in high-altitude balloons (HABs), as per Sihua Wang et al. [18],
take into account a HAB network that supports MEC and allows users to periodically re-
quest computing tasks with different data volumes. The HABs must dynamically decide
on the best job allocation, service sequence, and user association to provide their users
with computing services. The objective of this combination of job allocation, service se-
quence, and user association was to reduce the weighted total of the time and energy used
by all users. The authors propose a federated learning (FL) approach that uses support
vector machines (SVMs) to predict user association in advance, addressing the optimization
challenge in task allocation. By using this approach, the heterogeneous autonomous base
stations (HABSs) can collaboratively train an SVM model that can accurately predict the
best user association without needing to transmit large amounts of task data or previous
user association results. The original, nonconvex issue is split into two sub-optimization
problems—the task allocation optimization problem and the service sequence optimization
problem—which are then addressed repeatedly based on the expected user association.
Specifically, the authors developed a closed-form formula for the ideal service sequence
given the job allocation vector. This optimization problem may be converted into a piece-
wise linear problem that can be addressed using linear programming if the best service
sequence is known.

Previous research showed [22] the occurrence of a multi-device game that offloads
processing for several users. Computing efficiency may be significantly increased by using
the various available intelligent devices that industrial vehicles can assign calculation
assignments to perform the operation in parallel. Moreover, to determine the optimal of-
floading strategy, they formulated a sequential game of multi-user computation offloading,
treating multiple industrial vehicles as multi-devices for handling multiple targets. They
took into account that the system cost is primarily made up from the price of rental IDs,
energy consumption, and execution time. To improve the chances of establishing wireless
connections between industrial vehicles (IVs) and unmanned aerial vehicles (UAVs), a
dynamic scheduling technique based on the density of small partitions was introduced. The
current vehicle density in the partition determines the UAV’s residence time, which was
scheduled by the software-defined network controller. They developed an algorithm for
minimum incremental task allocation (MITA), a job distribution mechanism for industrial
vehicles to distribute some of the computational duties among several IDs. MITA was
determined as the best multi-target task allocation strategy and reduces the system cost
associated with task execution.

In order to reduce the user response time, balancing the load, and maximizing server
resource usage, Zhenjiang Zhang et al. [24] developed a task offloading technique based
on a multi-agent approach. Additionally, the authors addressed different problems that
centralized scheduling would create and also presented the benefits of centralized training
and dispersed operation. The authors used an experimental approach to confirm the
viability and efficacy of their distributed task offloading algorithm based on multi-agent
and load balancing (DTOMALB) method and the analysis of the simulation results.

This paper [29] addressed the problem in MEC of indivisible task allocation with
heterogeneous resources (TAHRC). In a scenario with diverse resources, the authors pro-
vided an accurate mathematical method for indivisible task allocation. Furthermore, an
effective task allocation that takes into account various types of resources, as well as bi-
nary computation offloading, was presented. The authors defined TAHRC as an integer
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programming problem. The TAHRC was divided into two subproblems: the resource
allocation and offloading choice. Due to the difficulty of computing the optimal allocation,
a heuristic method was proposed to address the resource allocation subproblem, along
with an approximation algorithm to handle the offloading choice subproblem.

A recent study by Tingyan Long et al. [45] proposed a novel approach for fault-
tolerant scheduling in collaboration procedures carried out in edge IoT environments. In
this work, a solution that combines a deep Q-learning network (DQN) and a PB mechanism
to ensure process execution by choosing the best backup component of the workflow was
presented. The job completion rate, server active time, and resource consumption reveal
that the suggested technique outperforms conventional methods, according to the authors’
comprehensive simulations. The study addresses the differences between the suggested
methodology and earlier work while also discussing related fault-tolerance method studies.
Overall, the suggested technique offers a fault-tolerant scheduling mechanism for multi-
task processing on distributed edge-IoT systems that is more effective and dependable.

A novel architecture for IoT networks that incorporates UAVs functioning as mobile
fog nodes, termed hybrid-hierarchical spatial–aerial–terrestrial edge-centric (H2TEC) was
presented by Abbas Jamalipour et al. [50]. While ensuring network dependability and out-
age probability, the suggested task allocation protocol (TOP) reduces energy consumption
and maximizes the transmission rate of terminal nodes (TNs). When a UAV’s energy falls
below a set threshold, the protocol uses energy harvesting techniques to transmit energy
to the UAV. The collected power and harvesting time are improved, and the suggested
protocol outperforms the baseline procedure, according to the numbers. In order to en-
hance the functionality of fog-IoT networks, the study evaluates the literature on mobile
fog nodes and suggests an energy model and a throughput model. The research also offers
a thorough system model, explains how network latency, energy consumption, and UAV
flight height are affected by one another, and suggests a problem for optimizing the flight
altitude. Overall, the research offers a unique approach to the problem of mobile fog nodes
in fog-IoT networks with a constrained energy budget.

Da Li et al. [55] investigated whether the use of massive MIMO and non-orthogonal
multiple access (NOMA) technology can improve the realization of quick fault elimination,
by minimizing the data transmission time, and boosting the transmission rate. The com-
putation of the acquired data can be offloaded to the MEC server. In order to accomplish
the quick correction of errors in the intelligent distribution network and achieve stable
operation, the massive MIMO–NOMA technology is thought to be applied to MEC.

Recently, a work was presented by Weize Xu et al. [59] discussing a decentralized
crowdsourcing system and a task assignment algorithm used to address the issues of task
allocation. The authors offer a blockchain-based solution to address the problems with tra-
ditional, centralized crowdsourcing platforms, such as user privacy leaks and extra service
charges, for multi-skill mobile crowdsourcing assignments. With the help of blockchain
technology, the suggested system enables direct contact between the requester and the
worker, and offers infrastructure services that are highly accessible, decentralized, and
private. The system design allows mobile crowdsourcing projects with varied skill needs by
including worker and task management contracts as well as a fair and transparent task allo-
cation method. Additionally, the system has a solid mechanism for ensuring fairness and is
economically viable with substantially less added consumption. Comparing the suggested
system with current crowdsourcing models based on blockchain, the experimental findings
reveal that the proposed system provides accurate task matching at a lower cost and greater
job allocation rates. Overall, the suggested approach offers a better method for handling
multi-skill mobile crowdsourcing jobs, improving the process efficiency and fairness.

A hierarchical fog-computing cloud radio access network (CRAN) architecture that
combines fog access points (FAPs) with MEC servers to reduce task offloading’s wait
time was published by Yijin Pan et al. [61]. The system includes multiple levels of MEC-
L servers in radio units (RUs), MEC-H servers in distributed units (DUs), and a cloud
computing service in central units (CUs), which helps decrease the distance needed for
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offloading computational tasks and improving the delay performance for computation-
intensive and delay-sensitive applications like virtual reality and automated driving. The
authors suggest a mixed-integer nonlinear programming problem aimed at minimizing
delay by optimizing the distribution of jobs, the transmission beamforming vectors, the
processing speed, and the allocation of transmission bandwidth. They loosened the integer
restrictions to convert the issue into a convex problem and solved it using the Lagrange dual
approach. The hierarchical C-RAN network based on fog computing that was suggested
outperforms current networks in terms of latency performance, according to the simulation
findings. The suggested structure enables access to pooled processing power and storage
resources, which can assist in managing a sizable number of offloading requests and saving
operational expenses.

A recent work [63] discusses an FL method that uses attention to handle the collab-
orative task allocation (CTA) issue in contexts with edge-assisted smart grids. The CTA
challenge entails improving both user equipment task completion delay and energy usage
while taking subtask dependencies into consideration. The authors offer an attentive ap-
proach to extract information from both the power UE and the power base and characterize
the relationships as a directed acyclic graph (DAG). The attention-aided FL method was
then suggested in order to determine the best course of action for the CTA issue as an MDP.
The suggested method outperforms existing options, according to the simulation findings.
The suggested method is anticipated to increase the data accuracy and efficacy in situations
involving smart grids, as well as data privacy and security during multi-party data sharing.

Muhammad Mudassar et al. [31] suggested that the on-time execution of a distributed,
resource-intensive activity requires a method to perform the decentralized grouping of
edge nodes. The authors offered a mathematical framework for distributing resources
fairly among tasks in distributed edge execution environments. Nodes in the edge network
have their reliability characteristics which were assessed. An effective decentralized fault
tolerance mechanism is offered for heterogeneous edge networks that are prone to errors.
Furthermore, in this work, an algorithm for backup nodes based on a dependability model
that offers redundancy was selected and used. Finally, they thoroughly evaluate the
suggested strategies to confirm their effectiveness.

Prior research [33] suggests that a graph-based combinatorial optimization problem
can be employed to simulate a distributed deployment classifier. Even though the greedy
approach can obtain a reasonable approximation of the answer, real-time systems have
trouble keeping up with its slow response time. Moreover, an reinforcement learning
(RL)-based classifier deployment technique was provided that uses graph convolutional
network to learn network structure details in order to choose the best modification strategy
for the given circumstance at each step until all nodes are chosen. The in-depth simulation
tests showed off the effectiveness of their technique. First, they demonstrated a decent
approximation solution and greatly minimized the computation time by comparing their
approach to the greedy one. Second, a demonstration of contrasting distributed throttle
techniques using a classifier yielded superior results. Finally, the authors compared their
deployment technique with several other randomly dispersed deployment strategies to
demonstrate its advantage.

A more systematic analysis was presented by Yijin Pan et al. [34] which studied a
hierarchical fog-computing CRAN network with three levels of computational services,
namely the MEC server (MEC-L) located in radio units, the MEC server (MEC-H) located
in distribution units, and cloud computing located in central units. The authors focused
on optimizing the received beamforming vectors, task distribution, processing speed, and
transmission bandwidth. More specifically, they aimed to reduce the overall latency of the
computing tasks, by lowering the integer constraints. In addition, they defined a mixed-
integer nonlinear problem (MINLP) and transformed it into a convex problem before
applying the Lagrange dual method to solve it.

Furthermore, this work [35] offered a working prototype of their multi-layered archi-
tecture, which combines fog computing and cloud computing layers to perform latency-
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sensitive analysis. The major objective of this research was to improve the real-time data
analysis system based on IoT devices by using this multi-layer fog computing platform.
Their study is based on the OpenFog Consortium policy, which offers good results as well as
monitoring and data analysis features. Through case studies, this work demonstrated how
their suggested prototype architecture performed better in terms of delay time, network
utilization, and energy consumption than the cloud-only environment.

Previous research made by Ke Fu et al. [36] presented a study on multi-user multi-
MEC server scenarios of the MEC environment. In this paper, to balance delay and energy
consumption, a penalty mechanism was used, aiming to mimic real-world scenarios. The
authors characterized the offloading choice in order to minimize the delay under the
restrictions of energy consumption. Furthermore, a detailed examination of the glowworm
swarm optimization (GSO)’s computing methodology was provided. Finally, the simulation
tests were carried out, and the findings demonstrated that their approach has a higher
performance of energy savings and delay reduction in the MEC environment compared to
the alternative compute offloading technique by up to 25%.

Recently, researchers [65] have also focused on utilizing MEC to effectively address the
processing demands of new IoT applications while assuring the security of the sent data.
To reduce the overall time delay in computing the executions of intelligent terminals, this
research proposes an optimization problem that considers the allocation of computing tasks
and the security performance requirements of intelligent devices within the edge computing
topology. The authors recommended resource management and genetic algorithms to
identify the optimal solutions to the problem. This study also takes security issues into
account by assessing the likelihood of a level of security breach by representing the security
level of computing data. Furthermore, the authors enhanced IoT applications’ efficiency
and security when leveraging MEC technologies. In order to confirm the efficiency of the
suggested algorithms, the researchers compared them to heuristic algorithms using data
testing and simulations. The research offers information on how MEC might improve the
productivity and security of IoT applications.

Jianhua Liu et al. [66] proposed a thorough optimization model that was built for the
UAV environment. The model aimed to optimize the costs of migration, operation, and
QoS, while accounting for the energy constraints and location sensitivity of the nodes. An
online method was suggested for this convex optimization task. The proposed method
was thoroughly analyzed in terms of competitiveness, and it was shown that it has a
parameterized competitive ratio. The results of the simulation indicate that the suggested
approach may save 20% of the overall cost compared to previous approaches and has
dependable robustness independent of the user and UAV node counts.

A resource allocation plan for a multi-robot cooperation (MRC) system that reduces
the overall energy use of SRs while meeting the task implementation delay limit was
proposed by Lanxin Qiu et al. [67]. The authors considered a complex, realistic situation in
which a master robot is in charge of task offloading and wireless communication resource
management while the slave robots are in charge of sensing and data gathering. As a result,
the suggested task implementation technique for the MEC-based MRC system in which
they divided each task into three components is a fair and efficient resource scheduling
plan that may reduce the SR’s energy usage. The findings demonstrated that the suggested
plan may successfully lower the slave robot’s overall energy usage.

4.2. Collaborative Task Allocation

Xiaoheng Deng et al. [12] developed an edge computing system called cloudlet as-
sisted cooperative task assignment (CACTA), which uses a method to allocate dynamically
workloads to edge nodes across several time slots. The goal of this approach is to reduce
the time required to complete tasks, either by itself or by working together to minimize
both the overall task completion time and the cost of the system. The authors formulated
this problem by considering the variable computation capabilities and costs of edge nodes,
which are subject to uncertainty and stochastic behavior. They then derived an offline
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optimal solution used as a benchmark to evaluate the online algorithm’s performance. The
proposed method (PA-EMA) was created to solve the issue where the system does not
have access to long-term historical data. The effectiveness of the multi-round allocation
approach was validated by this algorithm. Also, the authors presented the PA-OPT al-
gorithm, which can deliver performance that is close to optimal to deal with the second
circumstance of acquiring historical data. The PA-OPT algorithm implements the ARIMA
approach to predict the computing capacity and cost of a node by examining historical
data and information obtained during the task execution. The CACTA system used actual
parameters from a video processing application and an empirical dataset from the Google
Cluster to conduct experiments. The presented findings recommend that the suggested
online prediction algorithm was able to achieve outcomes that were almost as good as
optimal, especially in cases where an edge node had high computational power and cost
predictability. However, when the edge node’s predictability is low, its performance is
similar to that of other algorithms. In conclusion, this work presented an online algorithm
based on Q learning to achieve joint optimization and real-time resource load balancing.
The algorithm used a traditional RL approach and showed better performance compared
to other existing algorithms.

Furthermore, a paper presented by Guangshun Li et al. [17] proposed a method
to collect node state information in their paper. The method involves categorizing a
node’s state by combining intrinsic and real-time attribute values. An intermediate node
is then used to send back the produced outcome information. After that, the authors
of the study proposed a task allocation model to achieve dynamic system balance. The
model involves allocating new tasks to the comparatively lightest nodes and the task
arrival node, while temporarily not assigning tasks to the other nodes. The initial state
of the nodes was classified using the naive Bayes method by the authors. Additionally,
the normalization of the initial data prevented stressing the importance of higher-value
indicators in the thorough analysis when the levels of the indicators differ significantly.
In order to accomplish dynamic balance, the nodes with relatively light categorization
states and the nodes of task arrival as the target nodes were chosen to allocate new tasks.
Finally, to analyze the load balancing issue among edge nodes, a mathematical framework
was constructed. The load balancing was achieved by assigning tasks and estimating the
completion time based on the transmission rate between edge nodes, computation speed,
and the current task calculation time.

A cooperative edge computing task allocation system was presented by Qianjun
Wang [27] that utilized the maximized resource efficiency and minimized service lag. The
proposed model creates a cooperative computing model for two edge nodes. The model
was converted into an integer nonlinear programming problem, and the best solution is
found using the two-edge-node cooperative-task allocation based on the improved particle
swarm optimization (TCA-IPSO) technique. The simulation results showed that the TCA-
IPSO algorithm significantly outperformed the benchmark and QBTD methods, with a
reduction in the average task completion latency by 53.8% and 36.0%, respectively. In an
IoT scenario, this study showed that cooperative edge computing is a potential method for
distributing tasks and utilizing resources as efficiently as possible.

4.3. Context-Aware Task Allocation

Previous research [52] highlighted the need for high-performance computing in smart
environments. In this work, the authors proposed an effective task allocation algorithm for
global heterogeneous systems that are DFD (Data-Flow-Driven). In order to achieve local
computation and low latency, the authors suggested fog computing and edge computing
topologies. To address the work distribution issue for large-scale scientific computing
systems leveraging remote data sources, this paper provides two optimization techniques
based on mixed-integer linear programming (ILP). Compared to the optimum matching
model, the staged optimization model’s solutions were shown to be nearly ideal in all
situations. In conclusion, the authors acknowledged the need for more study in the areas of
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availability monitoring, predicting application behavior, and finding nearly ideal solutions
in a very short amount of time.

A collaborative edge computing system presented by Yanzan Sun et al. [69] is a solu-
tion tailored to increase application loading, workload distribution, and resource allocation
while preserving application service provider profitability. The advent of mobile edge
computation, which offers computation, storage, network, and communication resources
at the edge for various applications, has made it feasible to connect telephony with Internet
services. Physical memory limitations prevent the edge server from running many appli-
cation services at once, and uneven traffic distribution over the mobile network makes it
challenging to make the most out of the edge network’s resources. The suggested approach
utilized a profit-aware technique for minimizing system latency in long-term stochastic
optimization issues with assignment problem (ASP) profit constraints. It also ensured ASP
profitability and used genetic algorithms to achieve a near-optimal approach for each time
slot. The simulation results showed that the algorithm reduced the system latency in the
long term while maintaining application service provider profits.

4.4. Energy-Efficient Task Allocation

Feng Wang et al. [11] covered a complete solution for wireless-powered MEC sys-
tems—which combine MEC with wireless power transfer (WPT). The suggested system
was a single-user MEC system that employs energy beamforming for WPT toward the user
and has a single multi-antenna energy transmitter. The user uses the captured energy to run
computations locally and offloads some of them to a distant MEC server through an access
point that is integrated with the server. This study proposes a method to optimize the allo-
cation of transmission energy for WPT and the allocation of local computing and offloading
tasks over a certain period while considering the energy and task causality constraints
caused by channel fluctuations and dynamic task arrivals. This study provides an offline
optimization that, under the assumption of perfect information, uses convex optimization
techniques to produce an optimum result that is well structured. When channel and task
state information are only causally known, online designs are also created for the combined
allocation of energy and tasks. The suggested solutions outperform traditional myopic
systems and benchmark schemes in terms of energy usage according to numerical data.

An architecture for a secure MEC system was presented by Jun-Bo Wang et al. [19]
where a multi-antenna access point (AP) contains an MEC server and offers to compute of-
floading services for several mobile devices. Each MD used a protocol for partial offloading
to complete the computations in blocks. The authors provided secured offloading limits
that state that each MD’s offloading rate cannot exceed its attainable secrecy rate to the AP
in order to prevent information loss during offloading to the eavesdropper. Following that,
an optimization problem was created to reduce the system’s total energy usage, with respect
to the restrictions on secure offloading and computation latency. The distribution of com-
puting jobs, offloading power, local CPU frequency, and timeslots were all cooperatively
optimized. The initial optimization issue was nonconvex because of the safe offloading
requirements. To find the iterative convex approximation of the issue, the authors used
the difference of the convex approach. The answer was then derived in a semi-closed form
using the Lagrange dual technique. The authors also provided a low-complexity algorithm
to further minimize the computational cost. Finally, quantifiable results are provided about
how well the suggested strategies performed. It was demonstrated that the suggested
strategies greatly lower the MEC systems’ energy usage. In particular, the existence of the
eavesdropper had no effect on task offloading when the distance between the MDs and the
eavesdropper reaches a specific distance, and the energy consumption of the computing
jobs remains consistent. As result, a large separation between the mobile devices and the
listener could lower the power needed for safe offloading.

Recently, a framework for offloading the workloads to optimize energy consumption in
the Internet of Vehicles (IoV) was presented by Michailidis et al. [25]. This work suggested
a network architecture supported by UAVs for offloading computationally demanding
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activities to roadside units (RSU) that incorporate MEC functions. A dual-reconfigurable
intelligent surface (RIS) configuration that serves two neighboring network nodes was
introduced. Each RIS unit functions as a data offloading aerial relay as well as an aerial-
roadside unit (ARSU). To reduce the energy use of the cars and ARSU while taking into
account transmit power limits, timeslot scheduling, and job allocation, an optimization
technique was provided. In order to confirm the effectiveness of the improved dual-
RIS-assisted wireless transmission model, the authors carried out extensive numerical
computations. According to the article, RIS units can enhance end-to-end communication
during data offloading. This study also covered issues of highly reliable communication
networks, NOMA configurations, and earlier MEC-enabled IoV contributions.

A cooperative task offloading solution using the base station in 5G heterogeneous
networks was presented in [30]. This study considers both the waiting energy and delay
consumption of the offloaded jobs and uses queuing theory to address them. The issue of
choosing whether to offload a task or not is transformed into a task assignment probability
problem. The MDs-centered minimization of delay and energy consumption was specified
as the optimization objective. In addition, the study proposes a method that assigns
probabilities to job assignments, resulting in combined optimization of mobile device
consumption, while considering varying demands for delay and energy consumption. The
proposed method uses a quasi-Newton interior point (TA-QNIP) algorithm to minimize
consumption. Additionally, queuing theory is used to account for the waiting energy and
delay consumption of offloaded jobs, and the offloading choice issue is converted to a task
assignment probability problem. Additionally, the suggested algorithm’s complexity was
explored, and the convergence performance was confirmed.

Previous studies like [43] suggested a creative approach to offload computations in
IoT. The goal of this study was to reduce both the energy consumption and time delays
commonly associated with standard edge computing offloading strategies. The authors
put forth an enhanced method based on particle swarm optimization (PSO) that involves
creating a model and optimization objective function focused on communication and
personalized load models for multi-user computation tasks. By using a PSO algorithm to
determine the optimal solutions for task offloading strategies, they succeed in decreasing
the energy utilization during task allocation. According to their simulations, the suggested
methodology works better than two other algorithms in terms of average time delay, energy
usage across a variety of mobile devices, and data transmission speeds. The outcomes reveal
their strategy’s capability to diminish the task execution’s lag while using less power; hence,
it deals effectively with traditional edge computing problems involving high-energy usage
or excessive latency duration. Furthermore, they also examine convergence performance
while evaluating how crossover plus mutation rates contribute to their suggested technique.

A novel UAV-assisted MEC system was presented by Shuqi Huang et al. [47]. The
authors proposed an architecture for providing computing services to users with low
latency requirements by maximizing the UAV’s flight height and workload allocation ratio.
They designed and developed a functional solution for the optimal UAV flying altitude and
for the optimal job allocation ratio. The authors demonstrated the accuracy of the research
findings, and it was discovered that the user’s horizontal distance from the UAV affects the
UAV’s optimal flying altitude. Additionally, the impact of the transmit power, bandwidth,
and CPU frequency on the optimal job allocation ratio was also examined.

Previous research in [68] implemented a strategy for dealing with the issue of workload
handling. More specifically, in this work, the workloads were assigned throughout the fog
in an entirely autonomous manner by putting into use a monitor-analyze–plan–execute
over a knowledge base (MAPE-K) control loop was defined in implementation problems.
Using a control loop to break the problem down into a number of phases to find the best
placements is provided by a central coordinating mechanism. The coordination mechanism
was used for registering the on-device agents which carried out monitoring and program
execution. In situations where coordination mechanisms were dispersed, device-specific
agents were responsible for performing the phases of analysis and planning.



Future Internet 2023, 15, 254 16 of 30

4.5. Dynamic Task Allocation

Literature [13] suggested the idea of a “resource pool” made up of service vehicles
that move together. They suggest a cooperative task scheduling strategy to reduce the
task execution time, based on these idle resources that may be allocated in resource pools.
They define the min–max issue with the allowable latency constraint for the job execution
time optimization model. Additionally, they formulated problems that take node mobility
into account. To find the optimum work allocation strategy and reduce the task execution
time for the min–max issue, the authors adapted the max–min fairness algorithm and PSO
algorithm, respectively, depending on whether to summon all service cars. The simulation
results showed the success of the suggested strategies.

Another effort made by Ammar Awad Mutlag et al. [20] applied edge computing
in the healthcare system. The authors presented a critical healthcare task management
(CHTM) paradigm for monitoring electrocardiograms (ECGs), in a fog-cloud computing
topology. In more detail, this paper showed how fog computing might improve service
delivery and network congestion, as well as the limits of cloud computing in terms of
real-time healthcare applications. Fog computing does not have a distributed design, and
its nodes are diverse and exclusive in how they share resources and space. In order to
manage crucial activities, the suggested CHTM model intends to offer scheduling, resource
sharing, interoperability, and dynamic task allocation. The model suggested a multi-agent
system to completely control the network from the edge to the cloud, as well as a resource
scheduling model for fog nodes. The outcomes of the simulation demonstrated how the
suggested approach lowers the network utilization, reaction time, network latency, energy
consumption, and instance cost. Finally, the authors discussed potential future study
options as well as the comparisons of the suggested model with relevant work. Overall,
the CHTM model has met its performance requirements and offers an effective resource
scheduling plan for crucial healthcare activities between the fog node layer, edge layer,
and cloud.

Tristan Braud et al. [23] provided a model for a multi-server task allocation method
to optimize allocation over various connections. A solution for mobile augmented reality
(MAR) and the ways in which mobile devices are limited by the processing and latency
requirements of MAR apps was provided. The authors illustrated the durability of the sys-
tem in situations of network instability using simulations and real-world trials. The authors
also go over 802.11ax and the forthcoming 5G technologies. A task dependency graph,
optimization methods for related tasks, and a scheduling algorithm for work distribution
over several wireless links to D2D, cloud, and edge servers were presented. The authors’
contributions included conducting multiple simulations and implementing a real-world
multipath, multi-server mapping application.

A recently published paper by Yan Chen et al. [41] addressed the issue of dynamic task
allocation and service migration (DTASM) in edge-cloud IoT systems in order to improve
the task allocation strategy and reduce the load transferred to the cloud server while
fulfilling migration, latency, and computing capacity restrictions. The work suggested a
deep reinforcement learning (DRL)-based solution. A cloud server was used to administer
the whole system, together with a number of RAN nodes and IoT users running various
sorts of apps. Extensive simulations were used to test the suggested technique, and
the results demonstrate that it outperforms other benchmarks’ task allocation strategies.
Investigating the DTASM problem in a heterogeneous edge-cloud IoT system that needs
dynamic task allocation and offering a DRL-based solution to the problem of a large
discrete action space are two contributions made by this study. Overall, the study examined
the service latency restriction and the smooth service migration requirement, making it
appropriate for edge-cloud systems with several IoT users.

Moreover, Ping-Chun Huang et al. [44] addressed the problems of how edge com-
puting can become a viable tool for reducing the communication lag. In order to balance
the workload across edge servers and reduce the transmission distance, the authors sug-
gested a load-balancing model that takes the computational load on edge servers as well
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as transmission distance into account. Edge server placement (ESP) in conjunction with
the proposed algorithm performed better than conventional heuristics. Furthermore, the
proposed method was more successful in integrating work allocation and server placement,
according to their simulation findings.

Bartosz Kopras et al. [46] analyzed task distribution in latency-constrained fog com-
puting networks, where fog nodes (FNs) are closer to the network edge and have lesser
computational capabilities than the cloud resources. An optimization issue to reduce
task-related energy for transmission and processing with delay limitations was presented
in this study. The optimization takes into account both the workload distribution across
the nodes and the CPU frequency at each active node. Two useful algorithms termed
energy-efficient resource allocation (EEFFRA) and low-complexity energy-efficient resource
allocation (LC-EEFFRA) were developed after the issue was converted with successive con-
vex approximation and decomposed using the primal and dual decomposition techniques.
The utilization of EEFFRA/LC-EEFFRA greatly decreased the count of computational
requests that did not meet the expected delay requirements. Additionally, the authors
made use of dynamic voltage and frequency scaling (DVFS) to reduce energy usage while
still meeting delay requirements. Modeling the energy consumption and delays associated
with transmission and processing in the fog and cloud layers, as well as putting forth and
resolving a challenging optimization problem, were the paper’s key contributions.

A recent paper by Mingjin Zhang et al. [49] proposed an entirely novel edge-native
task scheduling system (ENTS) that co-schedules networking and computing resources
to improve the performance of edge-native applications. Although Kubernetes is now
the de facto standard for container orchestration, it does not enable edge-native apps or
take into consideration their unique throughput and latency needs. This paper includes
the case study of a video analytics application to show how task distribution and data
flow scheduling enable ENTS to maximize work throughput. To tackle the mixed-integer
nonlinear problem, this paper offers two online methods. The research utilized metrics
like task throughput and the average waiting time to compare the performance of ENTS
to different baseline techniques on a real-world testbed. The findings demonstrated the
necessity for specialized scheduling systems for strengthening edge-native applications by
demonstrating considerable gains in work throughput and latency. This study also offered
suggestions for potential future advancements, including the creation of more sophisticated
algorithms for group job scheduling and the incorporation of software-defined networking
into the network controller.

Furthermore, Shida Lu et al. [56] suggested a network architecture of cloud edge fusion
for the MEC system to enable thorough query and computing for real-time applications.
By utilizing MEC’s short distance from the user equipment (UE), difficult computational
tasks can be executed by UE and useless data can be removed before flowing to the cloud.
A suggested distributed task scheduling technique was based on the network architecture
to deal with complicated computational tasks; several MEC servers cooperate, work in
parallel, and eventually accelerate the task execution response times. To demonstrate that
this approach performs better, the authors ran many simulation trials.

A task allocation optimization strategy for distributed edge networks to reduce energy
usage while achieving a high quality-of-service was published by Philippe Buschmann et
al. [60]. ILP, PSO, and DRL are the three optimization techniques that were compared in
this paper. PSO outperforms ILP in smaller problems, but DRL is better suited to larger
problems and has the lowest upper bound for the optimality gap of the three techniques.
According to the study’s findings, the performance of the three techniques varies depending
on the size of the job allocation problem in the edge networks. The PSO is more suited for
smaller issue sizes, whereas DRL is better suited for bigger ones. According to the findings,
the extended PSO algorithm is unreliable and useless for task allocations of greater than
20 and 60, respectively. The study highlighted the potential future research areas, such as
investigating the trade-offs between speed and optimality in ILP problems that prioritize
previously assigned tasks, and exploring the field of heterogeneous networks.
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Furthermore, Junling Yu [64] suggests a binary particle swarm optimization (BPSO)-
based MEC application in the classroom assessment system for English education. It
addresses the NP-hard problem of decoupling the channel resource allocation problem, pro-
poses a multi-user and multi-MEC scenario based on mobile edge computing to maximize
total revenue to finish the work, and formulates an objective function to reduce the task
execution cost. This study uses big data allocation research from mobile edge computing
resources for the application of the English teaching classroom assessment, accelerating the
growth of classroom instruction. It offers recommendations on how to enhance and put
into practice the English education assurance system.

4.6. Machine-Learning-Based Task Allocation

A method for online scheduling optimization for requests based on DAGs in edge
computing networks was proposed by Yaqiang Zhang et al. [28]. The process was char-
acterized as MDP, where the best task allocation strategy was learned at each decision
step via temporal-difference learning. Temporal restrictions between concurrent requests
were satisfied while the system’s long-term latency and energy use were reduced. In
comparison to state-of-the-art approaches, the suggested mechanism exhibits promising
results in lowering long-term delay and energy usage. The offloading of complicated
structured tasks and pertinent strategies for task scheduling in edge networks are also
reviewed and discussed in this paper. The suggested approach attempts to ensure the
quality of experience (QoE), particularly when requests are latency-sensitive and include a
lot of network traffic.

A work published by Zeina Houmani et al. [54] addressed the issues with managing
deep learning applications over an edge-cloud architecture where data are evaluated and
transported between resources at the network’s edge. Trade-offs between accuracy and
latency are important for DL applications since they need outcomes close to real-time with
a precision that the user has set as acceptable. When trade-off improvements are possible,
the research recommended a data-driven scheduling technique and a data management
strategy that lowers the resolution of incoming data. This architecture is for time-critical DL
operations. The pipeline was deployed on distributed resources using the suggested system,
which also has the ability to monitor each job separately to maintain the system performance.
To effectively manage the full DL pipeline in practical deployments while resolving trade-
offs between quality of service (QoS) indicators, the paper emphasizes the need for resource
and data management solutions. It also highlights related developments in edge computing,
microservices, and edge-enhanced data analytic systems. The architecture of the system
has three levels: data management, infrastructure, and workflow management. The
developer’s requirements were met by the system’s timeliness and accuracy thanks to the
data management level’s selection of the data quality distribution for data sources. The
study defines the system’s objective and analytical models to evaluate the accuracy and
end-to-end latency of K data sources. The study looked at object detection in a multi-user
setting on Grid’5000 and found that it increased the average system makespan by up to
54.4% compared to a cloud-only setup. To improve this, future research should develop a
resource allocation tool for deep learning workflows that considers load, tasks, and resource
requirements to meet performance constraints.

Another work [38] studied the topic of load balancing as well as task allocation in
computational infrastructures for smart cities that include edge and cloud computing.
The authors provided an RL method for task distribution that takes into account the
differences between nodes and tasks, as well as their interdependencies and time delays.
The authors showed a simulator to evaluate their method with existing allocation methods
and introduce an abstract description of the computing infrastructure for smart cities. The
suggested method handles dynamic changes well and evenly distributes the workload
across computing components. The contribution of this study was to find ways to optimize
resource usage for smart city applications.
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A new tool to guide the task controller in making decisions (i.e., the allocation process)
was provided by Madalena Soula et al. [42]. Such decisions are dynamically influenced
by the effectiveness of the edge computing nodes and the updated datasets. The authors
assumed that TCs assign various jobs to various edge computing nodes simultaneously as
they process the incoming tasks in batches. A clustering-based allocation method and a
bio-inspired model (i.e., a modified version of the well-known PSO technique) were both
proposed as alternative allocation techniques. The goal of both models was to identify the
best allocations at a given moment in time. They relied on procedures that did not require
any training. In order to show the cost for each allocation based on the demands of the jobs
and the condition of the edge computing nodes, they also considered the cost of allocation
as stated in their past work [85]. The cost of allocation is also used as an indication for
calculating the ranks of edge computing nodes, resulting in a “rewarding” mechanism for
resolving the issue at hand.

A method for handling large-scale tasks in edge computing was presented by [51]
using the federated learning-based optimization methodology (FLOM). To accomplish
accurate task categorization, global load balancing, and lower task processing costs, FLOM
combines FL and deep feature learning approaches. The suggested method incorporates an
FL architecture that permits data exchange and model parameter updates across several
edge computing and cloud centers without disclosing sensitive information to outsiders.
To learn the deep features of task requests and hosts in the substrate network, the authors
provide a deep network model. The experimental findings show that the FLOM technique
outperforms other approaches and efficiently handles large-scale task categorization and
allocation. In edge computing environments, the research emphasizes the necessity for
effective task allocation methods that can identify independently jobs while achieving sys-
tem load balancing. The suggested method has several potential applications in industries
including intelligent manufacturing, intelligent IoT, and smart cities.

Previous research [53] tried to apply edge computing in smart cities in order to
implement a task distribution among the various nodes. The authors researched a va-
riety of allocation techniques, from stochastic allocation to intuitive methods to integer
programming-based mathematical optimization. Furthermore, a demonstration of how effi-
cient job distribution in HEµCs offered appreciable gains in total performance. The authors
also showed that it is completely possible to execute integer programming at the periphery
with little overhead (less than 2% of the total makespan time in their tests in the worst case
scenario) for the size of the scheduling they performed. Their research contribution was that
they defined and provided a motivation for the idea of heterogeneous edge micro-clusters
(HEµCs) and also that they showed the examples of common HEµC compute platform
tasks. This research demonstrated the effectiveness of using mathematical optimization as
a method for batch job distribution in HEµCs.

Ishihara et al. [57] proposed a task allocation method where all agents involved in
executing tasks can express their preference for which tasks they want to work on, and the
manager agent then allocates tasks based on these preferences and system performance
requirements, without employing any extra knowledge of the agents’ capabilities or state.
The authors also took into account the manager’s particularity, which means that each
manager has a different set of customer requests based on the place and the time. Therefore,
by balancing their workloads, agents must be able to dynamically select which manager
to support with the specified tasks. The author suggests that, when making decisions
about service choice, justice and societal considerations should be given priority over the
concept of centralized control. This is because centralized control is not suitable for existing
applications, where services are provided by multiple independent organizations.

Lastly, Liu and Liu [58] proposed an approximate technique for task allocation that
uses the least amount of overall energy while taking into account multi-task parameters
in MEC. Taking into account the binary computation offloading mode and restricted
frequency subchannels, the authors simulated the multi-task allocation problem, resulting
in an integer programming problem that is severely NP-hard. It is the first of its type, and
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trials demonstrated that the proposed PTAS algorithm for multi-task allocation in MEC
can locate nearly optimum solutions while striking a decent compromise between speed
and quality. The study recognized the need to develop an effective solution to address the
multi-task allocation problem.

4.7. QoS Task Allocation

A recent article [26], provided a summary of the techniques, advantages, and limi-
tations of the G-PATA approach. This methodology is unique in that it simultaneously
optimizes conflicting objectives, namely the reduction in energy consumption at the rational
edge and the minimization of processing time at the server, while also fulfilling specific
privacy requirements. The authors discussed the challenge of task allocation in edge com-
puting systems that take into account privacy concerns for delay-sensitive applications
related to social sensing. They also formally outlined the problem’s goals after presenting
the task model, underlying assumptions, and privacy model they utilized.

Furthermore, Zhou Li et al. [32] presented edge computing into mobile crowd sensing
(MCS) and suggested a three-tier architecture, in which they presented ideas for task
distribution and user data input. The edge servers transmitted the job requirements to
users during task allocation so that exact personal information is no longer required. Edge
servers enable participants to contribute high-quality altered data without compromising
their privacy.

The authors outline the challenge of sensing cost reduction while maintaining the
privacy and provide the data sensing mechanism with user privacy preserved (DS-UPP)
method as a solution. In DS-UPP, they created a compressive sensing-based method to
reduce the quantity of required sensing data and an LDP-based algorithm to safeguard
the privacy of the participants. They also examined the DS-UPP that satisfies e-differential
privacy. Taking into account the limitations posed by the privacy budget and task recovery
error, the authors established both the minimum and maximum number of participants
required to mathematically complete the task, along with the expected amount of data
that each participant should contribute. Additionally, through the use of a simulator, they
conducted in-depth simulations to assess the effectiveness of the DS-UPP. After applying
the PrivKV algorithm for comparison, according to the experimental findings, DS-UPP
may, on average, cut the cost of sensing by over 90% while still maintaining privacy and
data quality standards.

A method to lower the overall latency on an MEC platform by providing a work
allocation mechanism was proposed by Katayama et al. [48]. Three different server types
were available on this platform: a dedicated cloud server, a MEC server, and a shared
MEC server. The authors initially calculated the processing time and transmission delay
for different types of servers to determine the time taken for a task to be submitted and a
response to be received. They used queuing theory to determine the transmission latency for
the shared MEC server, with the bottleneck node being modeled as an M/M/1 queueing
model. To minimize the overall latency for all tasks, they formulated an optimization
problem for task allocation. Tasks may be properly distributed across the MEC servers
and cloud servers by resolving this optimization challenge. Even with the use of a meta-
heuristic approach like the genetic algorithm, the computation time is still exceedingly
long. As a result, the authors also suggested a heuristic technique to find the roughly ideal
answer more quickly. A core algorithm and three supporting algorithms make up this
heuristic algorithm’s four components. Tasks are split into two groups in this method, and
task distribution is carried out for each group. The examination of the performance of
their suggested heuristic algorithm in comparison to the results provided by the genetic
algorithm and other techniques was provided. The task allocation methods are relatively
simple and can be easily implemented on an MEC platform. However, there is a risk of
falling into a local minimum when using the suggested heuristic approach. To address
this issue, the authors utilized the random search approach (ARSET) and heuristic random
optimization (HRO) to avoid getting trapped in local minimums.
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4.8. Resource-Aware Task Allocation

The authors in [14] employed their proposed model to simulate a practical vehicular
environment and investigate the problem in a large-scale network. A small part of the
source task was processed at the vehicle, and the remaining task was offloaded at other
vehicles and then at a vehicular edge computing server level. This lowers the cost of
the entire system while also allowing for the utilization of ample vehicle resources and a
reduction in the strain on the overworked VEC server. The MAP algorithm was used in
the VEC scenario which enabled each vehicle to choose its adjacent cars depending on the
finest resources available at the lowest cost. Additionally, they estimated the transmission
rates for V2I and V2V communication while taking into account realistic assumptions. The
determination of whether a job should be computed locally, on a nearby vehicle, or at the
vehicle edge computer (VEC) was based on the percentage of the job and was conditional
on two factors: the maximum allowable delay and the vehicle’s stay time. Finally, by
contrasting it with other methods, they could assess how various variables and vehicular
contexts affect their MAP task offloading approach.

In another paper published by Chen et al. [15], the authors suggest a cooperative
learning process that makes use of simulated and real-time captured data to decrease
the quantity of data required to produce a trustworthy data-driven model. The authors
employed the DCTA technique to distribute tasks in a data-driven system. Through both
a trace-driven simulation and a brand-new, in-depth real-world AIOps case study that
connects theory and practice with a novel architecture, a key component was designed
within an AIOps system. The authors also assessed numerous distinct work allocation
methodologies. At the end, the DCTA method significantly reduces the processing time
by 3.24 times and saves 48.4% of the energy consumption compared to state-of-the-art
approaches when addressing task importance for multi-task learning (MTL) using task
allocation in time-constrained and integrated management (TATIM).

An optimization problem that aims to minimize the total number of users and trans-
mission delays using a multistack RL method was presented by Wang et al. [16]. The
results of this study showed that each base station (BS) opted to allocate a greater number
of downlink subcarriers and transmit power in the downlink direction to a user whose task
needed to be processed by the MEC server, to reduce the maximum delay among all users.
The preference of each BS was to give more uplink subcarriers and a greater uplink transmit
power to a user who needs to locally complete a job. The authors presented a novel strategy
for load balancing in edge computing by allocating tasks through intermediary nodes.

Xue and An [21] analyzed a network situation with several mobile edge server nodes
(MSNs) and a number of edge devices (EDs), each of which had an MEC server to offer
wireless and computation resources. Their study concentrated on ED-specific tasks, which
could be broken into any number of smaller portions for both local and remote computing
needs. Data communication during task loading was achieved using NOMA technology
to increase the resource usage and MEC performance. The authors took into account the
limitations of wireless and communication resources, and they formulated a combined
optimization problem of task loading and resource allocation to increase the system’s
capacity for job processing. To address the defined MINLP problem with the characteristics
of the objective function, the authors divided the original problem into two subproblems:
the resource allocation (RA) problem and the task allocation (TA) problem. Then, they
further divided the RA problem by allocating them as either computation and communica-
tion resources. Initially, the authors assumed that the power distribution of subchannels
was equal when allocating communication resources. The researchers approached the
subchannel allocation problem in the context of a two-sided matching process between
mobile terminals (MTs) and subchannels. They proposed a sub-optimal algorithm with low
complexity to allocate subchannels, and then treated the transmission power allocation as
a convex optimization problem, using the Lagrange multiplier approach. A task alloca-
tion method based on resource allocation was used to overcome the task allocation issue.
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Computer simulation results demonstrated that the suggested task offloading and resource
allocation technique enhanced the MEC system’s overall performance.

Recently, Canete et al. [37] proposed a set of four modules that work together to
support developers in adjusting the deployment process based on the specific requirements
of an application and the capabilities of the infrastructure. These modules are designed
to function independently while also complementing one another. The work first defined
the FMs feature models (FMs) of the infrastructure and application. An FM depicted,
based on characteristics, the relationship between the common and variable parts of a
product family (either an application family or a system family). FMs were represented as
a collection of features that were arranged hierarchically, with parent–child connections
between the features and a set of constraints (known as cross-tree constraints) that show
the links between the features. The infrastructure consisted of a range of different devices,
each with various hardware and software attributes, such as the device type, computational
capacity, peripherals, network capabilities, operating system, third-party libraries, and so
on. These attributes were related to the types of services or tasks that could be performed
on the execution platform, and they pertained to the hardware and software requirements
of the applications. The use of feature modeling (FM) helped create the more accurate
models of the infrastructure, which is often overlooked in the software product line (SPL)
models. This approach allowed the mapping of application features from the application
of FM to the software and hardware features of the infrastructure, even when different
nodes had different capabilities. To simplify the configuration of the infrastructure’s feature
model (FM) and manage the evolution of hardware and software characteristics separately,
the authors divided the hardware and software features into two separate FMs.

A load-balancing method for MEC servers was published by Chen et al. [39] which
operates in ultra-dense networks based on load estimated. The suggested method accounts
for the dynamic distribution of user equipment and ad hoc application activities, and it
provides a novel idea of task unit load transfer overhead for load balancing that is both low-
complexity and high-efficiency. In addition, the study investigated load estimations based
on overlapping coverage and user load prediction, and it suggested a three-tiered comput-
ing network design made up of devices, edge nodes, and cloud servers that improves load
balancing while taking energy use and latency into account. Simulated experiments were
performed to verify the efficacy of the remedies that were suggested.

Li et al. [40] integrated the edge computing with MCS and put up a three-tier archi-
tecture. The authors worked on creative task allocation and user data submission ideas.
The edge servers transmit the job requirements to users during task allocation so that exact
personal information is no longer required. Edge servers assist participants in submitting
high-quality altered data that protect their privacy. They define the challenge of privacy-
preserving sensing cost reduction and provide a solution using DS-UPP. In DS-UPP, a
compressive sensing-based method to reduce the quantity of required sensing data and
an LDP-based algorithm to safeguard the privacy of the participants were created. Also,
the authors examined the DS-UPP’s theoretical properties. It has been established that
DS-UPP complies with the “differential privacy with the restrictions that privacy budget
is” a recovery error. To solve this problem, the authors provided the mathematical lower
bound and upper bound of the number of participants needed for the task achievement as
well as the typical quantity of data that should be supplied by a participant. Lastly, they
applied the algorithm PrivKV for comparison. According to their experimental findings,
DS-UPP gained lower costs for sensing by roughly 90% while maintaining privacy and
data quality standards.

Moreover, Xuefeng et al. [62] addressed the drawbacks of the aforementioned current
technologies. The paper created a platform for intelligent operation inspection that relies
on a multi-agent system and is used for the live line measurement of substation equipment.
The multi-agent system technology was used in the creation of the operational framework.
The paper proposed integrating edge computing into the data processing stage of a multi-
agent system, which enables the intelligent operation inspection platform to overcome
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problems associated with high latency, network instability, and limited resources. This
integration also leads to increased flexibility, reliability, and resource utilization. This design
enhances the systematization and intelligence level of substation operation inspection by
creating an intelligent operation inspection system for substation live inspection. This
covers various aspects such as decision making, wireless communication, data processing,
data sensing, and analysis.

Lastly, Cumino and Sargento [70] discussed the deployment of UAVs in 5G and
beyond MEC scenarios, along with how they may be used as mobile base stations and
communication relays. This paper described the difficulties in implementing flying edge
computing. The authors suggested a multi-tier architecture using UAVs with various
mobility models, and assesses the effectiveness of UAVs as edge nodes. This study also
described the benefits of a multi-tier viewpoint and talked about the topology and design
of a smart city network. The article concludes by summarizing related research on UAV
networks, job offloading, and edge computing models that might increase the available
computational resources, and it highlights current research gaps and future directions.

5. Discussion

Edge computing is a rapidly emerging and dynamically diversifying field that allows
for data processing to occur closer to the source of data, rather than solely relying on
centralized data centers. This review offers a thorough analysis of edge computing task
allocation techniques. This draws attention to the difficulties in choosing the best place
for tasks depending on resources such as the processing power, storage, and network
bandwidth as well as in adjusting to the network’s dynamic nature. The research explores
several task allocation strategies, including centralized, decentralized, hybrid, and machine
learning algorithms, and assesses their efficiency in completing challenging tasks. After
applying the inclusion and exclusion criteria, a total of 69 papers were included in our
SLR. Based on the network types, deep learning compression techniques, and job allocation
optimization algorithms utilized in edge computing, the research gives a comparative
analysis of task allocation approaches. Overall, the paper highlights the difficulties and
complexities of allocation in edge computing and underlines the emerging need to achieve
a compromise between a number of competing goals, including energy economy, data
privacy, security, latency, and QoS.

The optimization techniques are the main source of challenge regarding task distribu-
tion. Dynamic scaling, resource-aware task distribution, resistive PSO, and meta-heuristic
optimization approaches are some of the typical optimization strategies. The selection of an
optimization approach must take into account the particular needs of the application and
strike a balance between a number of competing goals, including energy efficiency, data
privacy, security, latency, and QoS. This review assesses the efficacy of each method that
is suggested for further study, emphasizing the difficulty of job distribution in edge com-
puting and the need to compromise between conflicting objectives. These techniques are
applied in various networks such as IoT networks, MEC networks, fog networks, vehicular
networks, 5G networks, and distributed networks.

Deep learning compression methods play a decisive role in choosing the appropriate
technique for task allocation in edge computing. General deep learning compression, con-
ventional neural networks, knowledge distillation, auto-encoders, and pruning are among
the deep learning compression techniques that merit additional study. These techniques
were applied in a number of suggested task optimization algorithms in many network
types, including satellite, wireless, cellular, MEC, and the IoT [86–90]. The development
of more effective and efficient task allocation mechanisms for edge computing may be
influenced by further investigation into these compression techniques.

The main contribution of our work is providing a solid answer to each of the re-
search questions we made in Section 2. Regarding RQ1, the most contemporary task
allocation techniques in edge computing are resource-aware task allocation, distributed,
dynamic, machine learning-based, energy-efficient, quality-of-service-aware, collabora-
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tive, and Contex-aware allocation techniques which are also shown in Figure 3. As far
as answering RQ2, the most used optimization techniques are the swarm, reinforcement
learning, JTORA, multi-agent, game theory, heuristic approach, and last auction-based
algorithms, which are also shown in Figure 4. When it comes to answering RQ3, the most
used computer networks in edge computing are the MEC, the EC, vehicular, and lastly, the
5G. After answering the RQs, it is clear that every task allocation technique, optimization
algorithm, and network has its own strengths and must be carefully chosen according
to the application. For example, applications such as edge-based video analytics use the
resource-aware task allocation method; the distributed method is used in edge computing
for IoT systems; and dynamic traffic management systems are using the dynamic task
allocation method; predictive maintenance systems are based on machine learning task
allocation methods; the energy-aware methods are usually used in IoT systems; and finally,
the QoS-aware allocation method is used in real-time video streaming applications. The
optimization algorithms and network types are depending on the application and the
topology that needs addressing.

Future research [91–95] in the area of task allocation in edge computing must deal
with the difficulties of adjusting to the dynamic nature of each network and establishing a
balance of trade-offs between several competing objectives such as energy efficiency, data
privacy, security, latency, and QoS. In addition, it is necessary to create new techniques and
algorithms that can manage the growing complexity of edge computing networks. Further
study is required on hybrid strategies that mix centralized and decentralized methods to
maximize work distribution while taking into account the special features of edge comput-
ing settings. Also, further research is needed in the field of task allocation optimization
using machine learning methods. Lastly, research must continue to concentrate on enhanc-
ing the task allocation’s efficacy and efficiency so that edge computing systems can manage
workloads that are getting more complicated.

6. Conclusions

The challenge of task allocation in edge computing is complex and demanding. It
calls for a thorough analysis of the needs of each application. Multiple approaches for
distributing tasks on edge intelligence devices, including centralized, decentralized, hybrid,
and machine learning algorithms, were explored and assessed in this systematic review
of task allocation methods in edge computing. Finding the optimum location for each
task based on processing power, storage, and network bandwidth needs, as well as being
able to adjust to the network’s dynamic nature, are the key issues in task allocation. This
review investigated and assessed studies for many competing objectives, including data
privacy, security, energy efficiency, QoS, IoT, task analysis, fog computing, and computation-
intensive tasks, among other topics. We thoroughly covered all the 69 articles that were
identified by our Scopus-based keyword combination search. We also note that the number
of publications on the topic has seen an upward trend over the years, indicating the
importance of task allocation in edge computing.

A comprehensive understanding of task allocation approaches in edge computing
was attained via the analysis of these papers. More specifically, we classified and contextu-
alized the different types of task allocation approaches that are used, also including the
network types and the deep learning compression methods for optimal task offloading.
The suggested approaches include dynamic scaling for effective resource allocation in
fog computing as well as resource-aware task allocation based on the priority queue and
available computing resources. Additionally, simulations and field testing were used in
each study to assess the efficacy of the recommended approaches; something that we
reported on.

Overall, the analysis comes to the conclusion that task allocation in edge computing is
a difficult but necessary problem that the requires careful consideration of the application’s
specific needs. Research studies on alternative job distribution strategies, competing goals,
and methods such as simulation and field testing might shed light on the most effective
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workload distribution on edge intelligence devices. Our review provides robust evidence
of the growing significance of task allocation in edge computing for IoT devices, industrial
applications (under the umbrella of Industry 5.0), driverless cars, UAVs, and augmented
reality, among other applications.
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The following abbreviations are used in this manuscript:

AA Autonomous-Agents

AB Auction-Based

ACO Ant Colony Optimization

AP Access Point

ARIMA Autoregressive Integrated Moving Average

ARSU Aerial-Roadside Units

AsP Assignment Problem

AVA Application Variability Adaptor

BPSO Binary Particle Swarm Optimization

BSUB Block Successive Upper Bound

CFG Coalition Formation Game

CRAN Cloud Radio Access Network

CTA Collaborative Task Allocation

CW Crowdsourcing Workflows

DAG Directed Acyclic Graph

DFD Data-Flow-Driven

DLA Distributed Learning Automata

DNF Deep Network Flow

DP Dynamic Programming

DQN Deep Q-Learning Network

DQN-D Deep Q-Learning Network with Double Q-Learning

DRL Deep Reinforcement Learning

DS-UPP Data Sensing Mechanism with User Privacy Preserved

DTASM Dynamic Task Allocation and Service Migration

DTOMALB Distributed Task Offloading Algorithm Based on

Multi-Agent and Load Balancing

DVFS Dynamic Voltage and Frequency Scaling

EC Edge Computing

ECLAM Energy and Latency Minimizer

ECTA Edge Computing Task Allocation

EDAF Edge-Deployment Alternatives Finder

EEFFRA Energy-Efficient Resource Allocation

ELB Enhanced Load-Balancing

ET Energy Transmitter

FAP Fog Access Points

FL Federated Learning
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FLOM Federated Learning-Based Optimization Methodology

FM Feature Model

GA Greedy Algorithm

GEN Genetic

GSO Glowworm Swarm Optimization

GT Game Theory

HAB High-Altitude Balloon

ILP Integer Linear Programming

IoT Internet of Things

IoV Internet of Vehicles

JTORA Joint Task Offloading and Resource Allocation

LC-

EEFFRA
Low-Complexity Energy-Efficient Resource Allocation

LPA Location Privacy-Aware

MA Multi-Agent

MAH Multi-Agent Approach Networks with Multiple Agents Heuristic

MAP Mobility-Aware Partial

MAPE-K Monitor Analyze Plan Execute Knowledge

MAPPO Multi-Agent Proximal Policy Optimization

MARL Multi-Agent Reinforcement Learning

MCS Mobile Crowd Sensing

MDP Markov Decision Process

MEC Mobile Edge Computing

MH Multi-Hop

MIMO Multiple Input–Multiple Output

MINLP Mixed-Integer Nonlinear Problem

MITA Minimum Incremental Task Allocation

MMAS Max–Min Ant System

MPSO Modified Particle Swarm Optimization

MRC Multi-Robot Cooperation

MVAA Modified Version of the Auction Algorithm

NDF New Devices Finder

NDN-IoT Named Data Networking—Internet of Things

NOMA Non-Orthogonal Multiple Access

OFB Objective Function Based

PB Primary-Backup

PFA Proportional Fairness Algorithm

PSO Particle Swarm Optimization

QBTD Quality of Service-based Task Distribution

QoE Quality of Experience

QoS Quality of Service

QT Queueing Theory

RIS Reconfigurable Intelligent Surface

RL Reinforcement Learning

RQ Research Question

RSU RoadSide Units

SLR Systematic Literature Review

TAHRC Task Allocation with Heterogeneous Resources

TCA-IPSO Two-Edge-Node Cooperative-Task Allocation based on the

Improved Particle Swarm Optimization

UAV Unmanned Aerial Vehicle

VANETs Vehicular Ad Hoc Networks

VEC Vehicular Edge Computing

WHAB Wireless High-Altitude Balloon Networks

WPT Wireless Power Transfer
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