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Abstract
We evaluate the rate of the absorption of an optical nanofibre mode by a Cs atom in an electric
quadrupole transition. With the Cs atom localised near the outer surface of the optical
nano-fibre, an interaction occurs between the atomic quadrupole tensor components and the
gradients of the vector components of the electric field of a hybrid fibre mode. The absorption
rate is evaluated as a function of the radial position of the atom from the fibre axis, assuming a
specific value of the laser power and we use experimentally accessible parameters. We find that
the absorption of the hybrid modes by the Cs atom decreases as the atom recedes away from the
fibre axis and it formally vanishes at sufficiently large radial distances. Close to the fibre,
however, the absorption rate for the input power chosen can be two orders of magnitude larger
than the quadrupole de-excitation rate despite the moderate power used.

Keywords: quadrupole interaction, optical fibre modes, absorption rate

(Some figures may appear in colour only in the online journal)

1. Introduction

It is well-known that both the rates of emission and absorption
of the light by a two-level atom are modified when the atom
is localised near the surface of a material object. The pres-
ence of the material object modifies the electromagnetic fields
with which the two-level atom interacts, leading to significant
changes of the rates of emission and absorption [1–11]. For
example, if the atomic transition is dipole-active and the atom
is localised between two conductor slabs separated by a sub-
wavelength distance, then the emission process can be totally
suppressed and so, in the absence of any other influences, the
atom remains excited indefinitely.

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

The most widely considered two-level system in such prob-
lems is assumed to have a dipole-active transition, but atomic
systems can have transitions between their energy levels which
are dipole-forbidden, but quadrupole-allowed, as in the case of
Cs, Na, and Rb. Recent studies by both theory and experiment
have focused on such atoms [12–18]. Quadrupole transitions
are, of course, normally much weaker than dipole transitions
and often their observation requires intense input laser light.
However, it is possible to circumvent the use of intense input
light and seek to create situations where the fields are suffi-
ciently intense in well-defined regions of space even though
the input power is not high. Indeed the region close to a mater-
ial surface can have a high electromagnetic density of states
with the energy concentrated in a tiny volume near the surface.

In this paper we are concerned with the quadrupole interac-
tion of a two-level atomwith the electromagnetic fields outside
an optical fibre as the material object. There are a number of
reasons why such a physical scenario is novel. Firstly there
is the experimental possibility of considering an ultra-thin
optical fibre which can be immersed in a cold dilute atomic
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gas as in the recent experiment by Ray et al [15]. Secondly, the
guided modes of the optical nano-fibre introduce new effects
due to the twisting of the helical wave fronts associated with
the phase function eipℓϕ with p=±1 and ℓ a positive integer.
Thirdly the propagation of the electromagnetic fields in an
optical fibre is characterised by a chirality in the sense that
it distinguishes between axial propagation along the +z and
the −z axes. We seek to determine how these features impact
on the quadrupole interaction of the nano-fibre modes with the
two-level atomwhich is localised outside its surface. We focus
on the absorption process involving the quadrupole transition
of a Cs atomwhich is assumed to be localised in the vicinity of
the fibre surface. The aim is to evaluate the upward transition
rate for a specific power of the input laser needed to excite the
fibre mode.

Figure 1 schematically presents the ‘optical fibre+ atom’
system where the two-level atom of transition frequency ωa is
situated outside the fibre at R= (ρ,0,0) where ρ⩾ a, with a
the radius. This problem is essentially a two-centre problem
with two sets of coordinate systems separated by the radial
vector ρ. We assume that the fibre mode propagating along
its axis in the +z-direction has a z component of angular
momentum denoted by Lfibre

z , say, relative to the fibre frame
of reference. However, relative to the atomic frame the z-
component of the angular momentum is Latom

z which is given
by

Latom
z = Lfibre

z − [ρ× π̄]z = Lfibre
z − 1

2
ε0ρSφ (1)

where we have defined π̄ = 1
c2 S as the linear momentum dens-

ity, S= 1
2ℜ[E∗ ×H] the Poynting vector with E and H, the

electric and magnetic fields of the fibre mode. On applying the
results of the analysis to a particular fibre mode and a particu-
lar atomic transition we have to determine whether the second
term is sufficiently small to write

Latom
z ≈ Lfibre

z (2)

which means that for interactions at the atomic position the
optical angular momentum of the mode differs very little from
that relative to the fibre frame of reference. In appendix B we
evaluate the cylindrical components of the Poynting vector of
the specific fibre mode and conclude that the azimuthal com-
ponent of the Poynting vector, Sφ, is small in the region out-
side the fibre and the near equality in equation (2) is reasonably
well justified for the parameters chosen. The above argument
was put forward by Berry [19] in the context of free space
optical vortex modes, but here we had to check and confirm
its validity for fibre modes.

The flow of this paper is as follows. In section 2 we describe
the relevant hybrid modes of the optical fibre and we focus on
the Cs quadrupole transitions |L= 0,ml = 0⟩ → |L= 2,m ′

l ⟩
where m ′

l = 0,±1,±2. In section 3 we present the general
formalism of the emitter as a two-level system interacting
with an external optical field through an electric quadrupole
transition. In section 4 analytical expressions are derived for

Figure 1. An atom, as a two-level system, localised at the position
vector R in the vicinity of the optical fibre where use is made of
both the Cartesian coordinate system R= {X,Y,Z} and cylindrical
polar coordinates R= (ρ,φ,Z). The refractive indices in the core n1
and in the cladding regions n2 are both constants.

the quadrupole Rabi frequency associated with the absorp-
tion of the light in a quadrupole transition of a Caesium atom.
Section 5 is concerned with the absorption process when the
atom interacts with the optical fibre field at near-resonance,
with the aim of evaluating the absorption rate. Themodel treats
the atom as a two-level system and applies the Fermi Golden
rule involving the density of states with appropriate use of the
transition selection rules. In presenting the rate of transition
formalismwe describe the density of the continuumfinal states
as a Lorentzian function representing the upper atomic level as
an energy band of width h̄γ where γ−1 is the free space life-
time of the upper state involved in the quadrupole transition.
We adopt experimentally accessible parameters to evaluate the
magnitude of the absorption rate. In section 6 we summarise
and outline the main conclusions of this paper.

2. Hybrid nano-fibre modes

The electromagnetic fields with which the emitter interacts are
those in the vicinity of the surface of a nano-fibre in the form
of a long circular solid cylinder as shown in figure 1 with the
fibre surrounded by a homogeneous medium (cladding). The
refractive indices in the core region, n1, and in the cladding
region, n2, are both assumed to be constants. The theory of
fibre modes is described in detail in [20–22], so only a brief
mention of the modes andmore details pertaining to the hybrid
modes are presented here.

Since the refractive indices in the core and the cladding
regions are both constants the fibre can only support guided
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modes. Thus the types of guided modes that can be excited in
the optical fibre are quasi-circularly polarised hybrid modes
(HE or EH), transverse electric modes (TE), and transverse
magnetic modes (TM). For ease of notation, the fibre guided
modes of frequency ω and axial wavenumber k will now
be labelled by the index α= {ω,C,s,p}, with the label C=
HEℓm,EHℓm,TE0m , or TM0m representing the mode kind of
integer ℓ= 0,1,2, . . . and m= 1,2, . . ., with ℓ the winding
number andm the radial index, respectively. The index s=−1
or +1 denotes the backward or forward propagation along the
fibre axis z, and p=±1 denotes the polarisation index. As
pointed out earlier, we adopt cylindrical polar coordinates to
represent the position vector variable of the centre of mass R
of the atom, so thatR= (ρ,φ,Z).Wewrite for the electric field
of a guided mode

E(R, t) = E (ρ)eiθ
α

e−iωt+ c.c. (3)

where θα = sβZ+ pℓφ is the phase function with β the
propagation constant. In most standard treatments of the
guided modes of an optical fibre the vector amplitude func-
tion E(ρ) is normally derived using cylindrical polar coordin-
ates. It has three components, namely radial, azimuthal, and
axial components, and is written as (Eρ,Eφ,EZ). The quasi-
circularly polarised hybrid mode [13, 20–23] is the type of
mode of particular importance here.

2.1. Quasi-circularly polarised hybrid modes

For integer ℓ > 0 we have the quasi-circularly polarised hybrid
modes C={HEℓm or EHℓm} and are defined both inside the
fibre (ρ < a) and outside it (ρ > a). The components of the
electric field inside the fibre ρ < a are as follows

Eρ = iN β

2µ
[(1− ξ)Jℓ−1(µρ)− (1+ ξ)Jℓ+1(µρ] ,

Eφ =−N β

2µ
[(1− ξ)Jℓ−1(µρ)+ (1+ ξ)Jℓ+1(µρ)] ,

EZ =N Jℓ(µρ), (4)

and, for ρ > a,

Eρ = iN
β

2ν
Jℓ (µa)
Kℓ (νa)

[(1− ξ)Kℓ−1 (νρ)+ (1+ ξ)Kℓ+1 (νρ)] ,

Eφ =−N
β

2ν
Jℓ (µa)
Kℓ (νa)

[(1− ξ)Kℓ−1 (νρ)− (1+ ξ)Kℓ+1 (νρ)] ,

EZ =N
Jℓ (µa)
Kℓ (νa)

Kℓ (νρ) . (5)

where ξ is a system parameter, defined as

ξ = l

(

1
µ2a2

+
1

ν2a2

)[

J ′ℓ (µa)
µaJℓ (µa)

+
K ′
ℓ (νa)

νaKℓ (νa)

]−1

, (6)

where the prime stands for the total derivative. In the above
field components, µ= (n21k

2 −β2)1/2 is the wave number

associated with the radial variation of the field inside the fibre,
and ν = (β2 − n22k

2)1/2 is associated with the spatial decay of
the field amplitude radially outside the fibre. The functions Jn
and Kn, with n integer, are Bessel functions of the first kind
andmodified Bessel functions of the second kind, respectively.
Finally,N is the overall constant which is determined in terms
of the power P of the field. The evaluation of |N | is described
in appendix A in which we find |N | is given by

|N |2 = P
IH1 + IH2

(7)

where for the IH1 and IH2 are the integrals appearing in the
appendix as in equations (A.6) and (A.7) and are to be evalu-
ated numerically.

The set of equations (4) and (5) which display the electric
field components of the fibre show that the fibre field acquires
not only two individual transverse (radial and azimuthal) com-
ponents but also a longitudinal (axial) component. The exist-
ence of the common phase factor eiℓφ in equation (3). means
that there is an azimuthal-phase dependence. Such a phase
dependence is characteristic of the field in fibre modes and is
directly responsible for the orbital angular momentum content
of the mode.

Figure 2 displays radial variations of the field components
within the core of the fibre (ρ < a) and outside it (ρ > a) for
optical fibre mode EH for which (ℓ= 2,m= 1). The refractive
indices of the fibre and the vacuum cladding are n1 = 1.4615
and n2 = 1.

2.2. Dispersion relation

For a fibre mode of frequency ω, wavelength λ= 2π c/ω and
wave number k= ω/c, the propagation constant β satisfies the
transcendental equation [20]

[

J ′ℓ (µa)
µaJℓ (µa)

+
K ′
ℓ (νa)

νaKℓ (νa)

][

n21J
′
ℓ (µa)

µaJℓ (µa)
+
n22K

′
ℓ (νa)

νaKℓ (νa)

]

=

(

ℓβ

k

)2( 1
µ2a2

+
1

ν2a2

)2

. (8)

The case ℓ= 0 is concerned with the TE and TM modes,
but we are interested here in the case ℓ ̸= 0, so equation (8).
involves a mixture of HE and EH modes [20–22]. For HE
modes we have

fHE (β) =
Jℓ−1 (µa)
µaJℓ (µa)

−
ℓ

µ2a2
+

1
2

(

1+
n22
n21

)

K ′
ℓ (νa)

νaKℓ (νa)
+A= 0.

(9)

The dispersion relation for the EH modes differs by the neg-
ative sign multiplying A and so on evaluation it gives rise to
different values of β

fEH (β) =
Jℓ−1 (µa)
µaJℓ (µa)

−
l

µ2a2
+

1
2

(

1+
n22
n21

)

K ′
ℓ (νa)

νaKℓ (νa)
−A= 0,

(10)

3
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Figure 2. Upper panel: variations of the field components Eρ,Eφ,Ez with the radial coordinate ρ for the EH optical fibre mode for which
(ℓ= 2,m= 1). Lower panel: variations in the XY plane indicating cylindrical symmetry. The refractive indices of the fibre core material and
the vacuum cladding are n1 = 1.4615 and n2 = 1, respectively. The fibre radius is a= 290 nm and the wavelength of the light is set to
λ= 685 nm.

Figure 3. Left panel: variations of the scaled propagation constant β/k with the fibre radius a. The wavelength of the light is set to λ= 685
nm. Middle and right panels: variations of the dispersion functions fHE and fEH with β/k for ℓ= 2 m= 1. The roots of the dispersion
functions determine the values of β in each case. Once again, the refractive indices of the fibre and the vacuum cladding are assumed to be
n1 = 1.4615 and n2 = 1, and the fibre radius is a= 290 nm.

where A is given by

A=

[

(

ℓβ

n1k

)2( 1
ν2a2

+
1

h2a2

)2

+
1
4

(

1−
n22
n21

)2( K ′
ℓ (νa)

νaKℓ (qa)

)2
]1/2

.

(11)

The HE and EH modes are labelled by HEℓm and
EHℓm, respectively, such that ℓ= 1,2, . . . and m= 1,2, . . .
are the azimuthal and radial mode orders, respectively.

In this case, the radial mode order m indicates that the
HEℓm or EHℓm mode is the solution to the corresponding
equation (9) or (10).

Figure 3 (left panel) displays the variations of the propaga-
tion constant of the fibre as a function of the fibre radius a
at optical wavelength λ= 685 nm for the fundamental HE11

mode as well as some higher-order modes. However, for
the optical fibre under consideration here the higher-order
mode, HE21 is realisable at a≃ 283 nm. It is well-known that
as the fibre radius a increases the number of modes it can

4
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support increases. Our numerical results agree with those in
the literature [13, 24–26].

Figure 3 (middle and right panels), display the dispersion
functions (9) and (10) against β/k for the HE, EHwith (ℓ= 2)
where the fibre radius a= 290 nm. The refractive indices of
the fibre and the vacuum cladding are n1 = 1.4615 and n2 = 1,
respectively.

3. Quadrupole interaction

3.1. Derivation of the Rabi frequency

Having described both the mode functions and the dispersion
relations of the hybrid fibre modes with which the atomic
two-level system interacts, we now turn to describe the two-
level system itself as consisting of a two-level atom enga-
ging with the fibre through its electric quadrupole moment.
The ground and excited states of the two-level-atom involved
in the atomic quadrupole transition are {|g⟩, |e⟩} with corres-
ponding frequencies ωg and ωe, respectively, corresponding
to the resonance frequency ωa = (ωe−ωg). The interaction
Hamiltonian is written in Cartesian coordinate systems as a
multipolar series with fields evaluated at the centre of mass
coordinate R= (X,Y,Z) and can be written as [27–32]

Ĥint = ĤD+ ĤQ+ . . . , (12)

where the first term ĤD =−d̂.Ê(R) stands for the electric
dipole interaction between the neutral atom and the electric
field, d̂ is the electric dipole moment vector, where r= (x,y,z)
is the internal electronic-type position vector with compon-
ents (x,y,z) written as xi, i = 1,2,3. Ê(R) is the electric
field vector evaluated at the centre of mass coordinate R. The
atomic transition process in question is taken here to be dipole-
forbidden but quadrupole-allowed, so it is the second (quadru-
pole) interaction term in equation (12) that dominates in this
case. We have

ĤQ =−1
2

∑

ij

Q̂ij∇i Êj. (13)

This is essentially the interaction involving the Cartesian com-
ponents of the quadrupole moment tensor Q̂ij = exixj and the
gradients of the electric field vector components, evaluated at
the centre-of-mass coordinate R. Here ∇i are components of
the ∇ vector operator which act only on the spatial coordin-
ates of the transverse electric field vector E as a function of the
centre of mass vector R= (X,Y,Z).

For the two-level atom, the quadrupole tensor operators Q̂ij

can be written in terms of ladder operators as Q̂ij = Qij(b̂+
b̂†), where Qij = ⟨i|Q̂ij|j⟩ are the quadrupole matrix elements
between the two atomic levels, and b̂(b̂†) are the atomic level
lowering (raising) operators. The electric field equation (3) can
now be written in the Cartesian form

E(R) =
∑

i

êiEi, (14)

where êi(i = x,y,z) are the Cartesian unit vectors and Ei are
the Cartesian components of the optical electric field that can
be written as

Ei = u{α}i (R)eiθ
{α}(R)e−iωt+ c.c., (15)

where c.c. stands for complex conjugate; uαi (R) and θα(R)
are the amplitude and the phase functions of the Cartesian ith
optical electric field component. Recall that the superscript α
denotes a group of indices that specify the optical mode in
terms of its frequencyω, themode kindC, azimuthal and radial
numbers ℓ andm, and the polarisation index p. The quadrupole
interaction Hamiltonian can now be written as follows

ĤQ =−1
2

∑

i,j

Q̂ij
∂Ej
∂Ri

. (16)

and this interaction Hamiltonian can also be written in terms
of the Rabi frequency as follows

ĤQ =−h̄Ω{α}
Q (R) âeiθ

{α}(R)e−iωt+H.c. (17)

where â and â† are the fibre mode destruction and creation
operators and Ω

{α}
Q (R) is the quadrupole Rabi frequency

Ω
{α}
Q (R) =

1
2h̄

∑

i,j

Qiju
{α}
j

(

1

u{α}j

∂u{α}j

∂Ri
+ i

∂θ{α}

∂Ri

)

(18)

This is the general form of the quadrupole Rabi frequency
which applies to any of the allowed modes.

Recall that the optical fibre is a long dielectric cylinder
of radius a and refractive index n1 immersed in a back-
ground medium of refractive index n2, where n2 < n1. The
Quadrupole interaction is expressed in terms of the Cartesian
coordinates {x,y,z} relative to the atomic centre of mass, with
the centre of mass coordinate written R= (X,Y,Z). The amp-
litude functions of the electric field components of the fibre
modes Ej are, however, given in cylindrical coordinates R=
(ρ,φ,Z), so to proceed we need to make a transformation to
express the optical electric field components of the fibremodes
in terms of u{α}j (R). We have

u{α}x = cos(φ)Eρ − sin(φ)Eφ,
u{α}y = sin(φ)Eρ + cos(φ)Eφ,
u{α}z = EZ, (19)

where θ{α} = (sβZ+ pℓφ). Also ρ=
√
X2 + Y2 and φ =

tan−1(Y/X). The quadrupole Rabi frequency equation (18) can
now be written as the sum of three terms

Ω
{α}
Q (R) =

1
2h̄

3
∑

j=1

Ωj, (20)

5
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where

Ω1 =

(

∂u{α}x

∂X
− iξ1u

{α}
x

)

Qxx+

(

∂u{α}y

∂X
− iξ1u

{α}
y

)

Qxy

+

(

∂u{α}z

∂X
− iξ1u

{α}
z

)

Qxz,

Ω2 =

(

∂u{α}x

∂Y
+ iξ2u

{α}
x

)

Qyx+

(

∂u{α}y

∂Y
+ iξ2u

{α}
y

)

Qyy

+

(

∂u{α}z

∂Y
+ iξ2u

{α}
z

)

Qyz,

Ω3 = isβ
(

u{α}x Qzx+ u{α}y Qzy+ u{α}z Qzz

)

, (21)

where ξ1 = pℓY/(X2 + Y2) and ξ2 = pℓX/(X2 + Y2). For an
absorption transition, the quadrupole Rabi frequency depends
on the type of mode excited in the optical fibre involved in
the quadrupole transition and the angular momentum quantum
numbers of the two energy levels, and these are governed by
the transition selection rules.

3.2. Applying the selection rules

We focus specifically on the quadrupole transition |L=
0,ml = 0⟩ → |L= 2,m ′

l ⟩ in which a fibre mode is absorbed,
where (m ′

l = 0,±1,±2) and we are adopting the notation
|L,ml⟩ for the atomic state, labeled by the angular momentum
quantum numbers [27–30].

The selection rules are ∆L= 0,±2; ∆m= 0,±1,±2. We
consider the following three situations

• For the case m ′
l = 0, the quadrupole moment tensor can be

evaluated [27, 28] and we find that all the off-diagonal quad-
rupole tensor components are equal to zero (Qxy = Qxz =
Qyz = 0), while the diagonal matrix elements are non-zero.
We have (Qxx = Qyy = Q0 andQzz =−2Q0). Thus, the Rabi
frequency equation (20) takes the following simpler form,

Ω
{α}
Q (R) =

Q0

2h̄

[(

∂u{α}x

∂X
− iξ1u

{α}
x

)

+

(

∂u{α}y

∂Y
+ iξ2u

{α}
y

)

− 2isβu{α}z

]

. (22)

Equation (22) can be written entirely in terms of the com-
ponents of E with cylindrical coordinates. We find

Ω
{α}
Q (R) =

Q0

h̄

[

1
ρ

∂ (ρEρ)
∂ρ

+
ipℓ
ρ
Eφ − 2isβEZ

]

. (23)

• For the casem ′
l =±1, the diagonal matrix elements are zero

(Qxx = Qyy = Qzz = 0) and the off-diagonal matrix elements

are Qxy = 0 and Qxz = iQ1,Qyz =∓Q1. Consequently, the
Rabi frequency equation (20) yields,

Ω
{α}
Q (R) =

Q1

2h̄

[

i

(

∂u{α}
z

∂X
− iξ1u

{α}
z

)

∓

(

∂u{α}
z

∂Y
+ iξ2u

{α}
z

)

+isβ
(

iu{α}
x ∓ u{α}

y

)]

, (24)

or in terms of the cylindrical components, we have for the
case m ′

l =±1

Ω
{α}
Q (R) =

iQ1e±iφ

h̄

[

∂EZ
∂ρ

∓ ipℓ
ρ
EZ+ isβ (Eρ ± iEφ)

]

.

(25)

• For the case m ′
l =±2, the zero matrix elements are (Qzz =

Qyz = Qxz = 0) and the non zero matrix elements are Qxx =
−Qyy = Q1,Qxy =±iQ1. Accordingly, the Rabi frequency
equation (20) has the following form,

Ω
{α}
Q (R) =

Q1

h̄

[(

∂u{α}
x

∂X
− iξ1u

{α}
x

)

−

(

∂u{α}
y

∂Y
+ iξ2u

{α}
y

)

± i

((

∂u{α}
y

∂X
− iξ1u

{α}
y

)

+

(

∂u{α}
x

∂Y
+ iξ2u

{α}
x

))]

,

(26)

and in terms of the cylindrical components, we have for the
case m ′

l =±2

Ω
{α}
Q (R) =

Q1e±2iφ

h̄

[(

∂

∂ρ
(Eρ ± iEφ)

−1
ρ
(1± pℓ)(Eρ ± iEφ)

)]

. (27)

We thus have in hand closed expressions for the Rabi fre-
quencies in the hybrid modes of the optical fibre for the quad-
rupole transitions |L= 0,ml = 0⟩ → |L= 2,m ′

l ⟩ which satisfy
the transition selection rules.

4. Caesium atoms outside optical fibre

Once again we emphasise that we are investigating the spe-
cific case of the Cs atom, which has also been the subject of
an investigation involving its quadrupole transition (62S1/2 →
52D5/2) in various contexts [12, 17, 30, 33, 34]. We have
the following as parameters for Cs: λ= 685 nm, Qxx = 10ea20
(with a0 the Bohr radius), and the de-excitation rate involved in
the quadrupole transition γ = 7.8× 105 (s−1). The fibre radius
is a= 290 nm and the refractive indices of the fibre core and
the vacuum cladding are n1 = 1.4615 and n2 = 1, respectively.
The overall constantN depends on the power P of the excited
fibre mode and here we set the value of P as P = 2.5(µW)
[15].

In appendix B we evaluate the components of the Poynting
vector and exhibit their variations with the atom position ρ⩾
a outside fibre. It is clear that the azimuthal component is
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Figure 4. The spatial distribution of the quadrupole Rabi frequency |ΩQ|/2π (kHz) for the Cs atom with the quadrupole transition
|L= 0,ml = 0⟩ → |L= 2,m ′

l ⟩ in the mode C= {HE21}. For m ′
l =−2, m ′

l =−1, m ′
l = 0, m ′

l =+1, and m ′
l =+2 from the left to the right,

respectively. In all cases s=+1,p=+1. The power is P = 2.5 (µW); for other parameters see the text.

much smaller than the axial component and we conclude that
equation (1) is reasonably well satisfied.Wemay now consider
the processes of absorption of the hybrid optical fibre modes
by the atom, having obtained expressions for their Rabi fre-
quencies in preparation for evaluating the absorption rate.

4.1. Absorption of an HE mode

An HE mode is appropriate for the quadrupole transition
|L= 0,ml = 0⟩ → |L= 2,m ′

l ⟩ for the mode C= {HEℓm}. We
need not substitute ℓ= 2 at this stage, then using equation (5)
and assuming p= 1, we need to evaluate the quadrupole Rabi
frequencies for the different situations.

For the case m ′
l = 0, equation (23) becomes

Ω
{α}
Q (R) =−iQ0

2h̄
β (2s+ 1)N Jℓ (µa)

Kℓ (νa)
Kℓ (νρ) (28)

For the case m ′
l =±1, equation (25) reads

Ω
{α}
Q (R) =±i Q1

2h̄
N e±iφ Jℓ (µa)

Kℓ (νa)

(

(i± 1)
ℓ

ρ
Kℓ (νρ)

+
sβ2 (ξ± 1)± ν2

ν
Kℓ+1 (νρ)

)

. (29)

and we note the explicit appearance of the index s=±1, the
direction of polarisation in the above expressions.

For the case m ′
l =±2 we obtain from equation (27)

Ω
{α}
Q (R) =∓i Q1

2h̄
β (ξ± 1)N e±i2φ Jℓ (µa)

Kℓ (νa)

×
(

Kℓ (νρ)+
2(1± ℓ)

νρ
Kℓ±1 (νρ)

)

, (30)

which does not depend on s=±1.
We have to include the Clebsch–Gordan coefficients (CGC)

in the formalism since the atomic levels involve both the
orbital angular momentum and the spin of the electron, both
of which are required in fine structure. The following CGCs

CGC=

√

5
5
,

√

4
5
,

√

3
5
,

√

2
5
,

√

1
5
, (31)

correspond to the transitions for which ∆m=
−2,−1,0,+1,+2, respectively [32, 35].

Figure 4 displays the spatial distribution of the quadru-
pole Rabi frequency |ΩQ/2π (kHz)| for the Cs atom with
the quadrupole transition |L= 0,ml = 0⟩ → |L= 2,m ′

l ⟩ in the
mode C= {HE21} where ℓ= 2 for different values of m ′

l =
0,±1,±2. The results show that the quadrupole Rabi fre-
quency has cylindrical symmetry and exhibits the usual char-
acteristic dependence of decaying amplitude with the radial
distance outside the fibre (ρ > a). It is clear from these res-
ults that the largest magnitude of the quadrupole Rabi fre-
quency corresponds to the case of the quadrupole transition
|L= 0,ml = 0⟩ → |L= 2,m ′

l = 0⟩.
In order to explore the effect of the direction of the propaga-

tion of light in the nano-fibre on the quadrupole Rabi fre-
quency, we present in figures 5(a)–(c), the radial variation of
the quadrupole Rabi frequency |ΩQ|/2π (kHz) for the Cs atom
with the quadrupole transition |L= 0,ml = 0⟩ → |L= 2,m ′

l ⟩
in the modeC= {HE21} form ′

l = 0,±1.± 2 and different dir-
ections of propagation s=±1. So the quadrupole transition
|L= 0,ml = 0⟩ → |L= 2,m ′

l =±2⟩ does not depend on the
direction of the propagation, as has been shown previously.

Whenever the index s has the value s=−1 we find that the
magnitude of the quadrupole Rabi frequency is smaller than
that for the corresponding case where s=+1 for the cases
(m ′

l = 0,±1).
It is also of interest to examine the effect of the polarisa-

tion index p of light in the nano fibre on the quadrupole Rabi
frequency, so figure 6 shows the radial variations of the abso-
lute value of the quadrupole Rabi frequency |ΩQ|/2π (kHz)
for the Cs atom quadrupole transition |L= 0,ml = 0⟩ → |L=
2,m ′

l ⟩ in the mode C= {HE21} for m ′
l = 0,±1,±2 and

different value of the polarisation parameter p=±1. It is
seen that the magnitude of the quadrupole Rabi frequency is
affected by the polarisation index p and the maximum mag-
nitude corresponds to the last panel for m ′

l =−2, s=±1, and
p=−1.

The fact that we obtain different values for the Rabi fre-
quency for different directions of propagation is a chirality
effect, as described by the interesting work of Rauschenbeutel
et al [13, 36–38].

The Rabi frequency in general shows a decrease with
the radial position in all the curves shown here plotted
with different parameters, except for the red dashed curve
in figure 6(b). This shows a slight increase close to the
fibre, leading to a shallow maximum, followed by a general
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Figure 5. Variations of the quadrupole Rabi frequency |ΩQ|/2π (kHz) with ρ for the quadrupole transition |L= 0,ml = 0⟩ → |L= 2,m ′
l ⟩

in Cs. The plots are for different values of the propagation index s=±1. (a)–(c) For the mode C= {HE21}. (a) For m ′
l = 0. (b) For

m ′
l =+1 (black solid line) and for m ′

l =−1 (red dash-dotted line). (c) For m ′
l =+2 (black solid line) and m ′

l =−2 (red dash-dotted line) .
The dashed line in all panels concerns the case s=−1, while the solid line is for s=+1. In all cases p=+1. The power is P = 2.5 (µW);
for other parameters see the text.

Figure 6. Variations of the quadrupole Rabi frequency |ΩQ|/2π (kHz) with ρ for the Cs atom quadrupole transition
|L= 0,ml = 0⟩ → |L= 2,m ′

l ⟩. The plots are for different values of the propagation s=±1. (a)–(c) For the mode C= {HE21}. (a) For
m ′
l = 0. (b) for m ′

l =+1 (black solid line) and for m ′
l =−1 (red dashed line). (c) For m ′

l =+2 (black solid line) and m ′
l =−2 (red

dash-dotted line) . The dashed line in all panels is for the case s=−1, while the solid and dash-dotted lines are for s=+1. In all cases
p=−1. The power is P = 2.5 (µW); for other parameters see the text.

decrease as for other curves. This behaviour can be explained
with reference to equation (25). It is seen that in the case
where both s and p are negative, the general tendency to
decrease controlled by the p term is initially dominated by
the s-dependent term which then diminishes with the radial
position.

Having evaluated the quadrupole Rabi frequency for the
different cases allowed by the selection rules and by the optical
fibre parameters our final task is to evaluate the corresponding
quadrupole transition rates.

5. Transition amplitude and absorption rate

The transition matrix element [8, 27], comprising only the
quadrupole interaction, is M{α}

if = ⟨f|ĤQ|i⟩, where |i⟩ and |f⟩
are, respectively, the initial and final states of the overall
quantum system (atom plus fibre mode). We assume that the
system has as an initial state |i⟩with the atom in its ground state
and there is one optical fibre photon. The final state |f⟩ consists
of the excited state of the atom and there is no field mode. Thus
|i⟩= |g{1}{α}⟩ and |f⟩= |e{0}⟩. We make use of the relations
⟨{0}|â+{α ′}|{1}{α}⟩= 0 and ⟨{0}|â{α ′}|{1}{α}⟩= δ{α ′}{α},

where a{α} and a
†
{α} are the annihilation and creation operat-

ors of the fibre mode α. We obtain

M{α}
if = h̄Ω{α}

Q (R)eiθ
{α}(R) (32)

where Ω
{α}
Q (R) is the quadrupole Rabi frequency. The final

state of the system in the absorption process comprises a con-
tinuous band of energy ofwidth h̄γ where γ is the de-excitation
rate involved in the quadrupole transition. In this case, the
absorption rate is governed by the form of Fermi’s golden rule
[27, 39] with a density of states

Γif = 2π
∣

∣Ω
{α}
Q (R)

∣

∣

2
ρωa (ω) , (33)

where ρωa(ω) is the density of the final state which is well
represented by a Lorentzian distribution of states of width
(FWHM) matching the free space spontaneous quadrupole
emission rate. Thus

ρωa (ω) =
1
π

γ/2

(ω−ωa)
2
+(γ/2)2

. (34)

The Lorentzian distribution characterising the density of states
specifies a limit to the validity of using Fermi’s Golden rule
to calculate the absorption rate since such a rate is valid only
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Figure 7. Variations of the quadrupole absorption rate Γif/γ for the Cs atom quadrupole transition |L= 0,ml = 0⟩ → |L= 2,m ′
l ⟩ with (a)

m ′
l = 0, (b) m ′

l =−1, and (c) m ′
l =−2 for the mode C= {HE21}. Solid lines (s=+1,p=+1), dashed lines (s=−1,p=−1). The

power is P = 2.5 (µW); for other parameters see the text. All panels indicate a huge (more than two orders of magnitude) increase in the
absorption rate for atomic radial position ρ= a. This is attributable to the enhanced density of states just outside the fibre surface.

if the frequency width of the upper state |e⟩ is larger than the
excitation rate; i.e. the spontaneous emission rate is larger than
the Rabi frequency. The Rabi frequency may exceed the spon-
taneous emission rate for high intensities, in which case the
perturbative approach culminating in the Fermi Golden Rule
is no longer valid and the strong coupling regime is applic-
able involving Rabi oscillations. Substituting equation (34) in
equation (33) we find for the quadrupole absorption rate

Γif =
γ

(ω−ωa)
2
+(γ/2)2

∣

∣Ω
{α}
Q (R)

∣

∣

2
. (35)

This general expression applies to the various cases involving
the different fibre modes participating in transitions satisfying
the selection rules as discussed above. For illustration only,
we display in figure 7, the variations of the absorption rate
Γif/γ with the radial position of the atom ρ/a outside the fibre
ρ > a. We have concentrated on the quadrupole transition |L=
0,ml = 0⟩ → |L= 2,m ′

l ⟩ for different directions of propaga-
tion s=±1 and the mode C= {HE21}. It can be seen for
this particular case the absorption rate decreases with increas-
ing ρ and it is independent of the phase circulation direction
p=±1. Its magnitude close to the fibre surface ρ≈ a can be
more than two orders of magnitude relative to γ. The corres-
ponding orbital angular momentum transfer rate in the case of
∆L= 2 is simply 2h̄Γif.

6. Conclusions

In conclusion, we have systematised the formalism leading to
the evaluation of the quadrupole absorption rate in the case of
two-level systems localised outside the surface of an optical
nano-fibre with a step-index profile, leading to modes that
decay with radial distance outside the fibre. The evaluation of
the rates required, as a first step, the determination of the quad-
rupole Rabi frequencies for the hybrid modes in the optical
fibre. The quadrupole selection rules determine the form of
the different types of field distribution that enters the coupling
of the fields to the quadrupole moments. Once the quadrupole
Rabi frequencies are determined the absorption rate follows

using the Fermi Golden rule with a Lorentzian final density of
states function for the upper atomic level.

The hybrid modes are characterised by several special fea-
tures which impact the evaluation of the absorption rates.
Firstly these modes influence the form of the quadrupole
tensor components that enter a specific interaction with the
electric field gradients. Also, the absorption process involves a
transaction between the fibre modes and the two-level system
in which a quantum with specific characteristics is absorbed.
Other characteristics of the fibre modes that affect the interac-
tion are whether the mode is propagating along the +z direc-
tion, or −z direction and whether the helical rotation is clock-
wise or anti-clockwise. Such aspects will need to be taken into
account in the context of actual experimental measurements.
The observation that the results depend on the direction of
propagation is interesting as has been pointed out recently by
Ladahl et al [38, 40]) who, appropriately, referred to such a
feature as a chirality effect.

We have focused on the quadrupole transition in Cs primar-
ily because this quadrupole transition has been the subject
of recent investigations involving the interaction of Cs in the
fields of optical fibres.We have chosen to consider the simplest
type of optical fibre with a uniform core material of refractive
index n1 > 1 immersed in free space. Various other forms of
optical fibre can be considered in which the core material is
enclosed in a thin metallic layer, or a doped semiconductor
in which case the dielectric function may be frequency- and
wave vector-dependent and may have a complicated profile.
The uniform core fibre system discussed here has led to results
for the absorption rate, as shown in figure 7, which should be
experimentally measurable. Note that we have expressed the
absorption rate Γif in terms of γ whose value is known for Cs
and we have considered it a good scaling parameter to use in
this context as done in a recent experiment [15]. Note also that
we have considered only one specific value of the input power
P used to excite the fibre mode with which the atom inter-
acts. Similar evaluations can be carried out for other value of
P . From figure 7 we can see that the absorption rate can be at
least two orders of magnitude larger than γ and are amenable
to experimental measurements.
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Appendix A. Evaluation of N

The overall constant field amplitudeN is fixed in terms of the
experimentally controlled applied cycle-averaged field power
P which is formally defined as the surface integral of the
Poynting vector over a cross-section of the fibre. To evaluate
this in the case of the fibre modes we need expressions for the
magnetic field components of the fibre nodes which are as fol-
lows
Hybrid modes:

• In the core region 0⩽ ρ⩽ a we have:

Hρ = iN ωε0n21
2µ

[(1−σ1)Jℓ−1(µρ)+ (1+σ1)Jℓ+1(µρ] ,

Hφ =N ωε0n21
2µ

[(1−σ1)Jℓ−1(µρ)− (1+σ1)Jℓ+1(µρ)] ,

HZ =−N β

ωµ0
ξ Jℓ(µρ), (A.1)

• In the cladding (vacuum) region ρ > a we have

Hρ = iN ωε0n22
2ν

Jℓ (µa)
Kℓ (νa)

× [(1−σ2)Kℓ−1 (νρ)− (1+σ2)Kℓ+1 (νρ)] ,

Hφ = iN ωε0n22
2ν

Jℓ (µa)
Kℓ (νa)

× [(1−σ2)Kℓ−1 (νρ)− (1+σ2)Kℓ+1 (νρ)] ,

HZ =−N β

ωµ0
ξ
Jℓ (µa)
Kℓ (νa)

Kℓ (νρ) , (A.2)

where

σ1 =
β2

k2n21
ξ, σ2 =

β2

k2n22
ξ. (A.3)

The time-averaged Poynting vector component along the
z-axis per unit area is expressed as

SZ =
1
2
(E×H∗) · ûZ =

1
2

(

EρH∗
φ −EφH∗

ρ

)

, (A.4)

where ûZ is a unit vector in the Z-direction. The power residing
in a mode of the optical fibre is then given by

P =

ˆ 2π

0

ˆ ∞

0
SZ ρdρdφ

=
1
2

ˆ 2π

0

ˆ ∞

0

(

EρH∗
φ −EφH∗

ρ

)

ρdρdφ. (A.5)

The analytical expressions of the power flow for the hybrid
modes are quite intricate. Here we give only the equations of
the power as the sum of contributions from the core and clad-
ding regions, respectively,

Pcore =
π

4
ωε0n

2
1β|N |2 a

2

µ2

[

(1− ξ)(1−σ1)

ˆ a

0
J2ℓ−1(µρ)ρdρ

+(1+ ξ)(1+σ1)

ˆ a

0
J2ℓ+1(µρ)ρdρ

]

= |N |2IH1 (A.6)

Pclad =
π

4
ωε0n

2
2β|N |2 a

2J2ℓ(µa)

ν2K2
ℓ(νa)

[

(1− ξ)(1−σ2)

×
ˆ ∞

a
K2
ℓ−1(νρ)ρdρ+(1+ ξ)(1+σ2)

×
ˆ ∞

a
K2
ℓ+1(νρ)ρdρ

]

= |N |2IH2 (A.7)

where σ1 and σ2 are given in terms of ξ by equation (A.3) and
IH1,H2 are the rest of the expressions in Pcore,clad.

The total power is the sum

P = Pcore +Pclad = |N |2 (IH1 + IH2) . (A.8)

Thus we have

|N |2 = P
IH1 + IH2

. (A.9)

The undetermined constant N can be determined when the
total power flow P in optical fibre is specified.

Appendix B. Radial variations of Sϕ for ρ ⩾ a

The time-averaged Poynting vector is

S=
1
2
ℜ(E×H∗) (B.1)

so its components in cylindrical coordinates are given as

SZ =
1
2

(

EρH∗
φ −EφH∗

ρ

)

,

Sφ =
1
2

(

EZH∗
ρ −EρH∗

Z

)

,

Sρ =
1
2
(EφH∗

Z −EZHφ
∗) , (B.2)
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Figure B1. The radial variation of the real parts of the Poynting components for the mode C= {HE21}. The black solid line for SZ. The red
long-dashed line for Sφ. The blue dash-dotted line for Sρ. Left panel: a= 290 nm, mid panel: a= 340 nm and right panel: a= 400 nm. For
Cs λ= 685 nm. For other parameters see the text.

where the factor 1/2 that appears in the above expressions
accounts for the time average of the Poynting vector. The
electric and magnetic field components are given earlier, so
the evaluations are straightforward, albeit somewhat cumber-
some. We, therefore, present the variations of the real parts
of the Poynting vector components with radial variable ρ spe-
cifically for the mode C= {HE21}. The results are shown in
figure B1.

It is clear that the radial component is practically zero
and the azimuthal component is small compared to the z-
component of the Poynting vector; i.e. SZ > 4Sφ for different
values of the fibre radius a= 290,340,400 nm. We may now
conclude that the second term in equation (2) is small, so we
may assume Latom

z = Lfibre
z .
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