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ABSTRACT: Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-

induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, 

astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB 

damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, 

vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold 

the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, 

pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the 

polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then 

describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we 

specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial 

cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets 

and potential strategies to alleviate BBB damage by regulating glial cells after AIS. 

 

Key words: acute ischemic stroke, blood-brain barrier, glial cells, immune cells, inflammation. 

 

 
1. Introduction 

 

Impairment of the BBB is the main pathological basis of 

HT and vasogenic edema following acute ischemic stroke 

(AIS) and treatment with tissue plasminogen activator 

(tPA), the only FDA-approved thrombolytic drug after 

AIS[1]. Multiple cascade changes are implicated in BBB 

damage, such as inflammation, immune responses, tight 

junction proteins (TJPs) degradation, and trans-

endothelial hyperpermeability [2, 3]. Of note, the 

endothelial cells (ECs), glial cells, inflammatory factors, 

and immune cells are all involved in immune responses 

after AIS, where immune cells are quickly activated and 

migrate to the ischemic hemisphere, where they continue 

to influence the progress and prognosis [4].   

Glial cells, including microglia, astrocytes, 

oligodendrocytes (OLs), and oligodendrocyte precursor 

cells (OPCs), are a major component of the peri-infarct 

environment in the central nervous system (CNS). They 

are involved in immune regulation after AIS and have 
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emerged as promising therapeutic targets for AIS [5]. 

Glial cells play both beneficial and detrimental roles after 

AIS [6]. For example, microglia, which are rapidly 

activated after AIS[7], monitor CNS homeostasis, 

regulate innate immune responses, and actively 

communicate with ECs to regulate BBB integrity [8]. 

Microglia can express both pro-inflammatory and anti-

inflammatory phenotypic markers after AIS [9]. 

Activated microglia can secrete anti-inflammatory 

cytokines and neurotrophin, which are beneficial to the 

recovery of BBB [10]. In contrast, pro-inflammatory 

microglia secreted pro-inflammatory cytokines, such as 

interleukins and chemokines, can increase BBB 

permeability and TNF-α can induce ECs necroptosis after 
AIS [11]. In addition, reactive astrocytes secrete pro-

inflammatory cytokines leading to secondary brain 

damage and neurotrophin to protect the brain and promote 

brain remodeling [12, 13]. Furthermore, previous studies 

have been shown that OPCs transplantation can 

significantly reduce infarct volume and brain edema, 

protect the integrity of BBB, and promote neurological 

functional recovery after AIS in mice [14], and OPCs 

treatment can upregulate TJPs after AIS via activating 

Wnt/β-catenin pathway [15].  

There is growing evidence that glial cell activation 

after AIS is important for maintaining the integrity of 

BBB. In the current review, we first introduce the role of 

glial cells, pericytes and crosstalk between glial cells in 

the damage and protection of BBB after AIS. We then 

describe the role of glial cell-derived exosomes in the 

damage and protection of BBB after AIS. Next, we further 

discuss the crosstalk between glial cells and peripheral 

immune cells after AIS. Finally, we propose that glial 

cells could be a therapeutic target for alleviating BBB 

damage after AIS. 

 

 
 

Figure 1. Schematic representation of activation of microglia and astrocytes and their effects on the integrity 

of the BBB after AIS. Resting microglia and astrocytes are activated and polarized into M1/M2 microglia and 

A1/A2 astrocytes. M1 microglia promote the production of pro-inflammatory cytokines such as interleukin-1β (IL-

1β), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1α (IL-1α), interleukin-6 (IL-6), CCL2, and 

C-X-C motif chemokine ligand 10 (CXCL10). IL-1β inhibits the expression of tight junction proteins (TJPs), TNF-

α increases the expression of matrix metalloproteinase-9 (MMP9), and IFN-γ enhances the transendothelial 
migration of ZO-1 and VE-cadherin. M2 microglia release growth and trophic factors such as BDNF, vascular 

endothelial growth factor (VEGF), nerve growth factor (NGF), and anti-inflammatory cytokines such as interleukin-

4 (IL-4), interleukin-10 (IL-10) and interleukin-13 (IL-13) that inhibit inflammatory responses and enhance BBB 

protection. A1-type astrocytes induce pro-inflammatory production of cytokines such as IL-1β, IL-6, TNF-α, CCL2, 
C-C chemokine ligand 5 (CCL5), and MMP, Lipocalin-2 (LCN2), enhancing the inflammatory response and 

expression of TJPs leading to BBB damage. A2-type astrocytes release growth and trophic factors such as ciliary 

neurotrophic factor, glia-derived neurotrophic factor (GDNF), insulin-like growth factor 1 (IGF-1) and 

transforming growth factor-β (TGF-β) and anti-inflammatory cytokines such as interleukin-2 (IL-2) and IL-10, 

protect the BBB by reducing acute inflammation and increasing neuronal and oligodendrocyte (OL) survival. 
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2. Physiological structure and function of BBB 

 

BBB is mainly composed of ECs, pericytes, astrocytes, 

extracellular matrix (ECM), and basement membrane 

(BM)[16]. ECs have continuous intercellular TJPs, the 

front line of the BBB [17]. The impaired function of TJPs 

in ECs leads to deficient BBB integrity, which can cause 

swelling or neurotoxicity[18]. Astrocytes, ECs, and 

pericytes contribute to the formation of BM by secreting 

ECM. The BM mainly consists of collagen, laminin, and 

other glycoproteins [19]. BM regulates intercellular 

communication and BBB function by interacting with 

ECM [20]. 

Pericytes can not only control BBB permeability and 

cerebral blood flow [21, 22], but also have a high 

phagocytic activity [23]. Astrocytes specifically express 

intermediate filaments vimentin and glial fibrillary acidic 

protein (GFAP) [24]. Proper regulation of astrocyte 

function is considered to be the key to enhanced BBB 

function and diminished BBB damage after AIS because 

astrocytes have endfeet that tightly wrap around the vessel 

wall, cover almost the entire surface of the brain 

capillaries, and are essential for the induction and 

maintenance of the TJPs barrier [25]. Microglia are 

resident immune cells in the CNS that screen the brain 

parenchyma for blood-borne substances and potentially 

inflammatory stimuli, providing a front line of defense. 

Notably, there is evidence that activated microglia can 

regulate the expression of TJPs, thereby improving the 

integrity of the BBB [26]. 

 

3. Role of crosstalk between glial cells in the damage 

and protection of BBB after AIS (Fig. 1) 

 

3.1 Polarization of microglia and crosstalk between 

microglia and other glial cells 

 

Microglia typically exhibit a ramified morphology with 

multiple radial projections extending from the cell body, 

characterized by smaller soma. The cells exhibit 

endocytosis, phagocytosis, and limited cell motility and 

are often referred to as "resting state" [27]. After AIS, 

inflammation occurs following the production of reactive 

oxygen species (ROS), cell necrosis, and tissue damage, 

which in turn activates resident immune cells [28]. 

Activated microglia exhibit morphological changes such 

as hypertrophic cell body [29] and have been classified 

into different phenotypes: M1-type microglia that produce 

pro-inflammatory cytokines, and M2-type microglia that 

generate proangiogenic and anti-inflammatory cytokines 

[30]. The response of microglia to AIS is dynamic due to 

the different states of acute, subacute, and chronic 

recovery periods after AIS [31, 32]. Shortly after AIS, the 

microglia that initially infiltrated the infarcted area were 

the M2 phenotype [30]. However, the response of M2-

type microglia was extremely transient, with a gradual 

increase reaching a peak by 1 to 3 days after middle 

cerebral artery occlusion (MCAO) and a downregulation 

at 7 days. At 3 days post-MCAO, the number of M1-type 

microglia increased in the injured area and accompanied 

by an increase in the secretion of pro-inflammatory 

cytokines, such as TNF-α and NO, and the expression of 
the M2 phenotype protein was suppressed [33].  

More importantly, a variety of factors affect 

microglia activation after AIS, including toll-like 

receptors (TLRs), especially TLR4, high-mobility group 

box 1 (HMGB1), chemokine and cytokine receptors, 

purinergic receptors, and glutamate receptors. These 

factors are involved in a variety of signaling pathways, 

such as mitogen-activated protein kinase cascades, NF-

κb, and peroxisome proliferator-activated receptors 

(PPARs) [34, 35]. TLR4, expressed on the surface of 

microglia, repeatedly recognizes different pathogen-

associated molecular patterns via extracellular leucine, 

ultimately leading to NF-κB production and increased 
release of pro-inflammatory factors [36]. After AIS, NF-

κB p65 and p50 form heterodimers, which enhance the 
activation of M1-type microglia and inhibit M2-type 

microglia [37]. HMGB1 is an effective pro-inflammatory 

mediator to promote the polarization of M1-type 

microglia [38, 39] through TLR4 and TNF-α production 
[40]. Furthermore, activation of purinergic receptors, such 

as P2X7, triggers microglia proliferation and promotes the 

release of IL-1 and TNF-α [34]. 

 

3.1.1 M1/M2 phenotype in BBB damage and 

protection after AIS 

 

M1-type microglia are implicated in cytotoxicity, 

superoxide generation, degranulation, and cytokine 

production [41]. For example, the pro-inflammatory 

cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), 

TNF-α, interferon (IFN), C-C chemokine ligand 2 

(CCL2), and C-X-C motif chemokine ligand 10 

(CXCL10), which are all produced by M1-type microglia, 

lead to oxidative stress, overproduction of nitric oxide 

(NO), and matrix metalloproteinase-9 (MMP-9) 

activation [42, 43]. These inflammatory cytokines are key 

mediators of BBB damage. When microglia release IL-1β 
and TNF-α, the BBB becomes more permeable and more 
likely to be damaged after AIS. For example, IL-1β 
enhances BBB permeability by downregulating ZO-1, 

occludin, and claudin-5 [44, 45], and TNF-α induces 
pericytes to release MMP-9, resulting in increased ECs 

permeability [46]. IFN-γ disrupts the integrity of the BBB 
by promoting cytoplasmic migration of ZO-1 and VE-

cadherins from ECs [47]. In addition, chemokines CCL2 

and CXCL10 secreted by M1-type microglia disrupt the 
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BBB and increase the transport of immune cells to the 

brain parenchyma. The capacity of CCL2 in binding to the 

C-C chemokine receptor 2 receptor determines its effect 

on cerebral microvascular permeability [48]. 

Furthermore, elevated CCL2 release promotes monocytes 

and macrophages to migrate across the BBB, which 

exacerbates neurovascular unit injury and neuron loss 

[49]. In the permanent middle cerebral artery occlusion 

model, CXCL10 has been shown to increase monocyte 

and macrophage migration through the BBB [50].  

The phagocytosis activity of microglia contributes to 

the removal of damaged tissues and tissue debris, thereby 

limiting the activation of danger-associated molecular 

pattern receptors and ultimately inhibiting the 

inflammatory response [51]. M2-type microglia secret a 

lot of anti-inflammatory cytokines, including IL-10, IL-4, 

IL-13, and transforming growth factor-β (TGF-β) [52]. 

These interleukins can directly promote the polarization 

of M2-type microglia cells. The transition from resting 

state to M2-anti-inflammatory type is mediated by 

interleukin-4 receptors (IL-4R), interleukin-10 receptors 

(IL-10R) [53], and vascular endothelial growth factor 

receptor 2 (VEGFR2) [54]. For example, in the ischemic 

penumbra of the MCAO model, neuron-derived IL-4 

binds to IL-4R on the surface of neighboring microglia, 

causing these microglia to shift to the M2 phenotype and 

reducing ischemic brain injury [55]. Activation of IL-4R 

triggers phagocytosis mechanisms associated with tissue 

repair. Conversely, administration of SB431542, a TGF-

β inhibitor, enhances microvascular permeability [56]. In 

addition, M2-type microglia produce growth and 

nutritional factors such as brain-derived neurotrophic 

factor (BDNF), vascular endothelial growth factor 

(VEGF), insulin-like growth factor 1 (IGF-1), and nerve 

growth factor [57].  

 
 

Figure 2. Crosstalk of glial cells in the damage and protection of BBB after AIS. ①. Lysophosphatidylcholine (LPC) released 

by astrocytes promotes microglia-induced C-C chemokine ligand 2 (CCL2) expression. ②. Chemokines released by astrocytes 

promote microglial polarization. ③. The inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis 

factor-α (TNF-α) released by microglia induce upregulation of aquaporin 4 (AQP4), which leads to astrocyte endfeet swelling. ④,⑤. Pro-inflammatory cytokines released from M1 microglia and anti-inflammatory cytokines released from M2 microglia 

promote the polarization of astrocytes into A1/A2-type astrocytes. ⑥. M2 microglia promote the differentiation of 

oligodendrocyte progenitor cells (OPCs). ⑦. A1-type astrocytes can inhibit oligodendrogenesis and OPCs differentiation. ⑧. In 

contrast, A2-type astrocytes release anti-inflammatory cytokines and nutritional factors, such as brain-derived neurotrophic factor 

(BDNF) and vascular endothelial growth factor (VEGF), which promote oligodendrogenesis and OPCs differentiation. 
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3.1.2 Crosstalk between microglia and other glial cells 

(Fig. 2) 

 

Microglia can regulate the immune process by inhibiting 

astrocytes, and they are essential for neuro-astrocyte 

crosstalk that occurs during the immune response after 

AIS [58]. Stroke-induced microglial activation can 

produce high levels of neurotoxic cytokines that in turn 

activate neighboring astrocytes. Current studies have 

shown that the inflammatory cytokines IL-1β, IL-6, and 

TNF-α released by microglia upregulate aquaporin 4 
(AQP4), leading to the swelling of astrocytes endfeet [59].  

Microglia can not only reduce OPCs number [60] but also 

promote OPCs differentiation [61]. The beneficial effect 

of microglia on OPCs is mainly due to the protective 

effect of M2 microglial polarization. Conditioned 

medium from LPS-induced M1-type microglia or 

untreated microglia increased OLs death 24 h after OGD 

treatment, and IL-4-conditioned M2-type microglia 

medium reduced OLs apoptosis [62]. M2-type microglia 

can drive OLs differentiation during remyelination after 

AIS [61]. 

 

3.2 Polarization of astrocytes and crosstalk between 

astrocytes and other glial cells 

 

After AIS, astrocytes are activated and shift from resting 

to reactive state and reactive astrocytes upregulate many 

genes, increase the volume of the cytoskeleton, increase 

the expression and immunoreactivity of GFAP, and form 

glial scars [63]. Neuroinflammation and stroke produce 

two distinct types of reactive astrocytes, A1 pro-

inflammatory and A2 anti-inflammatory [64]. A2-specific 

genes are dominant compared to A1-specific genes at 3 

days after AIS [65] and phagocytic activity of astrocytes 

begins to increase on day 3 after AIS and continues for up 

to 14 days. Notably, reactive astrocytes engulf and 

degrade cell debris in the penumbra, inhibiting post-stroke 

inflammation by ATP-binding cassette transporter A1, 

and the absence of ATP-binding cassette transporter A1 

significantly increases BBB permeability [66, 67].  

 

3.2.1 A1/A2 phenotype in BBB damage and protection 

after AIS 

 

Reactive astrocytes serve a dual role in maintaining BBB 

integrity after AIS. Resting A0-type astrocytes 

transformed into A1 phenotype by pro-inflammatory 

factors like IL-1α and TNF-α [64] and inhibition of A1-

type astrocyte transformation by semaglutide could 

alleviate BBB destruction. By upregulating VEGF, IL-6, 

TNF-α, IL-1β and IL-15, as well as CCL2, CCL5, MMP, 

LCN-2 and ROS, astrocytes have a direct negative impact 

on the integrity of the BBB. For example, A1-type 

astrocyte-conditioned medium is known to reduce the 

expression of TJPs in ECs, suggesting that A1-type 

astrocytes could damage the integrity of BBB [36]. In 

addition, reduced TJPs expression in ECs caused by 

astrocyte-derived VEGF worsens BBB disruption, and 

neurological functional impairments [68]. Furthermore, 

polymerase δ-interacting protein 2 is also upregulated in 

poststroke astrocytes, leading to increased BBB leakage 

by inducing the expression of IL-6, CCL2, TNF-α, VEGF, 
and MMP [69]. More importantly, ROS can directly 

induce A1-type astrocytes, and microglia may aggravate 

the changes of A1-type astrocytes by releasing ROS [70]. 

A2-type astrocytes secrete IGF-1, IL-2, IL-10, and TGF-

β to accelerate the anti-inflammation process. For 

example, IGF-1 produced by astrocytes maintains post-

stroke integrity of BBB and neurological function after 

AIS by shifting immune cells toward an anti-

inflammatory phenotype [71]. Notably, A2-type 

astrocytes can phagocytose other cells. In a rat model of 

photothrombotic stroke, increased expression of TGF-β 
and VEGF by A2-type astrocytes is accompanied by 

reduced BBB permeability, improved vascular damage, 

and increased angiogenesis [72]. AIS-induced A2-type 

astrocytes upregulate the expression of both neurotrophic 

and thrombin-sensitive proteins: the former promoting 

neuronal survival and growth while the latter promoting 

synaptic repair. A2-type astrocytes increase neurotrophins 

and cytokines, including cardiotrophin-like cytokine 

factor 1, LIF, IL-6, and IL-10, to support neuronal 

survival and repair [73]. For example, astrocyte-derived 

neurotrophins such as ciliary neurotrophic factor and glia-

derived neurotrophic factor may help reduce acute 

inflammation and increase neuronal and OLs survival. 

Furthermore, ciliary neurotrophic factor can promote the 

activation of surrounding astrocytes in an 

autocrine/paracrine manner [74]. 

 

3.2.2 Crosstalk between astrocyte and other glial cells 

(Fig. 2)  

 

AIS-induced astrocyte-derived BDNF not only promotes 

neuronal activity but also promotes OLs generation [75] 

and OPCs differentiation into mature OLs [76]. 

Conversely, reactive astrocytes, which may belong to the 

A1-type, block the proliferation and differentiation of 

OPCs [77]. Astrocytes release soluble substances that 

stimulate infiltration of peripheral immune cells, hence 

accelerating inflammation-induced BBB damage. By 

binding with chemokine receptors on microglia, 

astrocyte-derived chemokines have a paracrine effect on 

microglial polarization [68]. For example, astrocytes 

upregulate the expression of CX3CR1 and IL-4Rα on the 

surface of microglia through TGF-β, thereby inhibiting 
microglia activation [78]. In addition, 
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lysophosphatidylcholine (LPC), a pro-inflammatory 

factor produced by neurons and astrocytes, stimulates 

microglia to upregulate the mRNA of inflammatory 

mediators CCL2 and CCR2 [49]. Furthermore, astrocytes-

derived orosomucoid-2 can bind to C-C chemokine 

receptor type 5 (CCR5) of microglia to block C-X-C motif 

chemokine ligand 4 (CXCL4)-CCR5 interaction, which is 

the key of the anti-inflammatory effect of microglia [79]. 

After AIS, depletion of astrocyte-derived estrogen leads 

to reduced microglial activation and it can be reversed by 

exogenous 17β-estradiol [80]. 

 

3.3 Role of OPCs/oligodendrocytes in BBB damage 

and protection 

 

3.3.1 Role of OPCs/oligodendrocytes in BBB damage 

 

Previous studies have shown that OPCs can maintain the 

integrity of BBB and increase the expression of TJPs[81]. 

Thus, crosstalk between OPCs and ECs plays an 

important role in the formation and maintenance of the 

BBB. For example, Wnt/β-catenin pathway activated by 

OPCs plays important roles in the upregulation of TJPs 

after AIS. OPCs transplantation significantly reduces 

post-ischemic infarct volume and brain edema and 

maintains the integrity of the BBB [15]. OPCs may 

improve the recovery of neurological function by 

regulating angiogenesis and maintaining BBB integrity 

after AIS [15]. In addition, TGF-β1 from OPCs activates 
the MEK/ERK pathway in brain endothelial cells, thereby 

increasing TJPs expression and promoting BBB integrity 

[82]. Under physiological or pathological conditions, OLs 

release extracellular vesicles (EVs) which carry proteins 

such as myelin-associated proteins into neurons and EVs 

can improve the integrity of the BBB by regulating 

neurovascular coupling [83]. 

 

3.3.2 Role of inflammatory response in 

OPCs/oligodendrocytes-induced BBB damage after 

AIS 

 

After AIS, OLs impairment produces  large amounts of 

ROS [28], resulting in demyelination and brain injury 

[84]. OPCs-conditioned medium can induce TJPs 

expression and reduce BBB permeability by activating 

TGF-β-receptor-MEK/ERK signaling pathway[85]. 

When WM is damaged, inflammation and oxidative stress 

stimulate a significant increase in MMP-9 release from 

OLs and OPCs and infiltration of neutrophils into the mice 

brain, leading to the destruction of vascular structure and 

inhibiting the repair of the BBB [85].  

Microglia release IL-1β and IFN-γ, and IFN-γ 
promotes OLs while inhibiting OPC proliferation [86]. 

More importantly, IL-4 stimulates OLs regeneration and 

remyelination through the IL-4/PPARγ signaling axis 
[87]. After stroke-induced white matter (WM) injury, 

regulatory T cells (Tregs) secrete IL-6 and FGF-2 and 

promote OPCs differentiation [88]. More importantly, 

peripheral immune cells are also involved in post-stroke 

inflammation and interact with OPCs and OLs. After AIS, 

BBB breakdown causes OLs antigens such as myelin 

oligodendrocyte glycoprotein (MOG) and myelin basic 

protein to leak into the peri-infarction area [89]. MOG 

increases infarct volume by promoting the infiltration of 

MOG-responsive spleen cells into the lesion area [89]. In 

addition, VEGF-A produced by activated T cells has been 

shown to increase OPCs proliferation by activating 

VEGFR2 [90].  

 

3.4 Role of pericytes in BBB damage and protection 

 

Pericytes maintain the integrity of the BBB by regulating 

TJPs formation and transport across endothelial vesicles. 

More importantly, pericytes inhibit the expression of 

molecules that increase vascular permeability during CNS 

immune cell infiltration and BBB development [91]. 

Under hypoxic conditions, pericytes enhance a tighter 

barrier function and protecte the ECs from hypoxic 

damage [92]. On the other hand, early detachment of 

pericytes from the cerebral microvasculature also leads to 

loss of TJPs and BBB leakage [93]. More importantly, 

pro-inflammatory cytokine IL-6 in pericytes is known to 

be produced soon after the onset of AIS and the 

expression of microglial markers to obtain a microglial 

phenotype, thus participating in the inflammatory 

response to AIS [94].  

 

3.5 Role of glial cells and endothelial cells crosstalk in 

the injury and protection of BBB after AIS. 

 

Angiogenesis can restore blood flow and oxygen supply 

in ischemic tissue and is the basis of ischemic brain 

repair[95]. Angiogenesis is closely associated with 

prolonged survival and BBB integrity of stroke patients. 

  Shortly after AIS, microglia activated by neuronal death 

release ROS, MMPs, and chemokines (TNFα, IL-1α, IL-

1β, CCL2, and CXCL10), inducing ECs activation and 
BBB disruption [31]. For example, TNF-α decreases the 
expression of claudin-5 and ZO-1 on ECs and induces EC 

necroptosis [11, 96]. TNF-α activates ECs to express pro-

inflammatory cytokines and releases MMP-9, TJPs. As a 

result, ECM proteins are degraded, and BBB is damaged 

[97]. CCL2 and CXCL10 can exacerbate BBB disruption 

by promoting the entry of peripheral immune cells into the 

CNS [98]. Of note, ECs are also able to suppress the pro-

inflammatory phenotype of microglia in the chronic phase 

of AIS. For example, VEGF secretion by ECs 

significantly reduces the expression of pro-inflammatory 
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cytokines and iNOS in microglia [99]. ECs-derived NO 

and the immunosuppressive molecule CD200 on the 

surface of brain ECs inhibit microglia activation and 

reduce inflammation [100]. In addition, MMPs and VEGF 

secreted by astrocytes also increase vascular permeability 

and vasogenic edema after AIS[101], thereby aggravating 

BBB damage, infarct progression, and neurological 

dysfunction [68]. Increased VEGF-A expression in 

reactive astrocytes leads to BBB breakdown via 

downregulating claudin-5 and occludin in ECs [102]. 

Astrocytes also release soluble substances that activate 

microglia and recruit peripheral immune cells, which 

indirectly increases the inflammation-induced BBB 

breakdown [103].  

BMECs-derived platelet-derived growth factor-BB 

triggers the secretion of TGF-β from OPCs through the 
activation of PDGFRα/PI3K/Akt signaling pathways 
[22]. Thus, crosstalk between OPCs and BMECs plays an 

important role in the formation and integrity of the BBB 

through their secretion factors. In addition to OPCs, the 

presence of OLs has been reported to reduce the 

permeability of BMECs through unknown soluble factors 

[104].  

 

 
 

Figure 3. Glial cell-derived exosomes and the BBB after AIS. A) The Nampt-NAD1-sirtuin 1 cascade improves 

post-ischemic vascular repair by modulating Notch signaling in endothelial progenitor cells. MiR-190b alleviates 

neuronal apoptosis and BBB damage by up-regulating the expression of B-cell lymphoma-2 (Bcl2) and down-

regulating the expression of pro-inflammatory factors. MiR-837a-5p regulates microglial polarization in damaged 

neurons to reduce neuroinflammation. B) M2 microglia-derived miR-137 reduces behavioral deficits and infarct 

areas by inhibiting Notch1 signaling in neurons. 

4. Role of glial cell-derived exosomes in BBB damage 

and protection after AIS (Fig.3) 

 

4.1 Role of astrocyte-derived exosomes in BBB damage 

and protection after AIS 

 

Exosomes are EVs formed by plasma membrane fusion 

[105], which are important intercellular communication 

mediators released by CNS cells and can be a promising 

strategy to treat AIS[106]. Previous studies have shown 

that exosomes can transport a variety of microRNAs 

(miRNAs) and proteins, which can promote angiogenesis, 

anti-inflammatory and anti-apoptosis after AIS [107, 

108]. 

Under pathological and aging conditions, activated 

astrocytes and microglia influence the function and 

phenotype of other cell types through secretion of EVs 

[109]. Astrocyte-derived extracellular vesicles (ADEVs) 

not only regulate neighboring CNS cells but also 

participate in communication between the CNS and 
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peripheral immune cells. IL-1β or TNF-α can promote 
proteins and miRNAs in ADEVs to cross BBB to promote 

peripheral acute cytokine response [83, 110]. For 

example, ADEVs enriched in miR-873a-5p can alleviate 

neuroinflammation through microglia phenotypic 

regulation after brain injury [111]. In addition, ADEVs 

appear to significantly inhibit OGD-HT-22 cell apoptosis 

and reduce TNF-α, IL-6, and IL-1β levels, indicating a 
beneficial effect of ADEVs on BBB damage-associated 

brain edema and hemorrhage after AIS. Moreover, 

nicotinamide phosphoribosyltransferase (Nampt), the 

rate-limiting enzyme for nicotinamide adenine 

dinucleotide synthesis in mammals, can also be secreted 

by astrocytes and found in ADEVs [112]. Clinical studies 

have confirmed that the mean plasma concentration of 

Nampt in ischemic stroke patients is 2-8 times higher than 

the Ctrl [113]. The Nampt-NAD1-sirtuin 1 cascade 

improves post-ischemic vascular repair by modulating 

Notch signaling in endothelial progenitor cells, which 

may play a role in BBB protection after AIS [114].  

 

4.2 Role of microglial cell-derived exosomes in BBB 

damage and protection after AIS 

 

Exosomes generated from M2-type microglia (BV2-Exo) 

play a crucial role in mediating the neuroprotective effects 

of BV2 cell conditioned medium. Exosomes released by 

microglia BV2 cells in the M2 phenotype are absorbed by 

ischemia-injured neurons, boosting ischemic neuron 

survival via the Notch1 pathway. Furthermore, 

knockdown of miRNA-137 partially reverses the 

neuroprotective effects of BV2-Exo, suggesting that 

miRNA-137 is involved in the beneficial role of microglia 

exosomes [115]. 

 

5. Crosstalk between peripheral immune cells and glial 

cells after AIS (Fig. 4) 

 

The inflammatory response after AIS is not only limited 

to resident immune cells but also involves the infiltration 

of peripheral immune cells into the brain parenchyma. 

Peripheral immune cells are a potential target for AIS 

treatment because they respond earlier to ischemic 

damage and are more accessible than cells from the CNS. 

Removal of microglia has been reported to increase the 

infiltration of neutrophils, macrophages, T cells, and NK 

cells in the brain [116]. Cerebral immune cells regulate 

the recruitment, extravasation, and function of peripheral 

immune cells. After ischemic injury, the number of 

microglia, astrocytes, and pericytes upregulate and release 

different chemokines to stimulate neutrophils, monocytes, 

and lymphocytes to infiltrate the ischemic hemisphere 

[103]. 

 

5.1 Crosstalk between T cells and glial cells after AIS 

 

After AIS, CD8+ cytotoxic T cells are the first immune 

cell type to invade the brain, resulting in neuron death and 

aggravated brain injury by releasing perforin/granzyme 

[117]. Microglia and astrocyte-derived IL-15 can increase 

the number and activity of CD8+ T cells and NK cells, thus 

exacerbating the destruction of BBB [118]. Activated 

microglia can stimulate CD4+ T cells to differentiate into 

Th1 or Th2 cells, which in turn produce pro-inflammatory 

or anti-inflammatory cytokines that damage or protect the 

brain [119]. Th1 subpopulations promote M1 polarization 

of microglia by secreting pro-inflammatory factors such 

as IFN-γ, which accelerates the amplification of 
inflammation. M1-type microglia promote Th1 cell 

polarization by secreting IL-12 and TNF-α in the early 
stage after AIS. Th2-derived IL-4 inhibits NF-κB 
expression and NLRP3 formation in HMGB-1-induced 

astrocytes activation via STAT6/PPARγ and enhances 
M2 polarization of microglia and phagocytosis in 

microglia through IL-4 secretion after AIS [120].  

During the chronic phase after AIS, the number of 

Treg in the brain increase significantly, and they 

contributed to the neurological functional recovery [121]. 

In addition, microglia inhibit the anti-inflammatory effect 

of Tregs by inducing HIF-1α/Sirtuin2 overexpression in 

Tregs via intercellular contact [122] and HIF-1α has been 

shown to contribute critically to BBB damage after AIS 

[123, 124]. Tregs reduce microglia activation by releasing 

IL-4, IL-10, and TGF-β [125]. When Tregs are absent, 

microglia convert to the M1 phenotype, and if Tregs are 

increased, microglia convert to the M2 phenotype. Tregs 

play an important role in promoting the development of 

M2-type microglia by up-regulating the expression of IL-

10-mediated glycogen synthetase kinase 3β [126]. 

Activation of peripheral Tregs is thought to represent an 

endogenous mechanism for reducing brain inflammation 

after AIS [127]. Twelve weeks after AIS, transmigrated 

Tregs ameliorate BBB disruption through regulating 

MMP-9, and the specific mechanism of action may 

involve the programmed death-1 ligand 1 (PD-L1). PD-

L1 has been shown to bind to programmed death-1 (PD-

1), delivering inhibitory signals that lead to suppression of 

the immune response [128]. Twenty-four hours after 

MCAO, PD-L1 deficiency eliminates the protection effect 

of Tregs on BBB integrity [129]. In addition, Tregs inhibit 

CCL2 production in ECs following ischemia and tPA 

treatment. Notably, Treg therapy appears to be able to 

exert an additional protective effect in CCL2 knockout 

mice, maintaining BBB integrity and reducing the risk of 

tPA-induced HT after AIS through Tregs-dependent dual 

inhibition of MMP-9 and CCL2 [130]. CCR5-/- Treg 

expression deficiency significantly increases BBB 

leakage, and knockdown of CCR5 in Tregs significantly 
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eliminates their protective effect on BBB. In addition, 

CCR5 signaling promotes Tregs accumulation and 

enhances the inhibitory effect of transferred Tregs on 

neutrophil-derived MMP-9. Furthermore, pretreatment 

with the CCR5 inhibitor D-ala-peptide T-amide reduces 

Treg-mediated protection against BBB leakage [131]. 

RNA-seq analysis of microglial co-cultures with activated 

Tregs has shown significant upregulation of genes 

associated with the anti-inflammatory phenotype and 

genes encoding proteins related to brain injury or repair. 

In addition, cytokines such as CXCL2 and FGF1 were 

upregulated in Tregs-stimulated microglial. Treg-

microglial interactions generate an osteopontin-rich 

microenvironment to optimize microglia responses, 

promote OLs regeneration, and facilitate WM repair 

[121]. 

 
Figure 4. Crosstalk between glial cells and peripheral immune cells regulating BBB integrity after AIS. (A) Pro-

inflammatory cytokines promote interaction and polarization between Th1 and M1 microglia, causing BBB injury. Double-

negative T cells (DNT) increase the number of M1 microglia via the Fas ligand/protein tyrosine phosphatase non-receptor type 

2/tumor necrosis factor-α pathway. M1 microglia enhance CD8+T activity by secreting interleukin-15 (IL-15), and conversely, 

CD8+T cell induces cytotoxicity via granzyme-b and tumor necrosis factor-α (TNF-α), enhancing stroke progression. NK cells 
can damage BBB via interferon-inducible protein-10 (IP-10). Reactive oxygen species (ROS) and peptidylarginine deiminase 4 

(PAD4) stimulate neutrophils to produce neutrophil extracellular traps (NETs) and astrocytes to secrete pro-inflammatory 

cytokines, such as IL-15 and interleukin-17A (IL-17A) and secrete chemokines to promote the recruitment of CD8+T cells, NK 

cells and B cells, resulting in BBB damage. (B) Treg enhances tight junctions (TJPs) of BBB and protection by both inhibiting 

M1 microglia polarization and enhancing TJP expression. Th2 protects the BBB by promoting M2 microglia polarization with 

inhibition of NF-κB and NLRP3-mediated inflammatory responses. B cells inhibit the post-ischemic response of M1 microglia 

with Treg. Cytokines C-X-C motif chemokine ligand 2 (CXCL2) and fibroblast growth factors 1 (FGF1) are upregulated in Treg-

stimulated microglia, promote Treg-microglia interaction and oligodendrogenesis, and promote white matter repair, thereby 

protecting the BBB. 

5.2 Crosstalk between B cells and glial cells after AIS 

 

Astrocytes can produce TNF family proteins, activators of 

the B cell that are involved in B cell development, 

survival, and function [132]. B cells reduce the volume of 

infarcts and neurological deficits by reducing the post-

ischemic response of other immune cells, such as T cells, 

macrophages, and microglia [133]. B cells can also 

suppress the production of cytokines like IFN-γ and TNF-

α, as well as the infiltration of inflammatory T cells [134]. 

Cerebral ischemia-induced spleen atrophy is associated 

with a decrease in the numbers of inflammatory cytokines, 
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T cells, and B cells [135]. On the other hand, B cells may 

cause delayed cognitive impairment after AIS, hindering 

long-term recovery[136]. LPS preconditioning increases 

the amount of regulatory B cells (Bregs) in the spleen, 

initiates the anti-inflammatory protective mechanism of 

the spleen, and decreases the damage to the BBB after AIS 

[137]. 

 

5.3 Crosstalk between neutrophil and glial cells after 

AIS 

 

Fourteen days after AIS, neutrophil depletion reduces the 

damage of the BBB [138]. Neutrophils produce 

intravascular and intraparenchymal neutrophil 

extracellular traps (NETs) after AIS [139]. 

Peptidylarginine deiminase 4 (PAD4), one factor 

affecting NETs formation, is significantly upregulated in 

the ischemic hemisphere of tPA-treated mice, and BBB 

permeability is significantly increased with PAD4 

overexpression. Moreover, DNase I inhibition or PAD4 

knockdown significantly inhibits NETs production, 

thereby enhancing the expression of TJPs and adhesion 

junction protein VE-cadherin in brain microvessels, 

demonstrating that neutrophil NETs play a critical role in 

post-stroke vascular remodeling and BBB maintenance 

[138]. tPA treatment increases NETs formation in mice 

with thrombotic stroke. In addition, NETs appear to be 

associated with increased BBB damage, and increased 

cerebral hemorrhage in tPA-treated mice, which can be 

mitigated by the use of DNase I to clear NETs. Activation 

of cGAS-STING pathway and the production of IFN-β 
seem to participate in the NETs-mediated tPA’s side 
effect. Thus, NETs are a key target for promoting stroke-

mediated angiogenesis and the resulting functional 

recovery [140]. ROS can be released by neutrophils that 

exert deleterious effects on ZO-1 [141] and BMs to 

destroy the structure of the BBB [142]. Neutrophils can 

also produce neutrophil-derived cytokines such as IL-1β, 
IL-6, TNF-α, and CCL2, which disrupt the integrity of the 
BBB [143]. 

Recent studies have shown that neutrophils may 

exhibit anti-inflammatory phenotype by expressing Ym1 

and CD206. While being hindered by TLR activation, 

PPARγ agonists accelerate N2 polarization of neutrophils 
and promote phagocytosis of neutrophils by microglia, 

thereby reducing brain edema and infarct volume [144]. 

After AIS, astrocytes attract neutrophils by increasing C-

X-C motif chemokine ligand 1 secretion in response to the 

synergistic action of TNF-α and IL-17A [145].  

 

5.4 Crosstalk between NK cells and glial cells after AIS 

 

NK cells infiltrate the peri-infarction area of the ischemic 

hemisphere after AIS in humans. They catalyze neuronal 

death through perforin/granase apoptotic pathway and 

accelerate cerebral infarction [146]. In addition, NK cells 

can also damage BBB via interferon-inducible protein-10 

(IP-10), and neutralization of IP-10 can prevent the 

release of IFN-γ and other cytotoxic cytokines, and reduce 
NK-cell-mediated damage after AIS [50]. NK cells kill 

resting microglia with the natural killer subgroup cells 

expressing NKG2D receptor and natural cytotoxicity 

receptor NKP46. Under inflammatory conditions, 

astrocytes produce different soluble mediators that 

stimulate or inhibit NK cell activity, depending on their 

properties and location. For example, during ischemia, 

astrocytes are a major source of IL-15, which activates 

NK cells [147]. 

 

6. Glial cells could be a therapeutic target for 

alleviating BBB damage after AIS (Table 1) 

 

6.1 Inhibition of TLR and NF-κB expression 

 

TLR2 and TLR4 mediate the microglia activation-

produced pro-inflammatory cytokines and brain injury 

after AIS [34, 148], and TLR2 or TLR4 deficiency 

reduces the production of TNF-α, iNOS, and COX2, and 
decrease infarct volume [149]. In addition, when TLR is 

activated, microglia upregulate the IL-17-specific 

receptor IL-17RA and uniquely produce more IL-17, 

leading to neuronal damage [150]. Therefore, the 

TLR2/TLR4/IL-17 pathway may be a potential target to 

inhibit inflammatory response and improve neurological 

prognosis after AIS. Of note, inhibition of M1-type 

microglia activation and enhancement of M2-type 

microglia activation through the TLR4/NF-κB pathway is 
essential for the recovery of AIS patients [36]. 

TLR/NF-κB signaling is the first step in astrocyte 
activation. The expression of TLR and NF-κB can be 
inhibited by cottonseed oil [151], Z-guggulsterone [152], 

IL-32a [153], microRNA-1906 [154], ginkgoaceae [155] 

or ligustilide [156]. In addition, natural (poly) phenols can 

not only promote M2-type polarization of microglia, but 

also reduce neuroinflammation and the number of reactive 

astrocytes and the levels of inflammatory cytokines, 

resulting in a significant reduction of BBB disruption, 

neurological dysfunction, and brain edema [36]. 

 

6.2. Inhibition of NLRP3  

 

NLRP3 expression in microglia is known to reach a peak 

24 h after reperfusion, and NLRP3 is highly expressed and 

induces the production of pro-inflammatory mediators, 

which also activated microglia-mediated neurotoxicity, 

leading to neuronal death and BBB damage. In addition, 

NLRP3 also helps to up-regulate MMP-2/9, reduce TJPs, 

and increase the permeability of ECs.  Moreover, the 
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protective effect of NLRP3 inhibition appears to be 

eliminated in mice lacking microglia or Gr-1+ myeloid 

cells [157]. MCC950, an inhibitor of NLRP3, can block 

NLRP3 activation, improve the BBB after intracerebral 

hemorrhage and reduce brain injury [17]. Minocycline, a 

member of the tetracycline family of antibiotics, inhibits 

the activation of microglia and promotes M2-type 

microglia polarization by inhibiting NLRP3 [158]. 

Minocycline treatment can reduce cerebral infarct 

volume, tissue loss, and neurological dysfunction, and 

significantly alleviate BBB destruction and cerebral 

hemorrhage in mice after AIS [159]. Many NLRP3 

inhibitors, such as adiponectin [160], telmisartan [161], 

MCC950 [162], and sinomenine (SINO) alleviate A1-

type astrocyte-induced BBB disruption and neurological 

dysfunction by inhibiting NLRP3. For example, 

Telmisartan treatment dose-dependently improves AIS-

induced NLRP3 inflammasome activation in hypertensive 

rats, significantly reduces amyloid-β deposition in 
neurons, and may have a preventative effect on the 

development of Alzheimer's disease pathology in the 

brain by alleviating the NLRP3 inflammasome after AIS 

[161, 163]. In addition, SINO treatment significantly 

reduces cerebral infarction, cerebral edema, neuronal 

apoptosis, and neurological dysfunction. SINO also 

inhibits inflammation by inhibiting NLRP3 activation 

through an AMPK-dependent pathway [164]. 

 

Table1. Targeting glial cells for treatment of BBB damage after AIS. 
 

Molecular targets Drug/RNA Cell Outcomes Reference 

TLR2/TLR4/NF-κB Cottonseed oil 

 

 

 

 

 

 

Microglial/Astrocytes 

Reduced BBB damage, infarct volume  

and bleeding 

[148] 

 Z-Guggulsterone  

 

Reduced infarct volume and 

         neurological deficit 

[149] 

 IL-32α [150] 

 MicroRNA-1906  [151] 

 Ginkgoaceae Reduced BBB leakage, infarct volume 

           and neurological prognosis 

[152] 

 Ligustilide Reduced cerebral infarct volume and  

loss of nerve function 

[153] 

NLRP3 MCC950 
A1-type astrocytes 

Improved the integrity of BBB and  

reduce brain injury 

 [17, 159] 

 Minocycline 
M2-type microglial 

Reduced BBB damage, infarct volume  

and bleeding 

[155] 

 Adiponectin 
A1-type astrocytes 

Alleviated the brain edema, neuronal  

apoptosis, and neurological deficiency 

[157] 

 Telmisartan 
A1-type astrocytes 

Reduced inflammation and  

Protected NVU 

[158] 

 Sinomenine 

 
A1-type astrocytes 

Alleviated the brain edema, neuronal  

apoptosis, and neurological deficiency 

[161] 

RNA miR-29b Astrocytes 

 

Reduced edema, infarct volume and  

BBB destruction 

[166] 

 miR146a 
Astrocytes 

Reduced the release of  

pro-inflammatory cytokines 

[167] 

 LncRNA H19 Microglial/Astrocytes Reduced BBB damage [169, 170] 

     
 

6.3 ANXA2  

 

Annexin has been shown to play a protective role after 

AIS [165]. For example, annexin A2 (ANXA2) gene 

knockout results in decreased expression of the BBB TJPs 

and increased BBB permeability [165]. ANXA2's 

protective effects on microglia and the BBB are mediated 

by formyl peptide receptors and the Robo4-paxillin-ADP 

ribosylation factor pathway. ANXA2 also regulates pro-

inflammatory response signaling and ROS production in 

microglia by regulating IL-17 [166].  

 

6.4 RNAs 

 

Changes in miRNA expression profiles of the major cell 

types of the CNS suggest that miRNAs may be involved 

in ischemic injury [167]. During hypoxic injury, miR-210 

is significantly upregulated in astrocytes and activated by 

HIF-1α [168]. In addition, miR-29b in the brain and blood 

are both downregulated in ischemic mice, and dual-

luciferase reporter system has shown that AQP4 is the 

direct target of miR-29b. Overexpression of miR-29b can 

decrease AQP4 expression, infarct volume, and BBB 

damage [169]. MIR-146a is rich in astrocytes and can 
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effectively regulate inflammatory response through 

interaction with TLR signals [170], and can inhibit IRAK-

1, TRAF-6, and pro-inflammatory cytokines release 

[171]. LncRNA H19, one of the most widely studied 

lncRNAs [172], is positively correlated with plasma 

claudin-5 and MMP-9 levels in patients with AIS and 

correlated with the extent of BBB destruction. In addition, 

lncRNA H19 levels have been found to induce phenotypic 

polarization of M1-type microglia to M2-type microglia 

by inhibiting the phosphorylation of microglia HDAC1 

protein and regulating neurogenesis through Notch/P53 

pathway. Moreover, lncRNA H19 is transported from 

neurons to astrocytes, thereby inhibiting the expression of 

miR-18a in astrocytes and inducing an increase in the 

production and secretion of VEGF, and TJPs reduction in 

endothelial cells [173]. 

 

6.5 Other targets and strategies 

 

AS605240, a PI3Kγ inhibitor, significantly reduces 
astrocyte activation and pro-inflammatory cytokine 

expression, thereby improving stroke prognosis [174]. 

Oleoylethanolamide, a bioactive lipid mediator, promotes 

the expression and nuclear transport of PPARα in 
astrocytes to inhibit activation and neural loss of 

astrocytes in the ischemic hemisphere [175]. Memantine, 

an N-methyl-d-aspartate receptor antagonist, reduces 

BBB leakage and infarct extent by reducing astrocyte-

induced MMP2/9 expression [176]. Melatonin is a 

hormone secreted by the pineal gland, and has antioxidant 

effects, alleviating the ischemia reperfusion-induced BBB 

breakdown by regulating α7nACh receptors and clearing 
ROS produced by glial cells after AIS [39, 177]. 

 

7. Conclusion 

 

Crosstalk between glial cells plays a critical role in the 

damage and protection of BBB after AIS. In addition, 

polarization, inflammatory response of glia cells and glial 

cell-derived exosomes are key contributory factors to the 

damage and protection of BBB after AIS. Finally, 

crosstalk between glial cells and immune cells is 

implicated in the damage and protection of BBB after 

AIS, therefore regulating the crosstalk between glial cells 

and immune cells would hold the promise to alleviate 

AIS-induced BBB damage.  
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