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Abstract. Reasoning complex logical queries on incomplete and
massive knowledge graphs (KGs) remains a significant challenge.
The prevailing method for this problem is query embedding, which
embeds KG units (i.e., entities and relations) and complex queries
into low-dimensional space. Recent developments in the field show
that embedding queries as geometric shapes is a viable means for
modeling entity set and logical relationships between them. Despite
being promising, current geometric-based methods face challenges
in capturing hierarchical structures of complex queries, which leaves
considerable room for improvement. This paper presents POINE2,
a geometric-based query embedding framework based on hyperbolic
geometry to handle complex queries on knowledge graphs. POINE2

maps entities and queries as geometric shapes on a Cartesian product
space of Poincaré ball spaces. To capture the hierarchical structures
of complex queries, we use the Poincaré radius to represent the dif-
ferent levels of the hierarchy, and we use the aperture of the shape to
indicate semantic differences at the same level of the hierarchy. Addi-
tionally, POINE2 offers a flexible and expressive definition of logical
operations. Experimental results show that POINE2 outperforms ex-
isting salient geometric-based embedding methods and significantly
improves these methods on evaluation datasets.

1 Introduction

Many real-life applications like information retrieval, dialogue, and
recommendation systems require reasoning about knowledge graphs
(KGs) [16, 24, 17]. One of the fundamental tasks in KG reasoning
is to answer complex logical queries with logic operators, includ-
ing existential quantification (∃), conjunction (∧), disjunction (∨),
and negation (¬). Early methods attempted to find the answers by
traversing the KG. However, such a traverse-based strategy is pro-
hibitively expensive [22] since many real-life KGs are large and have
a high degree of nodes (i.e., entities). Moreover, because many KGs
are incomplete with missing relations, traverse-based methods often
cannot locate all answers [22].

Recent approaches attempt to address the drawbacks of traversed-
based approaches by adopting an embedding-based approach. This
is achieved by representing entities and queries in a low-dimensional
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Figure 1: The hierarchical structure of a complex query “List all the
works of the winners of Nobel Prize in Literature, who were not born
in the UK.”.

embedding space [6, 27, 11, 26]. Since generating the query em-
bedding is a one-off cost and the subsequent query-answering is per-
formed on the embedding space using low-overhead methods like
nearest neighbors, embedding-based methods can scale well to mas-
sive KGs [11, 22]. As such, embedding-based methods have emerged
as the dominant approach for KG reasoning.

Geometric-based approaches among existing embedding-based
methods have shown promising results by representing the query as a
specific geometric shape on the embedding space. Query2Box [22],
for instance, embeds queries as boxes, where points inside the box
are considered as answer entities to the query. Compared to those
shallow embedding-based methods [11, 26], such geometric-based
embedding methods can naturally represent answer sets of queries
and model logical operations among those sets.

However, most existing geometric-based embedding methods
have difficulty leveraging hierarchical information of complex query
structures. Due to the deductive nature of complex logical queries,
a complex query can be progressively decomposed into sub-queries
up to one-hop queries. As shown in Figure 1, the complex query
v =?v : ∃u.¬Born−1(a1, u) ∧ Win−1(a2, u) ∧ Write(u, v) can be
decomposed into two one-hop queries: u =?u : Born−1(a1, u) and
u =?u : Win−1(a2, u). As a result, the computation graph resembles
a tree structure, and the associated entities are organized hierarchi-
cally. Preserving this hierarchical organization is crucial for accurate
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reasoning, as the superior distribution of embeddings in the embed-
ding space can aid in searching for answer entities. Although some
work takes the semantic hierarchies into account [8, 12]. These meth-
ods usually cannot adequately model the hierarchical structures of
complex queries and only support a subset of logical operations (i.e.,
Existential Positive First-Order logic operators). As a result, there is
still a need to develop a geometric-based embedding approach that
can effectively model the hierarchical structures of complex queries.

This paper presents POINE2, a novel geometric-based embed-
ding approach for complex query reasoning1. Our proposed POINE2

model embeds queries and entities as geometric shapes on the
Poincaré ball space and provides interpretable parameterizations.
The Poincaré radius measures the inter-level semantic for different
hierarchy levels, while the aperture signifies the intra-level seman-
tic at the same level. POINE2 leverages hierarchical information of
complex logical query structures to answer complex logical queries
and is equipped with flexible and expressive logical operations in-
cluding relational projection, intersection, and union. Furthermore,
to the best of our knowledge, POINE2 is the first hyperbolic query
embedding method to handle negation operations. During inference,
candidate entities are ranked by the distance value between the query
embedding and the candidate entity embeddings. We conduct ex-
periments on standard benchmark datasets. Our extensive evalua-
tion shows that POINE2 can capture the hierarchical structures and
outperform the salient geometric-based embedding approaches by a
large margin. This paper makes the following contributions:

• We propose a novel complex query reasoning framework designed
to capture hierarchical structures of complex queries (Section 4);

• Our framework provides flexible and expressive definitions of log-
ical operations on the Poincaré ball space (Section 4.2);

• Our method outperforms salient baselines and achieves improved
performance in experimental results (Section 6.1).

2 Related Work

2.1 Complex Query Reasoning over Knowledge
Graphs

Previous works on complex query reasoning over KGs focus on path-
based methods [31, 18]. These methods traverse the entire knowl-
edge graph, trying to find all intermediate entities on the path, which
leads to heavy computational overhead. Hence, GQE [11] embeds
complex queries and entities into low-dimensional embedding spaces
and designs neural logical operations to efficiently reason in the em-
bedding space. Then, Query2Box [22] and ConE [33] model the
complex queries using box embeddings and cone embeddings, re-
spectively, improving reasoning performance by representing logic
queries as geometric shapes (boxes and cones) on the embedding
space. Other recent methods [3, 23, 8] try to embed queries into ad-
vanced embedding space. For example, BetaE [23] represents queries
and entities using probabilistic distribution, i.e., beta distribution.
HypE [8] embeds queries and entities as hyperboloids.

Some other works combine neural methods with symbolic al-
gorithms [1, 30] to solve the complex query reasoning problem.
CQD [1] converts complex logical query reasoning to a link predictor
optimization problem using t-norms and t-conorms, with continuous
optimization (CQD-CO) and beam search (CQD-Beam).

1 POINE2 =Poincaré Ball based Query Embedding. Code and data available
at: https://github.com/spankeran/CQA-PoinE

Another line of research focuses on solving the Existential Pos-
itive First-Order (EPFO) query reasoning task using transformer-
based models. BiQE [15] and kgTransformer [19] achieve this by
converting the task to a masked entity prediction problem. However,
transformer-based models can struggle with negation operations as
they divide the computation graph into multiple paths for sequence
modeling. Additionally, these models take longer to train and are
harder to converge. On the contrary, embedding-based methods uti-
lize neural logical operators to perform logical operations, which is
more intuitive and interpretable than implicit learning through deep
models such as transformers.

2.2 Hyperbolic Embedding

Hyperbolic embeddings have gained significant attention due to their
ability to model data with latent hierarchies. Nickel and Kiela [21]
were pioneers in embedding the transitive closure of the WordNet
noun hierarchy on the Poincaré ball space. Their research shows
that low-dimensional hyperbolic embeddings can outperform higher-
dimensional Euclidean embeddings in terms of representation ca-
pacity and generalization ability. Based on these findings, Ganea et
al. [10] and Shimizu et al. [25] have designed Hyperbolic Neural Net-
works that extend deep learning techniques to the hyperbolic space.

In the field of knowledge graphs, Balazevic et al. [4], Suzuki et
al. [28], and Chami et al. [7] have explored hyperbolic embeddings
to solve the knowledge graph completion problem. Their research
has shown that hyperbolic-based embedding methods can outper-
form Euclidean-based methods by considering the semantic hierar-
chies of the knowledge graph. Our approach is related to the hyper-
bolic embedding for complex logical reasoning on KGs. We embed
entities and queries on the Poincaré ball and use the tangent space
for better optimization.

3 Background and Preliminaries

3.1 Complex Queries on Knowledge Graphs

Given a set of entities V and a set of relations R, a knowledge
graph (KG) G = (V, E ,R) is composed of a series of triplets,
E = {(hi, ri, ti)} ⊆ V × R × V , where hi is the head entity, ti
is the tail entity and ri means a relation.

Our work addresses the problem of answering complex queries on
KGs, specifically First-Order Logic (FOL) queries in the Disjunctive
Normal Form (DNF) on KGs. FOL queries in this paper involve log-
ical operators including conjunction (∧), disjunction (∨), existential
quantification (∃), and negation (¬).

Let Va ⊆ V denote a non-variable anchor entity set, and
V1, . . . , Vk denote existentially quantified bound variables while V?

indicates a single target variable. A valid FOL query in DNF takes
the form:

q[V?] = V?.∃V1, . . . , Vk : c1 ∨ c2 ∨ . . . ∨ cn, (1)

where ci;i=1,...,n indicates a conjunctive formula (conjunctive query)
composed of one or more literals e, i.e., ci = ei,1 ∧ ei,2 ∧ . . . ∧
ei,n. Each literal indicates an atomic formula. The objective of FOL
query reasoning is to identify all answer entities denoted by �q� ⊂ V .
Each v ∈ �q� must make the above formula true, i.e., q[v] is true.
Throughout this paper, we will use �q� to represent the answer entity
set of conjunctive query q.

A FOL query can be transformed into a computation graph that
outlines the reasoning process. Each node in the computation graph
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Figure 2: Illustration of POINE2’s query embedding.

represents an entity set (i.e., the answer entity set of sub-query), and
each edge indicates an operation, such as relational projection, inter-
section, union, and negation.

3.2 Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geometry with constant
negative curvature. In this paper, we utilize the Poincaré ball model,
which exhibits negative curvature −c. An n-dimensional Poincaré
ball model is defined by (Bn,c, gB,c), where

Bn,c = {x ∈ R
n : ‖x‖2 <

1

c
}, gB,c

x = (λc
x)

2gE . (2)

Here ‖·‖ means L2 norm function, λc
x = 2

1−√
c‖x‖2 is a confor-

mal factor, and gE is Euclidean metric tensor. Formally, Bn,c is an
open n-dimensional ball with radius 1√

c
. The inner product on the

Poincaré ball is induced by λc
x: 〈u,v〉cx = (λc

x)
2 〈u,v〉. The tan-

gent space TxB at point x ∈ Bn,c is a vector space that contains all
directions of paths in Bn,c leaving from x, which has similar prop-
erties to Euclidean space. Moreover, the Poincaré norm (Poincaré
radius) is defined as the distance of any point x ∈ Bn,c \ {0} from
the origin (0) of the Poincaré ball:

‖x‖B =
2√
c
tanh−1(

√
c ‖x‖). (3)

4 Proposed Framework of POINE2

Figure 3 depicts the POINE2 framework. In this section, we first in-
troduce how to embed both entities and queries into the Poincaré ball
space in Section 4.1. Then, we describe how neural logical operators
can be implemented in our framework in Section 4.2. Finally, we de-
scribe the training details of our model and how to predict answer
entities using learned embeddings in Section 4.3.

4.1 Embeddings for Entities and Queries

The query embedding is designed to model the answer entity set �q�
of conjunctive query q. We expect query embedding to form a geo-
metric shape on the embedding space that can capture the hierarchi-
cal structure of a complex query. To do this, we propose utilizing the
Poincaré radius to characterize the different levels of the hierarchy,
referred to as the inter-level semantic, and the aperture to capture the
semantic differences within the same level of the hierarchy, referred
to as the intra-level semantic. Further, we define the center and offset
on inter-level and intra-level directions to form a shape.

Specifically, we embed queries into a Cartesian product space S
of d Poincaré planes each of which is a 2-dimensional Poincaré ball

space. S can be denoted by S = B2
1 × . . . × B2

d, where d denotes
the number of Poincaré planes. We use rB,i

c and θB,i
c to represent

the inter-level center and intra-level center on the i-th Poincaré ball
space, respectively. Additionally, we use rB,i

o and θB,i
o to represent

the inter-level offset and intra-level offset on the i-th Poincaré ball
space, respectively. This allows us to summarize the query embed-
ding as:

V B
q = (rB

c ,θ
B
c , r

B
o ,θ

B
o ), (4)

where (rB
c ,θ

B
c ) represent the semantics of entity set �q�, and

(rB
o ,θ

B
o ) indicates the size of �q�. For efficient optimization, we de-

fine all embeddings on the tangent space at the origin of Poincaré
ball space, i.e., Vq = (rc,θc, ro,θo). The tangent space is a vector
space that allows us to use advanced optimization methods, such as
Adam [14]. Vq can be mapped to V B

q using the exponential map:

V B,i
q = exp0(V

i
q ). (5)

An entity v ∈ V can be viewed as an entity set with only one
element (i.e., {v}), which allows us to embed such an entity as a
shape with zero offset. The embedding of entity v is represented as
v = (rv

c ,θ
v
c ,0,0), where (rv

c ,θ
v
c ) denotes the semantics of the en-

tity v and 0 represents the zero vector.

4.2 Logical Operators

In this section, we present the logical operators in POINE2, which
operate on the tangent space. Integration with neural networks, such
as a multi-layer perceptron network, is readily possible in the tangent
space, facilitating operation design.

Projection Operator P . The projection operator performs rela-
tional projection from one query embedding Vq to another query
embedding V ′

q . For each relation r ∈ R, we assign an embedding
R = (rr

c ,θ
r
c , r

r
o ,θ

r
o). Then, we implement the P operator as:

V ′
q = f (MLP([rc ◦ rr

c ;θc + θr
c ; ro + rr

o ;θo + θr
o ])) , (6)

where MLP : R4d → R
4d is a multi-layer perceptron network, [; ]

is the concatenation function, ◦ is the element-wise multiplication
function, and f is a mapping function that ensures the output values
from the MLP are valid. Specifically, we define f as:

f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L · σ(xi), i ∈ [0, d),

2π · σ(xi)− π, i ∈ [d, 2d),

L · σ(xi), i ∈ [2d, 3d),

π · σ(xi), i ∈ [3d, 4d),

(7)

where σ(·) is the sigmoid function. This projection operation is flexi-
ble, owing to its capacity to generate query embeddings with adaptive
offset sizes. Furthermore, the rotation translation of phase embedding
(θc + θr

c ) means the projection operation can model logical patterns
of relations, such as symmetric and anti-symmetric [27].

Intersection Operator I. The objective of I is to produce an in-
tersection embedding Vq,I that represents the intersection ∩N

i=1�qi�
of N input conjunctive queries {qi}Ni=1, where Vq,i denotes the em-
bedding of the i-th query. Inspired by the Venn diagram [13], we im-
plement the I by performing attention-based weighted average over
the centers [2] and rescaling the minimum offsets by the permutation-
invariant deep neural network [32]. Specifically, we use an attention-
based weighted average to generate the inter-level center of Vq,I .
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Figure 3: Illustration of the POINE2 framework. Given a complex query, we begin by transforming its anchor entities to query embeddings on
the tangent space. Then, we perform neural logical operations over these embeddings to generate the query embedding. Finally, we utilize the
exponential map function to map the query embedding to Poincaré ball space. During the inference phase, candidate entities are ranked by
measuring the distance between their embeddings and the query embedding.

Formally, the computation process is:

rc,I =
N∑
i=1

[αi ◦ rc,i], αi =
exp (MLP(Vq,i))∑N
j=1 exp (MLP(Vq,j))

, (8)

where αi is attention score vector, ◦ is the element-wise multiplica-
tion function, and MLP : R4d → R

d is a multi-layer perceptron
network for calculating attention score. Similarly, we calculate the
intra-level center of Vq,I using attention-based weighted average on
{θc,i}Ni=1. Besides, we implement the operation of I over the off-
set by adjusting the minimum offset of {Vq,i}Ni=1 using neural con-
straints:

[ro,I/θo,I ] = min
(
{[ro,I/θo,I ]}Ni=1

)
·

σ
(
DeepSetsNet

(
{[ro,I/θo,I ]}Ni=1

))
,

(9)

where min(·) is a dimension-wise minimum funciton, σ(·) is the
sigmoid function, and DeepSetsNet(·) is a permutation-invariant net-
work.

Union Operator U . The objective of the union operator U is to
generate a representation, denoted by Vq,U , for a disjunctive query
that is represented as the disjunction∪N

i=1�qi� ofN input conjunctive
queries {qi}Ni=1. However, directly modeling the disjunction leads to
an unscalable situation [22]. Referring to Ren et al. [22], the union
operation only appears in the last step when generating embeddings
of complex queries in DNF. Therefore, we can use the generated em-
beddings of the conjunctive queries to represent the disjunction em-
bedding, which is denoted by Vq,U = {V ′

q,i}Ni=1.

Negation Operator N . The negation operator aims to obtain the
complement �¬q� of the input entity set �q� over the universe of en-
tities V . We first perform the difference operation between the en-
tire space and the region indicated by input query embedding Vq .
After obtaining the complementary region, we divide it into three
sub-complementary regions standing for inter-level complement and
intra-level complement as shown in Figure 3. These regions are well-
equipped with our definition of query embedding. Hence, we repre-
sent the Vq,N via the sub-complements, Vq,N = {Vq,N ,i}3i=1.

4.3 Learning Strategy

In this section, we provide the details of the distance function to
measure the similarity between entity embeddings and query embed-
dings. Further, we show how to train POINE2 using the distance-
based loss function.

4.3.1 Distance Function

In our framework, we divide the overall distance into inter-distance
and intra-distance, which respectively denote inter-level distance and
intra-level distance. Following Ren et al. [22], we define them as:

d(v;Vq) = dout(v;Vq) + τ · din(v;Vq), (10)

where din means the inside distance and dout means the outside dis-
tance. We use the scaling factor τ ∈ (0, 1) to rescale the inside dis-
tance, so that if v ∈ �q�, the distance value between v and Vq would
be significantly smaller than the distance between v′ and Vq where
v′ /∈ �q�.

We use inter-distance to distinguish embeddings at the different
levels of the hierarchy. Let Vq,min = (rc − ro,θc, ro,θo) and
Vq,max = (rc + ro,θc, ro,θo). We define inter-level distance as:

dinter,in =
∥∥∥min

(
g
(
V B

q ;V B
q,min

)
,
∣∣∣g (vB;V B

q

)∣∣∣)
∥∥∥
1
,

dinter,out =
∥∥∥max

(
g
(
V B

q,min;v
B
)
, g

(
vB;V B

q,max

)
,0

)∥∥∥
1
,
(11)

where ‖·‖1 isL1 norm function,min(·) is an element-wise minimum
function,max(·) is an element-wise maximization function and g(; )
is a function to calculate the subtraction of the value of Poincaré
radius between two Poincaré embeddings.

We use intra-distance to distinguish embeddings at the same hi-
erarchy level. Suppose that θmin and θmax is the lower bound and
upper bound of the θc (e.g., θmin = θc − θo), the intra-level dis-
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tance is defined as:

dintra,in =

∥∥∥∥min

(∣∣∣∣sin
(
θv
c − θc

2

)∣∣∣∣ ,
∣∣∣∣sin

(
θo

2

)∣∣∣∣
)∥∥∥∥

1

,

dintra,out =

∥∥∥∥min

(∣∣∣∣sin
(
θv
c − θmin

2

)∣∣∣∣ ,
∣∣∣∣sin

(
θv
c − θmax

2

)∣∣∣∣
)∥∥∥∥

1

,

(12)
where ‖·‖1 isL1 norm function, sin(·) is element-wise sine function,
and min(·) is element-wise minimization function.

Finally, the overall distance, with fixed weight parameters of α and
β, is defined as:

d(v;Vq) = α · dinter(v;Vq) + β · dintra(v;Vq). (13)

As mentioned before, U and N will lead to a set of conjunctive
query embeddings {V ′

q,i}Ni=1. We can obtain several distance values
{d(v,V ′

q,i)}Ni=1 after performing these operators. However, we only
take the smallest one as the final distance value. This is based on
the fact that the distance from an entity embedding to the union of
several query embeddings equals the minimum distance between the
entity embedding and each query embedding separately.

4.3.2 Training Objective.

The POINE2 model is trained using a negative sampling loss func-
tion [27]. Specifically, given a query in the training set, the loss func-
tion is defined as:

L = − log σ(γ − d(v;Vq))−
1

k

K∑
i=1

log σ(d(v′
i;Vq)− γ). (14)

Here, v represents positive entities, which are answers to the query.
On the other hand, v′ represents negative entities, and K represents
the number of sampled negative entities. The fixed margin used to
distinguish positive and negative entities is denoted by γ.

During inference, candidate entities are ranked based on their dis-
tances, and the top n entities are selected as the answer entities for
the query.

5 Experimental Setup

Datasets and Queries We conduct experiments on three com-
monly benchmark datasets: FB15k [5], FB15k-237 [29], and
NELL [31]. We also involve another dataset, WN18RR [9], which
is a subset from WordNet [20]. Following BetaE [23], we consider
14 query structures as shown in Figure 4, which cover the current
comprehensive FOL queries.

Specifically, the training set consists of five Existential Pos-
itive First-Order (EPFO) query structures (1p/2p/3p/2i/3i),
and the other five structures involved negation operation

Table 1: Statistics of query structures. For the training set, ‘EPFO’
query structures contain 1p, 2p, 3p, 2i, 3i, and ‘Other’ query struc-
tures contain 2in, 3in, inp, pni, pin.

Dataset
Train Valid Test

EPFO Other 1p Other 1p Other

FB15k 273,710 27,371 59,097 8,000 67,016 8,000
FB15k-237 149,689 14,968 20,101 5,000 22,812 5,000

NELL 107,982 10,798 16,927 4,000 17,034 4,000
WN18RR 103,479 10,347 5,202 1,000 5,356 1,000

1p 2p 3p 2i 3i

n n n

n

n

2in 3in inp pni pin

ip

pi

2u

u

u

up

u

u

Relational
Projection

Intersection Union Negation

Figure 4: Illustration of query structures used in the experiments.
denotes the node of the anchor entity set. denotes the node of the
intermediate entity set. denotes the target entity set. The ‘p’, ‘i’,
‘u’, and ‘n’ in the query structure name represent relational projec-
tion, intersection, union, and negation, respectively.

(2in/3in/inp/pni/pin). For evaluation and testing, we in-
cluded four additional structures (ip/pi/2u/up) to measure the
model’s generalization ability in learning the missing facts of
KGs. The ‘p’, ‘i’, ‘u’, and ‘n’ correspond to relational projection,
intersection, union, and negation, respectively. And the number
before the symbols indicates the number of anchor entity set. For a
fair comparison, we use the same queries as those in BetaE [23] on
FB15k, FB15k-237, and NELL. For WN18RR, we follow the setup
in Query2Box [22] to generate queries. Table 1 shows the number
of different queries in the training set, validation set, and test set on
benchmark datasets.

Evaluation Methodology We follow the evaluation protocol in
Query2Box [22]. For each answer entity v of a query q, we rank it
against non-answer entities. Then we use the Mean Reciprocal Rank
(MRR) and Hits at K (Hits@k) to measure the performance of an
approach. Specifically, we compute MRR as the average of the re-
ciprocal ranks for a query q, MRR = 1

|A|
∑|A|

i=1
1

ranki
, where A is

the answer set. We compute Hits@k as the number of entities whose
ranks are below k Hits@k = 1

|A|
∑|A|

i=1 [ranki ≤ k], where [·]
is an indication function.

Baseline Methods We compare POINE2 against several salient
geometric-based methods: GQE [11], Query2Box [22] and
ConE [33]. GQE embeds queries as points on the embedding space,
while Query2Box and ConE embed queries as boxes and cones on
the embedding space, respectively. Since GQE and Query2Box can-
not handle negation operations, they are trained with only EPFO
query structures (1p/2p/3p/2i/3i). In addition, we also involve an
optimization-based method CQD [1]. In contrast to the former, GQD
settles the logical query reasoning problem by decomposing the logi-
cal queries to atomic queries and optimizing pre-train link predictors
using t-norm to solve atomic queries.

6 Experimental Results

Highlights of our evaluation are:

• POINE2 outperforms all salient baselines for answering complex
queries on KGs (Section 6.1);

• POINE2 also outperforms methods that are tailored to leverage
hierarchies (Section 6.1);

• POINE2 is efficient at modeling fuzzy entity set (Section 6.2).
• POINE2 can capture the hierarchical structure of complex logical

queries (Section 6.3).
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Table 2: MRR results (%) on FB15k, FB15k-237, NELL, and WN18RR. Avg p means the average MRR performance of EPFO queries, which
only contains ∃, ∧, and ∨. Avg n means the average MRR performance of logical queries with negation (¬).

Dataset Model Avgp Avgn 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni

FB15k

GQE 28.2 N/A 53.9 15.5 11.1 40.2 52.4 27.5 19.4 22.3 11.7 N/A N/A N/A N/A N/A
Q2B 38.4 N/A 70.6 22.5 14.1 55.0 66.7 26.0 39.4 35.0 16.7 N/A N/A N/A N/A N/A
ConE 49.3 14.7 73.8 32.0 28.5 64.7 74.0 34.2 49.8 56.4 29.9 18.0 17.9 12.5 9.8 15.1

POINE2 53.9 15.4 79.1 39.2 32.8 66.4 75.6 42.4 53.7 59.8 36.2 19.1 18.5 13.4 10.2 15.8

FB15k-237

GQE 16.3 N/A 35.0 7.2 5.3 23.3 34.6 10.7 16.5 8.2 5.7 N/A N/A N/A N/A N/A
Q2B 20.1 N/A 40.6 9.4 6.8 29.5 42.3 12.6 21.2 11.3 7.6 N/A N/A N/A N/A N/A
ConE 23.4 5.9 41.8 12.8 11.0 32.6 47.3 14.0 25.5 14.5 10.8 5.4 8.6 7.8 4.0 3.6

POINE2 24.8 6.5 42.8 13.3 11.7 35.8 50.4 15.7 27.1 14.6 11.8 6.1 9.4 8.4 4.5 4.0

NELL

GQE 18.6 N/A 32.8 11.9 9.6 27.5 35.2 14.4 18.4 8.5 8.8 N/A N/A N/A N/A N/A
Q2B 22.9 N/A 42.2 14.0 11.2 33.3 44.5 16.8 22.4 11.3 10.3 N/A N/A N/A N/A N/A
ConE 27.2 6.4 53.1 16.1 13.9 40.0 50.8 17.5 26.3 15.3 11.3 5.7 8.1 10.8 3.5 3.9

POINE2 29.0 6.9 57.0 17.8 15.6 41.2 51.9 20.5 27.6 16.4 12.9 6.2 8.5 11.5 3.9 4.2

WN18RR

GQE 14.5 N/A 21.1 4.8 3.5 28.8 36.6 14.6 13.6 3.2 4.6 N/A N/A N/A N/A N/A
Q2B 21.1 N/A 25.3 5.5 3.9 40.8 70.0 21.1 14.3 4.1 5.1 N/A N/A N/A N/A N/A
ConE 34.6 23.5 49.5 19.4 15.9 63.5 81.4 35.8 21.1 10.5 14.5 13.5 67.6 8.9 9.2 18.3

POINE2 36.8 25.2 51.8 21.5 18.2 65.8 83.4 37.1 25.7 11.7 16.7 15.1 70.8 10.0 9.5 20.6

6.1 Main Results

We compare POINE2 against baselines on queries with and without
negation. We run our model five times with different random seeds
and report the average performance.

Comparing with salient baselines Table 2 shows the MRR re-
sults when applying a method to answer arbitrary complex queries
across evaluation datasets, where POINE2 outperforms all the base-
lines. For EPFO queries, we observe that POINE2 achieves a rela-
tive improvement of 8.5%, 6.0%, and 5.5% on average MRR per-
formance compared to ConE on FB15k, FB15k-237, and NELL, re-
spectively. Furthermore, for queries with negation, we observe an av-
erage MRR performance improvement of 4.8% on FB15k, 10.1% on
FB15k-237, and 4.7% on NELL. Additionally, on dataset WN18RR,
POINE2 achieves a relative performance increase over the baselines
for all complex queries. The results reveal two key findings: 1) Our
approach, POINE2, is better at answering complex logical queries
across evaluation datasets. 2) Although most of the relationships in
FB15k and FB15k-237 lack hierarchy (i.e., these KGs lack the se-
mantic hierarchy), our POINE2 still outperforms previous state-of-
the-art methods for these datasets. This indicates that our model can
capture latent hierarchies in the topology of complex queries, which
helps in answering complex queries.

Comparing with optimization-based baseline In addition, we
compare POINE2 with the optimization-based model, CQD. As
shown in Table 3, POINE2 is superior to CQD, with 11.1% rel-
ative improvement on FB15k-237 and 3.6% relative improvement
on NELL on average. It is noteworthy that CQD still outperforms
POINE2 on some query structures, such as 1p. We suspect that CQD
optimizes query atoms to answer logical queries, thereby being more
sensitive to shorter and simpler query structures. However, POINE2

can handle more complex query structures, which allows it to outper-
form CQD on other query structures.

Comparing with hierarchical-aware baselines To validate the
importance of capturing the hierarchical structure of complex logical
queries, we conduct a comparison of POINE2 with HypE [8] and
LinE [12]. We follow the experiment setup in LinE by dividing 14
query structures into three categories: relation-heavy, logical-heavy,

Table 3: MRR performance (%) comparison between CQD [15] and
POINE2 on FB15k-237 and NELL.

Model Avgp 1p 2p 3p 2i 3i ip pi 2u up

FB15k-237

CQD 21.7 46.3 9.9 5.9 31.7 41.3 15.8 21.8 14.2 8.6
POINE2 24.1 42.2 12.6 11.3 34.6 49.3 15.1 26.4 14.1 11.2

NELL

CQD 28.0 60.0 16.5 10.4 40.4 49.6 20.8 25.6 16.8 12.6
POINE2 29.0 57.0 17.8 15.6 41.2 51.9 20.5 27.6 16.4 12.9

Table 4: MRR performance (%) comparison between POINE2,
HypE [8], and LinE [12] on FB15k-237 and NELL. Avgp, Avgl,
and Avgn indicates the average MRR results on relation-heavy
(1p/2p/3p), logical-heavy (2i/3i/ip/pi/2u/up), and negation-
related (2in/3in/inp/pni/pin) queries, respectively.

Model
FB15k-237 NELL

Avgp Avgl Avgn Avgp Avgl Avgn

HypE 17.3 8.9 N/A 18.3 14.5 N/A
LinE 18.5 17.7 5.7 22.3 17.5 5.5

POINE2 22.6 25.9 6.5 30.1 28.4 6.9

and negation-related. As illustrated in Table 4, POINE2 outperforms
both HypE and LinE in all cases.

6.2 Quality of Modeling Entity Sets

We hypothesize that our POINE2 can effectively model the fuzzy en-
tity set. To verify this hypothesis, we evaluate POINE2’s ability to
model the cardinality (i.e., the number of elements in the set) of the
answer set. This evaluation provides insights into POINE2’s capabil-
ity to model fuzzy entity set. For POINE2, the offset embeddings ro

and θo can signify the learned cardinality of corresponding answer
sets. We estimate the learned cardinality by computing the sum of
the L1 norm of ro and θo.

We compute the Spearman’s rank correlation (SRC) between the
learned cardinality and the ground-truth cardinality (i.e., the num-
ber of elements in the answer set �q�) for each query. The SRC is a
commonly used measure to assess the statistical dependence between
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Table 5: Spearman’s rank correlation scores between learned cardi-
nality and the real size of the corresponding answer set.

Model Avg 1p 2p 3p 2i 3i ip pi

FB15k

Q2B 0.26 0.30 0.22 0.26 0.33 0.27 0.30 0.14
BetaE 0.46 0.37 0.48 0.47 0.57 0.40 0.52 0.42
ConE 0.62 0.60 0.68 0.70 0.68 0.52 0.59 0.56

POINE2 0.76 0.75 0.75 0.73 0.82 0.75 0.70 0.79

FB15k-237

Q2B 0.29 0.18 0.23 0.27 0.35 0.44 0.36 0.20
BetaE 0.51 0.41 0.50 0.57 0.60 0.52 0.54 0.44
ConE 0.72 0.70 0.71 0.74 0.82 0.72 0.70 0.62

POINE2 0.81 0.79 0.81 0.79 0.88 0.85 0.74 0.83

NELL

Q2B 0.32 0.15 0.29 0.31 0.38 0.41 0.36 0.35
BetaE 0.55 0.42 0.55 0.56 0.59 0.61 0.60 0.54
ConE 0.67 0.56 0.61 0.60 0.79 0.79 0.74 0.58

POINE2 0.74 0.68 0.74 0.65 0.78 0.80 0.77 0.79

two variables. A higher correlation indicates that the model is more
capable of modeling fuzzy entity sets.

Table 5 displays the Spearman’s rank correlation results for
POINE2 and baselines on FB15k, FB15k-237, and NELL. Our
POINE2 significantly outperforms the state-of-the-art baseline ConE,
demonstrating its superiority in modeling fuzzy entity sets.

6.3 Analysis of Modeling Hierarchical Structures of
Complex Queries

In this section, we visualize the embeddings of several complex
queries to further show that POINE2 can capture the hierarchical
structures of complex queries.

Figure 5 visualizes four examples of query embeddings generated
during the POINE2 reasoning procedure on the FB15k dataset. Here,
we project the query embeddings onto a 2D space using the follow-
ing method. We use the center embeddings to indicate the query’s
position on the embedding space. We map the embeddings in the po-
lar coordinate system to the Cartesian coordinate system and then
map them to Poincaré ball via the exponential map function. Note
that those embeddings near the bound of the 2D plane have a higher
hierarchy level since we use the logarithmic scale to obtain a clearer
presentation of the hierarchical gap.

We can observe that the embeddings between different levels have
relatively clear boundaries and roughly reflect a hierarchical struc-
ture. The observation demonstrates that our POINE2 can capture the
hierarchical structures of complex queries, which accounts for the
experiential performance improvements of POINE2.

7 Conclusion

We have presented POINE2, a novel geometric-based embedding ap-
proach for answering complex queries over incomplete and large
knowledge graphs. POINE2 represents entities and queries as geo-
metric shapes on the Cartesian product space of the Poincaré ball
spaces and generates query embeddings via flexible and expres-
sive neural logical operators. POINE2 can capture hierarchical struc-
tures of complex queries and handle FOL operations, including rela-
tional projection, intersection, union, and negation. POINE2 is the
first hyperbolic-based query embedding method that supports the
negation operation. Extensive experimental results on representative

(a) 1p (b) 3p

(c) pi (d) ip
Figure 5: Visualization of the query embeddings of four query struc-
tures from FB15k. (a): “List the employees of the Fuji Television.",
(b): “List the football team that played with the Peruvian national
team on the World Cup.", (c): “List the artists, origin from the city-
town which Brooklyn Law school locates at and Jimmy lives on.", (d):
“What diseases that occur in the cerebrospinal fluid can be caused
by liver cirrhosis."

datasets show that POINE2 outperforms previous geometric-based
embedding methods by a large margin.
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