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Abstract

Identification of materials physical properties is very important because they are in

general unknown. Furthermore, their direct experimental measurement could be costly

and inaccurate. In such a situation, a cheap and efficient alternative is to mathematically

formulate an inverse, but difficult, problem that can be solved, in general, numerically;

the challenge being that the problem is, in general, nonlinear and ill-posed. In this

paper, the reconstruction of a lower-order unknown time-dependent coefficient in a Cahn-

Hilliard-type fourth-order equation from an additional integral observation, which has

application to characterising the nonlinear saturation of the collisional trapped-ion mode

in a tokamak, is investigated. The local existence and uniqueness of the solution to such

inverse problem is established by utilizing the Rothe method. Moreover, the continuous

dependence of the unknown coefficient upon the measured data is derived. Next, the

Tikhonov regularization method is applied to recover the unknown coefficient from noisy

measurements. The stability estimate of the minimizer is derived by investigating an

auxiliary linear fourth-order inverse source problem. Henceforth, the variational source

condition can be verified. Then, the convergence rate is obtained under such source

condition.

Keywords: Inverse problem; Ill-posed problem; Rothe method; Tikhonov regularization method;
Cahn-Hilliard equation

1 Introduction

In coefficient identification problems, the unknown material properties appear as coefficients
of a partial different equation (PDE), or a system of PDEs, governing the physical phe-
nomenon/scenario under investigation. These coefficients may be constants or functions of
time, space or of the main dependent variable(s) and, typically, they represent a conductivity,
a capacity/storage, a convection/advection or reaction/absorption property. The governing
PDE is usually of second-order involving both space and time variables. Less work has been
performed on the identification of coefficients in higher-order PDEs such as those of the fourth-
order governing models of elastic beams (Euler-Bernoulli) or plates (Kirchhoff-Love) [3]. More
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complicated fourth-order PDEs such as the the Kuramoto–Sivashinsky (KS) equation, which,
in one-dimension written in a form suitable for fluid dynamics applications, reads as

ut + (σ(x)uxx)xx +D(x)uxx + uux = f(x, t), (x, t) ∈ QT := (0, 1)× (0, T ), (1.1)

where T > 0 is a given final time of interest, u represents the dependent variable, f is a source,
force or load, σ and D represent the diffusion and anti-diffusion coefficients, respectively,
governing the phase of turbulence in reaction-diffusion systems or flame propagation, have
also been considered. Equation (1.1) is supplied with an initial condition at t = 0 and with
physical boundary conditions, e.g., in case of Dirichlet boundary conditions u(x, t) and ux(x, t)
are prescribed at x ∈ {0, 1} and for all t ∈ (0, T ). The inverse coefficient problem for this
model, consisting in the determination of the unknown coefficients σ(x) or D(x) in (1.1), was
considered in [4, 12, 27, 11]. In [4], the anti-diffusion coefficient D(x) in (1.1) was retrieved
from the measurements of the Neumann partial boundary data uxx(0, t) and uxxx(0, t) and of
the data u(x, T0) at a fixed time T0 ∈ (0, T ). By applying the Bukhgeım–Klibanov method [5],
the Lipschitz stability was established. Such anti-diffusion coefficient was also investigated in
[12] but from the internal measurements u|ω×(0,T ) for ω ⊂ (0, 1) and u(x, T0), and the Lipschitz
stability was deduced by invoking similar arguments. Recently, the anti-diffusion coefficient
D(x) in a linear Kuramoto–Sivashinsky equation, namely, no nonlinear term uux in (1.1),
was recovered from the final measurement u(x, T ) in [11], where such inverse problem was
reformulated as a nonlinear regularized optimization, and the local uniqueness and stability
of the minimizer were proved under suitable optimality conditions. In addition, the numerical
solution of D(x) was obtained utilizing an iterative algorithm together with the finite element
method (FEM). The space-dependent diffusion coefficient σ(x) in (1.1) was identified in [27]
from the same additional observation of [4], and the Lipschitz stability was obtained locally
using the Bukhgeım–Klibanov method and Carleman estimates.

Inverse source/load linear problems for recovering the free term f are not discussed herein,
but we mention [13, 14] for the Euler-Bernoulli equation and [21, 22] for the more general
2m-order (m ∈ N

∗) parabolic equation

ut + (−1)ma(t)∂2mx u = f(x, t), (x, t) ∈ QT . (1.2)

Takingm = 2 in (1.2), the inverse problem concerning the reconstruction of the time-dependent
coefficient a(t) in the resulting fourth-order parabolic equation ut+a(t)uxxxx = f(x, t), govern-
ing thermal grooving, was recently investigated in [6]. The local well-posedness of the classical
solution to this inverse problem was established by using Fourier analysis and the Banach fixed
point theorem, and the numerical reconstruction of a(t) was realised based on a time-discrete
method with predictor-corrector scheme and the finite difference method (FDM).

The backward (in time) problem for the more general fourth-order PDEs of Cahn-Hilliard
type, namely,

ut +∇4u+ αu+ β · ∇u+∇ · (γ∇u) = f(x, t, u,∇u,∇2u), (x, t) ∈ Ω× (0, T ), (1.3)

where Ω is a bounded domain in R
n, describing the process of isothermal phase separation in

a binary alloy of fluids [8] was recently considered in [30]. We finally mention the fourth-order
nonlinear PDE

ut + A1∇2u+ A2∇4u+ A3∇ · (|∇u|2∇u) = f(x, t), (x, t) ∈ Ω× (0, T ), (1.4)

whereA1∇2u, A2∇4u andA3∇·(|∇u|2∇u) represent the diffusion due to evaporation-condensation,
capillarity-driven surface diffusion and hopping of atoms, respectively, that was considered in
[23] as a model for the epitaxial growth of nanoscale thin films in materials science.
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Much closer related to our paper is a particular one-dimensional form (Ω = (0, l)) of the
Cahn-Hilliard equation (1.3), see [25],

ut + σuxxxx + uxx + uux + qu = f(x, t), (x, t) ∈ QT := (0, l)× (0, T ), (1.5)

governing the growth and saturation of the fluctuating potential u(x, t) in plasma confinement
of toroidal tokamak devices. In (1.5), the coefficient σ > 0 is a measure of the relative strength
of Landau’s damping compared to the electron collisional growth (taken, for simplicity, to be
unity), and, compared to equation (6) of [25], we have also applied the scaling ψ 7→ u/2. Also,
q = ν−ν+/ω

2
0, where ω0 is the the mode frequency, ν− is the effective electron collision frequency

and ν+ is the effective ion collision frequency. It is this latter quantity that is assumed to be
time-dependent and unknown such that the inverse problem that is investigated in this paper
requires finding the coefficient q(t) along with the potential u(x, t) in the equation

ut + uxxxx + uxx + uux + q(t)u = f(x, t), (x, t) ∈ QT . (1.6)

Associated to this equation, we consider an initial specified condition

u(x, 0) = g(x), x ∈ (0, l), (1.7)

and, for simplicity, homogeneous Dirichlet boundary conditions

u(0, t) = u(l, t) = ux(0, t) = ux(l, t) = 0, t ∈ [0, T ]. (1.8)

In order to compensate for the missing time-dependent coefficient q(t) we consider the
additional time-dependent measurement of the weighted mass/energy of the system given by

∫ l

0

ρ(x)u(x, t)dx = ϕ(t), t ∈ [0, T ], (1.9)

where ρ(x) is a given weight function.
First, the inverse problem (1.6)–(1.9) is reformulated as a variational system for the pair

(u(x, t), q(t)). Then, a discrete form of the variational system is generated by using the back-
ward Euler’s method together with a sequence of nonlinear fourth-order elliptic equations.
Under certain assumptions on the input data, the unique solvability of these nonlinear elliptic
equations are obtained by Schaefer’s fixed point theorem, and from the a priori estimates of the
approximations we obtain that there exists a unique solution (u, q) to (1.6)–(1.9) by Rothe’s
method [20]. Moreover, the convergence rate estimate of the approximations and the stability
of solution are obtained.

Next, the recovery of the unknown time-dependent coefficient q(t) from the noisy inte-
gral observation ϕϵ of ϕ is considered by utilizing the Tikhonov regularization method, where
here ϵ ≥ 0 denotes the noisy level of measured data. The well-posedness of the minimizer
to the Tikhonov functional is obtained and we focus on the convergence rate estimates to
the minimizer of the Tikhonov functional. Convergence rates to Tikhonov regularization for
second-order inverse parabolic problems have been investigated extensively, e.g., [7, 9, 10, 15]
and the literature cited therein. The arguments can be extended to our fourth-order PDE prob-
lem. The variational source condition (VSC) (e.g. [17, 18, 28]) is established (without needing
the Frechet derivative of the forward operator that is required by the classical theory [9]) to
obtain the convergence rate estimate using the previously derived stability estimate for the
inverse problem (1.6)–(1.9). Consequently, we obtain the convergence rates for the Tikhonov
regularization of the inverse problem for a proper choice of the regularization parameter.
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The whole paper is novel since the inverse problem concerning the determination of the
time-dependent coefficient q(t) in equation (1.6) from the integral measurement (1.9) along
with the initial and boundary conditions (1.7) and (1.8) is formulated and analysed for the
first time. Previous analyses [16, 31] on the identification of the lower-order time-dependent
potential coefficient entering the parabolic second-order linear equation ut − uxx + q(t)u = f
cannot be directly applied to our model not only because the elliptic leading operator is the
higher-order bilaplacian but also because the governing equation (1.6) is nonlinear. From the
practical point of view, the present formulation would enable the determination of the transient
effective ion collision frequency from an integral observation of the fluctuating potential. The
well-posedness of such problem is established by using the Rothe technique. The other point
to mention is that the VSC is verified based on the stability estimate for the inverse problem
derived by considering the solvability of an auxiliary inverse source problem for a linear fourth-
order parabolic equation. Then, the convergence rate estimates for the Tikhonov regularization
are obtained.

The paper is organized as follows. Section 2 illustrates the well-posedness of the inverse
problem (1.6)–(1.9) by the time-discrete scheme and the Rothe method. For noisy measured
data in (1.9), the Tikhonov regularization is described in Section 3, and the VSC is veri-
fied. From this, convergence rate estimates are obtained. Finally, Section 4 highlights the
conclusions of the work.

2 Well-posedness of the inverse problem

2.1 Preliminaries

Let us denote D := H4(0, l) ∩H2
0 (0, l). The Wirtinger inequality (which in higher-dimensions

is known as the Poincare inequality) will be utilized, i.e.,

∥v∥ ≤ l

π
∥v′∥, ∀v ∈ H1

0 (0, l), (2.1)

where, throughout the paper, ∥ · ∥ denotes the norm of L2(0, l). By applying (2.1) twice we
also obtain that

∥χ′′∥2 − ∥χ′∥2 ≥ (π2 − l2)π2

l4
∥χ∥2, ∀χ ∈ H2

0 (0, l), (2.2)

∥χ′′∥2 − ∥χ′∥2 ≥ (π2 − l2)

π2
∥χ′′∥2, ∀χ ∈ H2

0 (0, l). (2.3)

In the sequel, we shall assume that 0 < l < π such that the right-hand sides of (2.2) and
(2.3) are positive constants (at this stage it is not known whether the analysis can be extended
to allow l ≥ π or to higher dimensions, although [23] may be a good starting point for the
analysis). Also, the Schaefer fixed point theorem, stated below, will be utilized in the proof of
Lemma 2.1.

Theorem 2.1 (Schaefer’s fixed point theorem). Suppose X is a Banach space and let A :
X → X be a continuous and compact operator. Assume further that the set {u ∈ X|u =
λAu for some λ ∈ [0, 1]} is bounded. Then A has a fixed point.

By employing the semi-group theory and Banach fixed point theorem, see [27], we have the
following well-posedness result of the direct problem (1.6)–(1.8).

Theorem 2.2 ([27]). Suppose that q ∈ L∞(0, T ), f ∈ L2(QT ) and g ∈ H2
0 (0, l). Then the

problem (1.6)–(1.8) has a unique solution u ∈ C([0, T ];H2
0 (0, 1)) ∩ L2(0, T ;H4(0, l)) =: V.
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2.2 Variational form

For ϕ ∈ C1[0, T ], multiplying (1.6) by ρ ∈ D and integrating with respect to x over (0, l), we
obtain

ϕ′(t) + ⟨ρ′′′′ + ρ′′, u(·, t)⟩+ ⟨ρ, u(·, t)ux(·, t)⟩+ q(t)ϕ(t) = ⟨ρ, f(·, t)⟩ , t ∈ [0, T ], (2.4)

where ⟨·, ·⟩ denotes the inner product in L2(0, l). Supposing further that ϕ(t) ̸= 0 for all
t ∈ [0, T ], the unknown quantity q(t) can be expressed as:

q(t) =
⟨ρ, f(·, t)⟩ − ϕ′(t)− ⟨ρ′′′′ + ρ′′, u(·, t)⟩ − ⟨ρ, u(·, t)ux(·, t)⟩

ϕ(t)
, t ∈ [0, T ]. (2.5)

The variational form of (1.6)–(1.8) is given by u(x, 0) = g(x) for x ∈ (0, l), and for any
χ ∈ H2

0 (0, l),

⟨ut(·, t), χ⟩+ ⟨uxx(·, t), χ′′ + χ⟩+ ⟨u(·, t)ux(·, t), χ⟩+ q(t) ⟨u(·, t), χ⟩
= ⟨f(·, t), χ⟩ , t ∈ [0, T ]. (2.6)

Hence, the inverse problem (1.6)–(1.9) recasts in reconstructing the pair (u(x, t), q(t)) satisfying
the system (2.5) and (2.6).

2.3 Time-discretization

The time interval [0, T ] is discretized into K ∈ N
∗ equidistant sub-intervals of step τ = T/K

and denote tk = kτ for k = 0, K. Applying (2.5) at t = t0 = 0 yields

q0 =
⟨ρ, f0⟩ − ϕ′

0 − ⟨ρ′′′′ + ρ′′, g⟩ − ⟨ρ, gg′⟩
ϕ0

, (2.7)

where f0(x) := f(x, 0), ϕ0 := ϕ(0) and ϕ′
0 := ϕ′(0). Also, connected to (2.5) let us denote

fk(x) := f(x, tk), ϕk := ϕ(tk), ϕ
′
k := ϕ′(tk) and

qk :=
⟨ρ, fk⟩ − ϕ′

k − ⟨ρ′′′′ + ρ′′, uk−1⟩ −
〈

ρ, uk−1u
′
k−1

〉

ϕk

, k = 1, K, (2.8)

where u0(x) = g(x) and, for k = 1, K, uk(x) is the solution of the following problem:

{

δtuk + u′′′′k + u′′k + uku
′
k + qkuk = fk, x ∈ (0, l),

uk(0) = uk(l) = u′k(0) = u′k(l) = 0,
(2.9)

where δtuk :=
uk−uk−1

τ
. Note that qk is not q(tk) but merely an approximation of it.

As in [13], consider the discrete variational problem consisting of finding the pairs (uk, qk) ∈
H2

0 (0, l)× R+ for k = 1, K, satisfying (2.8) and the weak form of (2.9) given by

⟨δtuk, χ⟩+ ⟨u′′k, χ′′ + χ⟩+ ⟨uku′k, χ⟩+ qk ⟨uk, χ⟩ = ⟨fk, χ⟩ , ∀χ ∈ H2
0 (0, l). (2.10)

In order to obtain the well-posedness of (2.8)–(2.9), we consider the auxiliary nonlinear
problem

{

U ′′′′ + U ′′ + UU ′ +QU + 1
τ
U = F (x), x ∈ (0, l),

U(0) = U(l) = U ′(0) = U ′(l) = 0.
(2.11)

5



Lemma 2.1. Let F ∈ L2(0, l), (l2−π2)π2

l4
≤ Q ∈ R and τ > 0. Then there exists a solution

U ∈ H2
0 (0, l) to the problem (2.11). Furthermore, a positive constant τ0 exists such that for

any τ ∈ (0, τ0], the solution is unique.

Proof. For the following linear problem with r ∈ L2(0, l):
{

w′′′′ + w′′ + 1
τ
w +Qw = r(x), x ∈ (0, l),

w(0) = w(l) = w′(0) = w′(l) = 0,
(2.12)

its variational form is given by:

⟨w′′, χ′′⟩+ ⟨w′′, χ⟩+
(

1

τ
+Q

)

⟨w, χ⟩ = ⟨r, χ⟩ , ∀χ ∈ H2
0 (0, l). (2.13)

For the bilinear functional a(w, χ) := ⟨w′′, χ′′⟩ + ⟨w′′, χ⟩ +
(

1
τ
+Q

)

⟨w, χ⟩, using (2.3), we can
obtain that

|a(w, χ)| ≤∥w′′∥∥χ′′∥+ ∥w′′∥∥χ∥+
(

1

τ
+Q

)

∥w∥∥χ∥ ≤ C(τ,Q)∥w∥H2
0 (0,l)

∥χ∥H2
0 (0,l)

,

a(w,w) =∥w′′∥2 + ⟨w′′, w⟩+
(

1

τ
+Q

)

∥w∥2 = ∥w′′∥2 − ∥w′∥2 +
(

1

τ
+Q

)

∥w∥2

≥(π2 − l2)

π2
∥w′′∥2 +

(

1

τ
+Q

)

∥w∥2 ≥ C(τ,Q)∥w∥2H2
0 (0,l)

,

where, throughout the proof, C = C(τ,Q) denotes some positive constant that depends only
on τ and Q. These inequalities imply that the bilinear functional a(·, ·) is continuous and
coercive. Furthermore, F(χ) := ⟨r, χ⟩ is a linear and bounded functional on H2

0 (0, l) since
|F(χ)| ≤ ∥r∥∥χ∥. Hence, the existence of a unique solution w ∈ H2

0 (0, l) to (2.13) is guaranteed
due to the Lax-Milgram theorem.

Taking χ = w in the variational form (2.13), employing (2.3) and that ⟨r, w⟩ ≤ ∥r∥∥w∥ ≤
1
2τ
∥w∥2 + τ

2
∥r∥2, we have

(π2 − l2)

π2
∥w′′∥2 +

(

1

2τ
+Q

)

∥w∥2 ≤ τ

2
∥r∥2, (2.14)

which means that the following estimate holds:

∥w∥H2
0 (0,l)

≤ C(τ,Q)∥r∥. (2.15)

The first equation in (2.12) can be written as w′′′′ = r − w′′ −
(

Q+ 1
τ

)

w, and therefore

∥w′′′′∥2 ≤ C(τ,Q)(∥r∥2 + ∥w′′∥2 + ∥w∥2). (2.16)

Then, (2.14)–(2.16) imply that w ∈ D and

∥w∥D ≤ C(τ,Q)∥r∥. (2.17)

Given a function U ∈ H2
0 (0, l), setting r = F − UU ′ ∈ L2(0, l), then (2.12) defines an

operator BU = w mapping from H2
0 (0, l) to D ⊂ H2

0 (0, l). Meanwhile, using that ∥U∥L∞(0,l) ≤√
l∥U ′∥, from (2.15) we have

∥BU∥D(A) ≤ C(τ,Q)(∥UU ′∥+ ∥F∥) ≤ C(τ,Q)(
√
l∥U ′∥2 + ∥F∥)

≤ C(τ,Q, l)(∥U∥2H2
0 (0,l)

+ ∥F∥).
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Suppose that the sequence {Un}∞n=0 ⊂ H2
0 (0, l) converges to U ∈ H2

0 (0, l). Then the above
estimate yields that the sequence {wn := BUn}∞n=0 ⊂ D is bounded in D. Hence, there exists
a subsequence, still denoted by {wn}∞n=0, that converges to a function w ∈ H2

0 (0, l) strongly in
H2

0 (0, l), which shows that B : H2
0 (0, l) 7→ H2

0 (0, l) is compact. For any χ ∈ H2
0 (0, l), we have

⟨w′′
n, χ

′′⟩+ ⟨w′′
n, χ⟩+

(

1

τ
+Q

)

⟨wn, χ⟩ = ⟨F, χ⟩ − ⟨UnU
′
n, χ⟩ .

For the last term in the right-hand side of the above identity, the Sobolev embeddingH2
0 (0, l) →֒

L∞(0, l) and the convergence of {Un}∞n=0 imply that

⟨UnU
′
n, χ⟩ = ⟨(Un − U)U ′

n, χ⟩+ ⟨UU ′
n, χ⟩

≤∥Un − U∥∥U ′
n∥∥χ∥L∞(0,1) + ⟨UU ′

n, χ⟩ → ⟨UU ′, χ⟩ , as n→ ∞.

Consequently, we obtain that

⟨w′′, χ′′⟩+ ⟨w′′, χ⟩+
(

1

τ
+Q

)

⟨w, χ⟩ = ⟨F, χ⟩ − ⟨UU ′, χ⟩ ,

i.e., w = BU , which indicates that BUn → BU strongly in H2
0 (0, l), namely B is continuous.

Let U ∈ H2
0 (0, l) and λ ∈ [0, 1], and consider the problem U = λBU , i.e.,

U ′′′′ + U ′′ +

(

1

τ
+Q

)

u = λF − λUU ′.

Multiplying the above identity by U and integrating over (0, l), using Young’s inequality, (2.3)

and
∫ l

0
U2U ′dx = 0, as in deriving (2.14), we have

(π2 − l2)

π2
∥U ′′∥2 +

(

1

2τ
+Q

)

∥U∥2 ≤ τ

2
∥F∥2,

that is, ∥U∥H2
0 (0,1)

≤ C(τ,Q, l)∥F∥ for any λ ∈ [0, 1]. Therefore, Schaefer’s fixed point Theorem

2.1 yields that the nonlinear problem (2.11) has a solution U ∈ H2
0 (0, l).

For uniqueness, suppose that there exists two solutions U1 and U2 of (2.11). Then U :=
U1 − U2 solves the problem given by

{

U ′′′′ + U ′′ + U2U
′ +
(

1
τ
+Q+ U ′

1

)

U = 0, x ∈ (0, l),
U(0) = U(l) = U ′(0) = U ′(l) = 0.

(2.18)

By an analogous method to the above, and utilizing ∥U ′
i∥L∞(0,l) ≤

√
l∥U ′′

i ∥ ≤ π
√

τl
2(π2−l2)

∥F∥
for i = 1, 2,

∫ l

0
U2UU

′dx = −1
2

∫ l

0
U ′
2U

2dx and the inequality (2.2), we then have

(

(π2 − l2)π2

l4
+

1

τ
+Q

)

∥U∥2 ≤
(

∥U ′
1∥L∞(0,l) +

1

2
∥U ′

2∥L∞(0,l)

)

∥U∥2

≤ π

√

9τ l

8(π2 − l2)
∥F∥∥U∥2. (2.19)

Thus, for every τ ≤ τ0 := 2 3

√

(π2−l2)
9π2l∥F∥2 > 0, this leads to (π2−l2)π2

l4
+ 1

τ
+Q−3π

√

τl
8(π2−l2)

∥F∥ > 0

and ∥U∥ = 0. Hence, the solution U ∈ H2
0 (0, l) to (2.11) is unique.
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Lemma 2.2. Assume that ϕ ∈ C1[0, T ] and ϕ+ ≥ ϕ(t) ≥ ϕ− > 0 for t ∈ [0, T ], with the
positive constants ϕ+ and ϕ−, ρ ∈ D, f ∈ L∞(0, T ;L2(0, l)) and g ∈ H2

0 (0, l) such that

⟨ρ, f(·, t)⟩ − ϕ′(t) ≥ (∥ρ′′∥+ ∥ρ′′′′∥)
(

∥g∥+
√
t

2
∥f∥L∞(0,t;L2(0,l))

)

+
1

2
∥ρ′∥L∞(0,l)

(

∥g∥2 + t

4
∥f∥2L∞(0,t;L2(0,l))

)

, ∀t ∈ [0, T ]. (2.20)

Then there exists (uk, qk) ∈ H2
0 (0, l)× [0,∞) for k = 0, K which solves the time-discretization

system (2.8)–(2.9). Furthermore, there exists a positive constant τ0 such that for any τ ∈ (0, τ0],
the solution of (2.8)–(2.9) is unique.

Proof. Clearly, u0 = g and q0 given by (2.7) are well- and uniquelly-defined. Also, applying
(2.20) at t = 0 along with (2.7) results in q0 ≥ 0. Also, q1 is non-negative by (2.8) and
(2.20). Taking χ = uk in (2.10), and supposing qk ≥ 0 for k ≥ 2, applying Young’s inequality,

inequality (2.2) and
∫ l

0
u2ku

′
kdx = 0, we have

1

τ
∥uk∥2 +

(

π2(π2 − l2)

l4
+ qk

)

∥uk∥2 ≤
1

2τ
∥uk−1∥2 +

1

2τ
∥uk∥2 +

1

8
∥fk∥2 + 2∥uk∥2,

which implies that ∥uk∥2 ≤ ∥uk−1∥2 + τ
4
∥fk∥2 for k ≥ 1. We thus obtain that

∥uk∥2 ≤ ∥u0∥2 +
τ

4

k
∑

i=1

∥fk∥2 ≤ ∥g∥2 + tk
4
∥f∥2L∞(0,tk;L2(0,l)). (2.21)

Then by the discrete form (2.8) and the condition (2.20), we have that

qk+1 ≥
∫ 1

0
ρfk+1dx− ϕ′

k+1 − (∥ρ′′∥+ ∥ρ′′′′∥)∥uk∥ − 1
2
∥ρ′∥L∞(0,l)∥uk∥2

ϕ+

≥
∫ 1

0
ρfk+1dx− ϕ′

k+1 − (∥ρ′′∥+ ∥ρ′′′′∥)
(

∥g∥+
√
tk
2
∥f∥L∞(0,tk;L2(0,l))

)

ϕ+

−
1
2
∥ρ′∥L∞(0,l)

(

∥g∥2 + tk
4
∥f∥2L∞(0,tk;L2(0,l))

)

ϕ+
≥ 0,

which implies that qk ≥ 0 for all k = 1, K, by mathematical induction. Meanwhile, an upper
bound of qk for k = 1, K is

|qk| ≤
∥ϕ∥C1[0,T ] + (∥ρ′′∥+ ∥ρ′′′′∥)

(

∥g∥+
√
T
2
∥f∥L∞(0,T ;L2(0,l))

)

ϕ−

+
∥ρ′∥L∞(0,l)

(

∥g∥2 + T
4
∥f∥2L∞(0,T ;L2(0,l))

)

2ϕ−
. (2.22)

By employing the results in Lemma 2.1 for k = 1, K, the nonlinear problem (2.9) has a solution
uk ∈ H2

0 (0, 1) since qk ≥ 0 and 1
τ
uk−1 + fk ∈ L2(0, l). According to the arguments of Lemma

2.1, the uniqueness of uk ∈ H2
0 (0, l) for k = 1, K is guaranteed when the following inequality

holds:

(π2 − l2)π2

l4
+

1

τ
+ qk − 3π

√

τ l

8(π2 − l2)

(

1

τ
∥uk−1∥+ ∥fk∥

)

> 0.
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On using (2.21) this inequality is guaranteed if

α1

√
τ + α2τ

√
τ − 1 ≤ 0,

where α1 := 3π
√

l
8(π2−l2)

(

∥g∥+
√
T
2
∥f∥L∞(0.T ;L2(0,l))

)

and α2 := 3π
√

l
8(π2−l2)

∥f∥L∞(0,T ;L2(0,l)).

Choosing τ0 := min{1, (α1 + α2)
−2}, the above inequality holds for any τ ∈ (0, τ0], and conse-

quently, the solution uk for k = 1, K is unique.

Remark 2.1. Although condition (2.20) may look too restrictive it was needed in the proof of
Lemma 2.2 to ensure that the discrete values (qk)k=0,K of the coefficient q are non-negative,
according to physical reality. Moreover, it can be checked using, for example, the symbolic
computational package Maple, that the following example satisfies the assumptions of Theorem
2.2:

l = 1, T = 10−6, q(t) = 500, g(x) = x2(1− x)2, ρ(x) = x2(1− x)2,

f(x, t) = 2x3(2x− 1)(x− 1)3e−2t + 499e−t

(

x4 − 2x3 + x2 +
24

499

)

,

u(x, t) = e−tx2(1− x)2, ϕ(t) = e−t/630.

The requirement for the sufficient smallness of the final time T is commonly encountered in
inverse coeficient problems for parabolic equations whose unique solvability can, in general, be
established only in a small neighbourhood of the initial time t = 0, see, e.g., [19]. Nevertheless
it would be interesting to investigate in the future the possibility of replacing the condition
(2.20) by a more natural one, using a different method which ensures that the inverse problem
(1.6)–(1.9) is still uniquely solvable.

In the next lemma some a priori estimates are proved. These will be used to prove the
existence of a solution to the problem (2.5)-(2.6) (which by other means will also be shown
to be unique). The results of the lemma below will also be used to prove the convergence of
the approximate solution towards the unique solution of the problem (2.5)-(2.6) and to derive
error estimates.

Lemma 2.3. Under the hypotheses of Lemma 2.2, there exist two positive constants C =
C(T, g, f, ρ, ϕ) and τ0 such that for any τ ∈ (0, τ0] and j = 1, K,

max
i=1,K

|qi|2 ≤ C, (2.23)

∥uj∥2 +
j
∑

k=1

∥uk − uk−1∥2 + τ

j
∑

k=1

∥u′′k∥2 ≤ C, (2.24)

τ

j
∑

k=1

∥δtuk∥2 + ∥u′′j∥2 +
j
∑

k=1

∥u′′k − u′′k−1∥2 ≤ C. (2.25)

Proof. It is obvious that the estimate (2.23) holds by the upper bound (2.22) of qk. For k = 1, j

and j = 1, K, setting χ = ukτ in (2.10) and using that
∫ l

0
u2ku

′
kdx = 0, we have

⟨uk − uk−1, uk⟩+ τ∥u′′k∥2 − τ∥u′k∥2 + qkτ∥uk∥2 = ⟨fk, uk⟩ τ.

The summation of such identity for k = 1, j yields that

j
∑

k=1

⟨uk − uk−1, uk⟩+ τ

j
∑

k=1

(∥u′′k∥2 − ∥u′k∥2) + τ

j
∑

k=1

qk∥uk∥2 =
j
∑

k=1

⟨fk, uk⟩ τ. (2.26)
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Abel’s lemma gives that

j
∑

k=1

⟨uk − uk−1, uk⟩ =
1

2

(

∥uj∥2 − ∥g∥2 +
j
∑

k=1

∥uk − uk−1∥2
)

, (2.27)

and Young’s inequality leads to

τ

j
∑

k=1

⟨fk, uk⟩ ≤
1

2
∥f∥2L∞(0,T ;L2(0,l)) +

τ

2

j
∑

k=1

∥uk∥2. (2.28)

The non-negativity of qk, the inequality (2.3) and (2.26)-(2.28) imply that

∥uj∥2 +
j
∑

k=1

∥uk − uk−1∥2 +
2τ(π2 − l2)

π2

j
∑

k=1

∥u′′k∥2

≤ ∥f∥2L∞(0,T ;L2(0,l)) + ∥g∥2 + τ

j
∑

k=1

∥uk∥2.

We then obtain

∥uj∥2 +
j
∑

k=1

∥uk − uk−1∥2 + τ

j
∑

k=1

∥u′′k∥2 ≤ C0 + C0τC

j
∑

k=1

∥uk∥2, (2.29)

where C0 := max{∥f∥2L∞(0,T ;L2(0,l))+ ∥g∥2, 1} > 0. Then, taking τ0 :=
1

1+C0
, we have 1− τC0 ≥

1− C0τ0 > 0 for τ ∈ (0, τ0], and

∥uj∥2 +
j
∑

k=1

∥uk − uk−1∥2 + τ

j
∑

k=1

∥u′′k∥2

≤ C0

1− C0τ0
+

C0τC

1− C0τ0

j−1
∑

k=1

(

∥uk∥2 +
k
∑

i=1

∥ui − ui−1∥2 + τ

k
∑

i=1

∥u′′i ∥2
)

. (2.30)

Hence the estimate (2.24) can be derived by the discrete Gronwall inequality with

C :=
C0

1− C0τ0
+

C2
0CT

(1− C0τ0)2
e

C0
1−C0τ0 .

Analogously, taking χ = τδtuk in (2.10) and summing it over k = 1, j, we obtain

τ

j
∑

k=1

∥δtuk∥2 + τ

j
∑

k=1

⟨u′′k, δtu′′k⟩

= −τ
j
∑

k=1

⟨u′′k, δtuk⟩ − τ

j
∑

k=1

⟨uku′k, δtuk⟩ − τ

j
∑

k=1

qk ⟨uk, δtuk⟩+ τ

j
∑

k=1

⟨fk, δtuk⟩ . (2.31)

Using Abel’s lemma again, the second term of the left-hand side in (2.31) becomes

τ

j
∑

k=1

⟨u′′k, δtu′′k⟩ =
j
∑

k=1

〈

u′′k, u
′′
k − u′′k−1

〉

=
1

2

(

∥u′′j∥2 − ∥g′′∥2 +
j
∑

k=1

∥u′′k − u′′k−1∥2
)

, (2.32)
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and applying Young’s inequality and the estimates (2.23) and (2.24) to the first, second and
fourth terms of the right-hand side of (2.31), we have

∣

∣

∣

∣

∣

τ

j
∑

k=1

⟨u′′k, δtuk⟩
∣

∣

∣

∣

∣

≤ τ

8

j
∑

k=1

∥δtuk∥2 + 2τ

j
∑

k=1

∥u′′k∥2 ≤
τ

8

j
∑

k=1

∥δtuk∥2 + C, (2.33)

∣

∣

∣

∣

∣

τ

j
∑

k=1

qk ⟨uk, δtuk⟩
∣

∣

∣

∣

∣

≤ τ

8

j
∑

k=1

∥δtuk∥2 + 2τ max
k=1,j

|qk|2
j
∑

k=1

∥uk∥2 ≤
τ

8

j
∑

k=1

∥δtuk∥2 + C, (2.34)

∣

∣

∣

∣

∣

τ

j
∑

k=1

⟨fk, δtuk⟩
∣

∣

∣

∣

∣

≤ τ

8

j
∑

k=1

∥δtuk∥2 + 2τ

j
∑

k=1

∥fk∥2 ≤
τ

8

j
∑

k=1

∥δtuk∥2 + 2∥f∥2L2(QT ). (2.35)

Finally, using ∥u′k∥L∞(0,l) ≤ ∥u′′k∥ and (2.24), the second term in the right-hand side of (2.31)
can be estimated as follows:
∣

∣

∣

∣

∣

τ

j
∑

k=1

⟨uku′k, δtuk⟩
∣

∣

∣

∣

∣

≤ τ

8

j
∑

k=1

∥δtuk∥2 + 2τ

j
∑

k=1

∥uku′k∥2 ≤
τ

8

j
∑

k=1

∥δtuk∥2 + 2τ

j
∑

k=1

∥uk∥2∥u′′k∥2

≤ τ

8

j
∑

k=1

∥δtuk∥2 + Cτ

j
∑

k=1

∥u′′k∥2 ≤
τ

8

j
∑

k=1

∥δtuk∥2 + C.

Combining the above inequalities, we obtain that

τ

j
∑

k=1

∥δtuk∥2 + ∥u′′j∥2 +
j
∑

k=1

∥u′′k − u′′k−1∥2 ≤ ∥g′′∥2 + 4∥f∥2L2(QT ) + C,

which concludes that the estimate (2.25) holds.

2.4 Existence and uniqueness

In this section, the existence and uniqueness of solution to the problem (2.5) and (2.6) shall
be investigated by invoking the Rothe’s method [20]. Let us introduce the piecewise constant
in time functions

ūK : [0, l]× (−τ, T ] → R defined by ūK(x, t) =

{

u0(x), t ∈ (−τ, 0],
uk(x), t ∈ (tk−1, tk], k = 1, K

(2.36)

and

q̄K : [0, T ] → R+ defined by q̄K(t) =

{

q0 if t = 0,

qk if t ∈ (tk−1, tk], k = 1, K,
(2.37)

where q0 and qk for k = 1, K are given by (2.7) and (2.8), respectively. We also define

f̄K : [0, l]× [0, T ] → R defined by f̄K(x, t) =

{

f0(x) if t = 0,

fk(x) if t ∈ (tk−1, tk], k = 1, K,
(2.38)

ϕ̄K : [0, T ] → R defined by ϕ̄K(t) =

{

ϕ0 if t = 0,

ϕk if t ∈ (tk−1, tk], k = 1, K,
(2.39)
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and

ϕ̄′
K : [0, T ] → R defined by ϕ̄′

K(t) =

{

ϕ′
0 if t = 0,

ϕ′
k if t ∈ (tk−1, tk], k = 1, K,

(2.40)

Let us also introduce the piecewise linear in time functions

UK : [0, l]× [0, T ] → R defined by

UK(x, t) =

{

u0(x), t = 0,

uk−1(x) + (t− tk−1)δtuk(x), t ∈ (tk−1, tk], k = 1, K
(2.41)

and

QK : [0, T ] → R+ defined by

QK(t) =

{

q0 if t = 0,

qk−1 + (t− tk−1)δtqk if t ∈ (tk−1, tk], k = 1, K,
(2.42)

where δtqk :=
qk−qk−1

τ
. From (2.8) and (2.37) we can remark that

q̄K(t) =

〈

ρ, f̄K(·, t)
〉

− ϕ̄′
K(t)− ⟨ρ′′′′ + ρ′′, ūK(·, t− τ)⟩ − ⟨ρ, ūK(·, t− τ)∂xūK(·, t− τ)⟩

ϕ̄K(t)
,

(2.43)
Also, the variational form (2.6) can be approximated by

⟨∂tUK(·, t), χ⟩+ ⟨∂xxūK(·, t), χ′′ + χ⟩+ ⟨ūK(·, t)∂xūK(·, t), χ⟩
+q̄K(t) ⟨ūK(·, t), χ⟩ =

〈

f̄K(·, t), χ
〉

, (2.44)

for all t ∈ (0, T ] and χ ∈ H2
0 (0, l), and UK(x, 0) = u0(x) = g(x).

Remark 2.2. Suppose ϕ ∈ H2(0, T ) and f ∈ H1(0, T ;L2(0, l)). Then, for t ∈ (0, T ],

∫ t

0

∥f̄K(·, s)− f(·, s)∥2ds ≤
K
∑

k=1

∫ tk

tk−1

∥fk(·)− f(·, s)∥2ds

=
K
∑

k=1

∫ tk

tk−1

∥

∥

∥

∥

∫ tk

s

ft(·, ς)dς
∥

∥

∥

∥

2

ds ≤ Tτ∥ft∥2L2(QT ), (2.45)

∫ t

0

|ϕ̄K(s)− ϕ(s)|2ds ≤
K
∑

k=1

∫ tk

tk−1

|ϕk − ϕ(s)|2ds

=
K
∑

k=1

∫ tk

tk−1

∣

∣

∣

∣

∫ tk

s

ϕ′(ς)dς

∣

∣

∣

∣

2

ds ≤ Tτ 2∥ϕ′∥2L∞(0,T ), (2.46)

∫ t

0

|ϕ̄′
K(s)− ϕ′(s)|2ds ≤

K
∑

k=1

∫ tk

tk−1

|ϕ′
k − ϕ′(s)|2ds

=
K
∑

k=1

∫ tk

tk−1

∣

∣

∣

∣

∫ tk

s

ϕ′′(ς)dς

∣

∣

∣

∣

2

ds ≤ Tτ∥ϕ′′∥2L2(0,T ), (2.47)
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where we have used that Kτ = T . The estimates (2.24), (2.25) and the definition (2.36) imply
that
∫ t

0

∥ūK(·, s− τ)− ūK(·, s)∥2ds ≤
K
∑

k=1

∫ tk

tk−1

∥uk − uk−1∥2ds = τ 3
K
∑

k=1

∥δtuk∥2 ≤ Cτ 2, (2.48)

∫ t

0

∥∂xūK(·, s− τ)− ∂xūK(·, s)∥2ds ≤
K
∑

k=1

∫ tk

tk−1

∥u′k − u′k−1∥2ds

≤ Cτ

K
∑

k=1

∥u′′k − u′′k−1∥2 ≤ Cτ, (2.49)

∫ t

0

∥∂̄xxūK(·, s− τ)− ∂xxūK(·, s)∥2ds ≤
K
∑

k=1

∫ tk

tk−1

∥u′′k − u′′k−1∥2ds ≤ Cτ. (2.50)

By (2.36) and (2.41) it is easy to see that

∥ūK(·, t)− UK(·, t)∥ = ∥uk − uk−1 − (t− tk−1)δtuk∥ ≤ ∥uk − uk−1∥, ∀t ∈ (tk−1, tk] (2.51)

and similarly

∥∂xūK(·, t)− ∂xUK(·, t)∥ ≤ ∥u′k − u′k−1∥, ∥∂xxūK(·, t)− ∂xxUK(·, t)∥ ≤ ∥u′′k − u′′k−1∥. (2.52)
These three inequalities and the analogous method used to prove (2.48)–(2.50) yield that

∫ t

0

∥ūK(·, s)− UK(·, s)∥2ds ≤ Cτ 2, (2.53)

∫ t

0

∥∂xūK(·, s)− ∂xUK(·, s)∥2ds ≤ Cτ, (2.54)

∫ t

0

∥∂xxūK(·, s)− ∂xxUK(·, s)∥2ds ≤ Cτ. (2.55)

Theorem 2.3. Assume that ϕ ∈ H2(0, T ) and ϕ+ ≥ ϕ(t) ≥ ϕ− > 0 for t ∈ [0, T ], with
positive constants ϕ+ and ϕ−, ρ ∈ D, f ∈ H1(0, T ;L2(0, l)) and g ∈ H2

0 (0, l) such that the
inequality (2.20) holds. Then there exists a solution (u, q) to (1.7), (2.5) and (2.6) with q ∈
Q := {q ∈ L∞(0, T ); q(t) ≥ 0, t ∈ [0, T ]}, u ∈ C([0, T ];L2(0, l)) ∩ L∞(0, T ;H2

0 (0, l)) =: U and
ut ∈ L2(QT ).

Proof. From the definitions (2.36) and (2.41), and the estimates (2.24) and (2.25), we have

max
t∈[0,T ]

∥ūK(·, t)∥2H2
0 (0,l)

+ ∥∂tUK∥2L2(QT ) ≤ C. (2.56)

Also, from (2.51), (2.52) and (2.56) we can deduce that

max
t∈[0,T ]

∥UK(·, t)∥2H2
0 (0,l)

≤ C. (2.57)

Employing the arguments in [13, 20], and using the continuous embedding of H2
0 (0, l) →֒

L2(0, l), there exist a function u(x, t) ∈ C([0, T ];L2(0, l))∩L∞(0, T ;H2
0 (0, l)) with ut ∈ L2(QT ),

and the subsequences {UK(x, t)}K∈N∗ and {ūK(x, t)}K∈N∗ , still denoted by the same symbols,
such that



















UK → u in C([0, T ];L2(0, l)),

∂tUK ⇀ ut in L2(QT ),

UK(·, t)⇀ u(·, t) in H2
0 (0, l), ∀t ∈ [0, T ],

ūK(·, t)⇀ u(·, t) in H2
0 (0, l), ∀t ∈ [0, T ],

(2.58)
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as K → ∞. The inequality (2.53) means that {UK(x, t)}K∈N∗ and {ūK(x, t)}K∈N∗ share the
same limit in L2(QT ), and ūK converges to u strongly in L2(QT ), and the strong convergence
of ∂xūK to ux in L2(QT ) can be obtained by (2.54). In addition, the boundedness of q̄K(t) in
L2(0, T ) can be ensured by the estimate (2.23). Thus there exist a subsequence, still denoted
by {q̄K(t)}K∈N∗ , and a function q(t) ∈ L2(0, T ), such that q̄K ⇀ q in L2(0, T ).

For any t ∈ [0, T ], applying (2.58), we obtain that ūK(·, t) converges to u(·, t) strongly in
H1

0 (0, 1), and

| ⟨(ūK(·, t)− u(·, t))∂xūK(·, t), χ⟩ | ≤ ∥ūK(·, t)− u(·, t)∥∥∂xūK(·, t)∥∥χ∥L∞(0,1) → 0,

⟨ūK(·, t)∂xūK(·, t), χ⟩ = ⟨(ūK(·, t)− u(·, t))∂xūK(·, t), χ⟩
+ ⟨u(·, t)∂xūK(·, t), χ⟩ → ⟨u(·, t)∂xu(·, t), χ⟩ ,

asK → ∞. Analogously, the convergences result of {q̄K(t)}K∈N∗ in L2(0, T ) and {ūK(x, t)}K∈N∗

in L2(QT ) imply that

∫ t

0

q̄K(s) ⟨ūK(·, s)− u(·, s), χ⟩ ds ≤ ∥q̄K∥L2(0,T )∥ūK − u∥L2(QT )∥χ∥ → 0,

∫ t

0

q̄K(s) ⟨ūK(·, s), χ⟩ ds =
∫ t

0

q̄K(s) ⟨ūK(·, s)− u(·, s), χ⟩ ds

+

∫ t

0

q̄K(s) ⟨u(·, s), χ⟩ ds→
∫ t

0

q(s) ⟨u(·, s), χ⟩ ds,

as K → ∞. Integrating (2.44) over (0, t) with t ∈ (0, T ], we have

∫ t

0

⟨∂sUK(·, s), χ⟩ ds+
∫ t

0

⟨∂xxūK(·, s), χ′′ + χ⟩ ds+
∫ t

0

⟨ūK(·, s)∂xūK(·, s), χ⟩ ds

+

∫ t

0

q̄K(s) ⟨ūK(·, s), χ⟩ ds =
∫ t

0

〈

f̄K(·, s), χ
〉

ds,

Passing K to ∞, and using (2.58) and the above convergence results, the above identity yields

∫ t

0

⟨us(·, s), χ⟩ ds+
∫ t

0

⟨∂xxu(·, s), χ′′ + χ⟩ ds+
∫ t

0

⟨u(·, s)∂xu(·, s), χ⟩ ds

+

∫ t

0

q(s) ⟨u(·, s), χ⟩ ds =
∫ t

0

⟨f(·, s), χ⟩ ds.

Then the pair (u, q) solves (2.6) by differentiating the above identity with respect to t.
For any t ∈ (0, T ], utilizing (2.45) and (2.46), we get

∣

∣

∣

∣

∣

∫ t

0

(

〈

ρ, f̄K(·, s)
〉

ϕ̄K(s)
− ⟨ρ, f(·, s)⟩

ϕ(s)

)

ds

∣

∣

∣

∣

∣

≤
∫ t

0

∣

∣

∣

∣

∣

〈

ρ, f̄K(·, s)
〉

ϕ̄K(s)
− ⟨ρ, f(·, s)⟩

ϕ(s)

∣

∣

∣

∣

∣

ds ≤ 1

ϕ2
−

∫ t

0

|ϕ(s)
〈

ρ, f̄K(·, s)
〉

− ϕ̄K(s) ⟨ρ, f(·, s)⟩ |ds

≤ 1

ϕ2
−

∫ t

0

|ϕ(s)
〈

ρ, f̄K(·, s)− f(·, s)
〉

+ (ϕ(s)− ϕ̄K(s)) ⟨ρ, f(·, s)⟩ |ds

≤∥ρ∥
ϕ2
−

(

∥ϕ∥L2(0,t)

∫ t

0

∥f̄K(·, s)− f(·, s)∥ds+ ∥ϕ̄K − ϕ∥
∫ t

0

∥f(·, s)∥ds
)

≤ C
√
τ . (2.59)
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Similarly, by (2.46) and (2.47), the following result can be derived:

∣

∣

∣

∣

∫ t

0

(

ϕ̄′
K

ϕ̄K

− ϕ′

ϕ

)

ds

∣

∣

∣

∣

≤
∫ t

0

∣

∣

∣

∣

ϕ̄′
K

ϕ̄K

− ϕ′

ϕ

∣

∣

∣

∣

ds ≤ C
√
τ . (2.60)

Furthermore, (2.46) and (2.48) lead to

∣

∣

∣

∣

∫ t

0

(⟨ρ′′′′ + ρ′′, ūK(·, s− τ)⟩
ϕ̄K(s)

− ⟨ρ′′′′ + ρ′′, u(·, s)⟩
ϕ(s)

)

ds

∣

∣

∣

∣

≤
∫ t

0

∣

∣

∣

∣

⟨ρ′′′′ + ρ′′, ūK(·, s− τ)⟩
ϕ̄K(s)

− ⟨ρ′′′′ + ρ′′, u(·, s)⟩
ϕ(s)

∣

∣

∣

∣

ds

≤ 1

ϕ2
−

∫ t

0

∣

∣ϕ ⟨ρ′′′′ + ρ′′, ūK(·, s− τ)− ūK(·, s)⟩+ ϕ ⟨ρ′′′′ + ρ′′, ūK(·, s)− u(·, s)⟩

+(ϕ− ϕ̄K) ⟨ρ′′′′ + ρ′′, u(·, s)⟩
∣

∣ds

≤ ∥ρ∥D
ϕ2
−

[

∥ϕ∥L2(0,t)

(∫ t

0

∥ūK(·, s− τ)− ūK(·, s)∥ds+
∫ t

0

∥ūK(·, s)− u(·, s)∥ds
)

+∥ϕ− ϕ̄K∥L2(0,t)

∫ t

0

∥u(·, s)∥ds
]

≤ Cτ + C

∫ t

0

∥ūK(·, s)− u(·, s)∥ds. (2.61)

Finally, from (2.46), (2.48), (2.49) and (2.56) we arrive at

∣

∣

∣

∣

∫ t

0

(⟨ρ, ūK(·, s− τ)∂xūK(·, s− τ)⟩
ϕ̄K(s)

− ⟨ρ, u(·, s)∂xu(·, s)⟩
ϕ(s)

)

ds

∣

∣

∣

∣

≤ 1

ϕ2
−

{∫ t

0

ϕ

∣

∣

∣

∣

⟨ρ, (ūK(·, s− τ)− ūK(·, s))∂xūK(·, s− τ)⟩

+ ⟨ρ, (ūK(·, s)− u(·, s))∂xūK(·, s− τ)⟩
∣

∣

∣

∣

ds

+

∫ t

0

∣

∣

∣

∣

ϕ ⟨ρ, u(·, s)(∂xūK(·, s− τ)− ∂xūK(·, s))⟩+ ϕ ⟨ρ, u(·, s)(∂xūK(·, s)− ∂xu(·, s))⟩

+(ϕ− ϕ̄K) ⟨ρ, u(·, s)∂xu(·, s)⟩
∣

∣

∣

∣

ds

}

≤ C

∫ t

0

∥ūK(·, s)− u(·, s)∥ds+ C

∫ t

0

ϕ

∣

∣

∣

∣

⟨ρ′u(·, s) + ρ∂xu(·, s), ūK(·, s)− u(·, s)⟩
∣

∣

∣

∣

ds

+C
√
τ ≤ C

(√
τ +

∫ t

0

∥ūK(·, s)− u(·, s)∥ds
)

. (2.62)

Integrating (2.43) over (0, t) for any t ∈ (0, T ], passing K to ∞, and using the estimates
(2.59)–(2.62), the strong convergence of ūK to u in L2(0, T ;H1

0 (0, l)) yields

∫ t

0

q(s)ds =

∫ t

0

⟨ρ, f(·, s)⟩ − ϕ′(s)− ⟨ρ′′′′ + ρ′′, u(·, s)⟩ − ⟨ρ, u(·, s)u′(·, s)⟩
ϕ(s)

ds.

Differentiating this with respect to t, the formulation (2.5) is achieved. Meanwhile, the function
q belonging to Q can be ensured by the regularity of the functions u, ϕ and f , together with
the condition (2.20).

Theorem 2.4. Suppose that the assumptions in Theorem 2.3 are fulfilled. Then the solution
(u, q) to (1.7), (2.5) and (2.6) obtained in Theorem 2.3 is unique.
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Proof. Let (u(1), q(1)) and (u(2), q(2)) be two solutions to the problem (2.5) and (2.6). Then, by
Theorem 2.3, we have

0 ≤ q(i)(t) ≤ C, t ∈ [0, T ], (2.63)

max
t∈[0,T ]

∥u(i)(·, t)∥H2
0 (0,l)

+ ∥u(i)t ∥L2(QT ) ≤ C, i = 1, 2, (2.64)

and the functions u := u(1) − u(2) and q = q(1) − q(2) solve the problem given by:

q(t) =
−⟨ρ′′′′ + ρ′′, u(·, t)⟩ −

〈

ρ, u(·, t)∂xu(1)(·, t) + u(2)(·, t)∂xu(·, t)
〉

ϕ(t)

=
−⟨ρ′′′′ + ρ′′, u(·, t)⟩ −

〈

ρ∂xu
(1)(·, t), u(·, t)

〉

+
〈

ρ′u(2)(·, t) + ρ∂xu
(2)(·, t), u(·, t)

〉

ϕ(t)
, (2.65)

⟨ut(·, t), χ⟩+ ⟨∂xxu(·, t), χ+ χ′′⟩+
〈

u(·, t)∂xu(1)(·, t) + u(2)(·, t)∂xu(·, t), χ
〉

+q(t)
〈

u(1)(·, t), χ
〉

+ q(2)(t) ⟨u(·, t), χ⟩ = 0, ∀χ ∈ H2
0 (0, l) (2.66)

and u(x, 0) = 0 for all x ∈ (0, l). Integrating (2.65) and using integration by parts, inequality
(2.64) and that ρ ∈ D, yield

∫ t

0

|q(s)|2ds ≤ C

∫ t

0

∥u(·, s)∥2ds, t ∈ [0, T ]. (2.67)

For fixed t ∈ [0, T ], taking χ = u(·, t) in (2.66) we obtain

1

2

d

dt
∥u(·, t)∥2 + ⟨∂xxu(·, t), ∂xxu(·, t) + u(·, s)⟩

+
〈

u(·, t)∂xu(1)(·, t) + u(2)(·, t)∂xu(·, t), u(·, t)
〉

+q(t)
〈

u(1)(·, t), u(·, t)
〉

+ ∥q(2)(t)u(·, t)∥2 = 0, t ∈ [0, T ]. (2.68)

Using integration by parts and (1.8), we obtain that the third term in (2.68) can be rewritten
as

〈

u(·, t)∂xu(1)(·, t) + u(2)(·, t)∂xu(·, t), u(·, t)
〉

=
〈

u(·, t)∂xu(1)(·, t), u(·, t)
〉

+
〈

u(2)(·, t)∂xu(·, t), u(·, t)
〉

=
〈

∂xu
(1)(·, t), u2(·, t)

〉

+

〈

u(2)(·, t), 1
2
∂x(u

2(·, t))
〉

=

〈

∂xu
(1)(·, t)− 1

2
∂xu

(2)(·, t), u2(·, t)
〉

.

Also, using (2.1) for the second term in (2.68), we have

⟨∂xxu(·, t), ∂xxu(·, t) + u(·, t)⟩ = ∥∂xxu(·, t)∥2 − ∥∂xu(·, t)∥2 ≥
(π2 − l2)

l2
∥∂xu(·, t)∥2 ≥ 0.

Integrating (2.68), and using (2.63) and (2.64), and the Cauchy-Schwarz inequality we obtain

∥u(·, t)∥2 ≤ C

∫ t

0

∥u(·, s)∥2ds, t ∈ [0, T ],

for some positive constant C. Finally, from Gronwall’s inequality it follows that u ≡ 0 in QT

and (2.67) implies that q ≡ 0 in [0, T ]. This concludes the uniqueness proof.
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2.5 Convergence

The convergence of the approximations obtained in (2.8)–(2.9) to the exact solution q in (2.5),
together with a convergence order, are presented in the following theorem.

Theorem 2.5. Suppose that the assumptions in Theorem 2.3 are satisfied. Then there exists
a constant τ0 > 0 such that for any τ ∈ (0, τ0],

∥q̄K − q∥2L2(0,T ) ≤ Cτ. (2.69)

Proof. Applying similar approaches to those used in (2.59)–(2.62), from (2.5) and (2.43) it
follows that

∫ t

0

|q̄K(s)− q(s)|2ds

=

∫ t

0

∣

∣

∣

∣

∣

〈

ρ, f̄K(·, s)
〉

− ϕ̄′
K − ⟨ρ′′′′ + ρ′′, ūK(·, s− τ)⟩ − ⟨ρ, ūK(·, s− τ)∂xūK(·, s− τ)⟩

ϕ̄K(s)

− ⟨ρ, f(·, s)⟩ − ϕ′ − ⟨ρ′′′′ + ρ′′, u(·, s)⟩ − ⟨ρ, u(·, s)∂xu(·, s)⟩
ϕ(s)

∣

∣

∣

∣

2

ds

≤ C

(∫ t

0

∥ūK(·, s)− u(·, s)∥2ds+ τ

)

. (2.70)

Subtracting the variational formulation (2.6) from the discrete form (2.44), letting, for fixed
t ∈ [0, T ], χ(·) = UK(·, t)− u(·, t), and integrating the result over [0, t], we obtain

1

2
∥UK − u∥2 +

∫ t

0

∥∂xxUK − ∂xxu∥2ds−
∫ t

0

∥∂xUK − ∂xu∥2ds

+

∫ t

0

q∥UK − u∥2ds =
∫ t

0

(q − q̄K) ⟨ūK , UK − u⟩ ds−
∫ t

0

q ⟨ūK − UK , UK − u⟩ ds

+

∫ t

0

〈

f̄K − f, UK − u
〉

ds−
∫ t

0

⟨∂xxūK − ∂xxUK , (∂xxUK − ∂xxu) + (UK − u)⟩ ds

−
∫ t

0

⟨ūK∂xūK − u∂xu, UK − u⟩ ds =:
5
∑

j=1

Ij. (2.71)
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For the integrals I1 to I5, using Young’s inequality and (2.45), (2.53)–(2.56), we have

|I1| ≤
1

2

∫ t

0

|q − q̄K |2∥ūK∥2ds+
1

2

∫ t

0

∥UK − u∥2ds ≤ C

∫ t

0

|q − q̄K |2ds

+
1

2

∫ t

0

∥UK − u∥2ds,

|I2| ≤
1

2

∫ t

0

|q|2∥ūK − UK∥2ds+
1

2

∫ t

0

∥UK − u∥2ds ≤ C

(

τ 2 +

∫ t

0

∥UK − u∥2ds
)

,

|I3| ≤
1

2

∫ t

0

∥f̄K − f∥2ds+ 1

2

∫ t

0

∥UK − u∥2ds ≤ C

(

τ +

∫ t

0

∥UK − u∥2ds
)

,

|I4| ≤
3

2

∫ 1

0

∥∂xxūK − ∂xxUK∥2ds+
1

4

∫ t

0

∥∂xxUK − ∂xxu∥2ds+
1

2

∫ t

0

∥UK − u∥2ds

≤ C

(

τ +

∫ t

0

∥UK − u∥2ds
)

+
1

4

∫ t

0

∥∂xxUK − ∂xxu∥2ds,

|I5| ≤
∣

∣

∣

∣

∫ t

0

⟨(ūK − UK)∂xūK , UK − u⟩ ds
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

⟨UK(∂xūK − ∂xUK), UK − u⟩ ds
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

⟨(UK − u)∂xUK , UK − u⟩ ds
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0

⟨u(∂xUK − ∂xu), UK − u⟩ ds
∣

∣

∣

∣

≤ C

(

τ +

∫ t

0

∥UK − u∥2ds
)

+
1

4

∫ t

0

∥∂xUK − ∂xu∥2ds.

Consequently, the estimates of the integrals I1 to I5, (2.1) and (2.70) lead to

∥UK(·, t)− u(·, t)∥2 +
∫ t

0

∥∂xUK − ∂xu∥2ds ≤ C

(

τ +

∫ t

0

∥UK − u∥2ds
)

.

Finally, Gronwall’s inequality yields that

max
t∈[0,T ]

∥UK(·, t)− u(·, t)∥2 ≤ Cτ. (2.72)

Therefore, the convergence rate estimate (2.69) can be obtained by combining (2.53) and (2.72)
with (2.70), and the proof is complete.

2.6 Continuous dependence upon the data

Let {u(i)(x, t), q(i)(t)} for i = 1, 2, be the solutions of the inverse problem (1.6)–(1.9) equipped
with the same initial data g(x) and source term f(x, t), but with different integral-type mea-
sured data ϕ(1) and ϕ(2). We can then write the time-discrete system (2.7)–(2.9) as follows:

q
(i)
0 =

⟨ρ, f0⟩ − (ϕ
(i)
0 )′ − ⟨ρ′′′′ + ρ′′, g⟩ − ⟨ρ, gg′⟩

ϕ
(i)
0

, (2.73)

q
(i)
k =

⟨ρ, fk⟩ − (ϕ
(i)
k )′ −

〈

ρ′′′′ + ρ′′, u
(i)
k−1

〉

−
〈

ρ, u
(i)
k−1(u

(i)
k−1)

′
〉

ϕ
(i)
k

, (2.74)

{

δtu
(i)
k + (u

(i)
k )′′′′ + (u

(i)
k )′′ + u

(i)
k (u

(i)
k )′ + q

(i)
k u

(i)
k = fk, x ∈ (0, l),

u
(i)
k |x=0,l = (u

(i)
k )′|x=0,l = 0,

(2.75)

where for i = 1, 2, u
(i)
0 (x) = g(x), ϕ

(i)
k := ϕ(i)(tk) and (ϕ

(i)
k )′ := (ϕ(i))′(tk) for k = 0, K, and

δtu
(i)
k =

u
(i)
k

−u
(i)
k−1

τ
for k = 1, K.
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Remark 2.3. Under the hypotheses of Lemma 2.2, then similar methods applied in Lemmas
2.2 and 2.3 yield that, for i = 1, 2, there exist two positive constants C = C(T, g, f, ρ, ϕ−, ϕ

+)

and τ0 such that for any τ ∈ (0, τ0], the pair (u
(i)
k , q

(i)
k ) ∈ H2

0 (0, l) × R+, for k = 1, K, solves
the system (2.74)–(2.75) uniquely, and the following estimates hold for j = 1, K:

max
j=1,K

|q(i)j |2 ≤ C, (2.76)

∥u(i)j ∥2 +
j
∑

k=1

∥u(i)k − u
(i)
k−1∥2 + τ

j
∑

k=1

∥(u(i)k )′′∥2 ≤ C, (2.77)

τ

j
∑

k=1

∥δtu(i)k ∥2 + ∥(u(i)j )′′∥2 +
j
∑

k=1

∥(u(i)k )′′ − (u
(i)
k−1)

′′∥2 ≤ C. (2.78)

Lemma 2.4. Under the assumptions of Theorem 2.3 there exists a constant τ0 > 0 such that
for any τ ∈ (0, τ0],

∥q̄(1)K − q̄
(2)
K ∥2L2(0,T ) ≤ C(∥ϕ(1) − ϕ(2)∥2H1(0,T ) + τ), (2.79)

where q̄
(i)
K is defined according to (2.43) (via (2.36)).

Proof. By (2.74), using the estimates (2.24), (2.25) and (2.77), for t ∈ [0, T ], as in the proof of
Theorem 2.3, we have

|q̄(1)K (t)− q̄
(2)
K (t)|

≤ C
(∣

∣

∣
ϕ̄
(2)
K − ϕ̄

(1)
K

∣

∣

∣+
∣

∣

∣
ϕ̄′(1)

K − ϕ̄′(2)
K

∣

∣

∣
+
∣

∣

∣
(ϕ̄

(1)
K − ϕ̄

(2)
K )
〈

ρ′′′′ + ρ′′, ū
(2)
K (·, t− τ)

〉∣

∣

∣

+
∣

∣

∣ϕ̄
(2)
K ⟨ρ′′′′ + ρ′′, w̄K(·, t− τ)⟩

∣

∣

∣+
∣

∣

∣(ϕ̄
(1)
K − ϕ̄

(2)
K )
〈

ρ, ū
(2)
K (·, t− τ)∂xū

(2)
K (·, t− τ)

〉∣

∣

∣

+
∣

∣

∣
ϕ̄
(2)
K

〈

ρ, w̄K(·, t− τ)∂xū
(2)
K (·, t− τ)

〉∣

∣

∣
+
∣

∣

∣
ϕ̄
(2)
K

〈

ρ, ū
(1)
K (·, t− τ)∂xw̄K(·, t− τ)

〉∣

∣

∣

)

≤ C(|ϕ̄(1)
K (t)− ϕ̄

(2)
K (t)|+ |ϕ̄′(1)

K (t)− ϕ̄′(2)
K (t)|+ ∥w̄K(·, t− τ)∥), (2.80)

where C = C(T, g, f, ρ, ϕ−, ϕ
+) > 0, wk := u

(2)
k − u

(1)
k , and the functions ϕ̄

(i)
K , ϕ̄′(i)

K , w̄K and

ū
(i)
K are defined as in Section 2.4. Moreover, WK(x, t) can also be defined as in (2.41), which

together with w̄K(x, t) they satisfy the problem given by (see (2.44)),

⟨∂tWK , χ⟩+ ⟨∂xxw̄K , χ
′′ + χ⟩+

〈

w̄K∂xū
(2)
K + ū

(1)
K ∂xw̄K , χ

〉

+q̄
(1)
K ⟨w̄K , χ⟩ = (q̄

(2)
K − q̄

(1)
K )
〈

ū
(2)
K , χ

〉

, (2.81)

for all t ∈ (0, T ] and χ ∈ H2
0 (0, 1), and WK(x, 0) = 0. By the estimates (2.23), (2.24) and

(2.76), and approaches used in Lemma 2.3, there exists τ0 such that for any t ∈ (0, τ0] and
j = 1, K,

∥wj∥2 +
j
∑

k=1

∥wk − wk−1∥2 + τ

j
∑

k=1

∥w′′
k∥2 ≤ C, (2.82)

τ

j
∑

k=1

∥δtwk∥2 + ∥w′′
j ∥2 +

j
∑

k=1

∥w′′
k − w′′

k−1∥2 ≤ C. (2.83)
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Consequently, (2.82) implies that

∫ t

0

∥w̄K(·, s− τ)∥2ds ≤ C

(∫ t

0

∥WK(·, s)∥2ds+
∫ t

0

∥w̄K(·, s)−WK(·, s)∥2ds

+

∫ t

0

∥w̄K(·, s− τ)− w̄K(·, s)∥2ds
)

≤ C

(

∫ t

0

∥WK(·, s)∥2ds+ 2τ
K
∑

k=1

∥wk − wk−1∥2
)

≤ C

(∫ t

0

∥WK(·, s)∥2ds+ τ

)

.

Now, using (2.46),

∫ t

0

|ϕ̄(1)
K (s)− ϕ̄

(2)
K (s)|2ds ≤ C

(∫ t

0

|ϕ(1) − ϕ(2)|2ds+
∫ t

0

|ϕ̄(1)
K − ϕ(1) − ϕ̄

(2)
K + ϕ(2)|2ds

)

≤ C

(

∥ϕ(1) − ϕ(2)∥2L2(0,T ) +
K
∑

k=1

∫ tk

tk−1

∣

∣

∣

∣

∫ tk

s

(ϕ(1))′(ς)dς

∣

∣

∣

∣

2

ds+
K
∑

k=1

∫ tk

tk−1

∣

∣

∣

∣

∫ tk

s

(ϕ(2))′(ς)dς

∣

∣

∣

∣

2

ds

)

≤ C(∥ϕ(1) − ϕ(2)∥2L2(0,T ) + τ 2),

and similarly, using (2.50),

∫ t

0

|ϕ̄′(1)
K − ϕ̄′(2)

K |2ds ≤ C(∥(ϕ(1))′ − (ϕ(2))′∥2L2(0,T ) + τ).

Using the above inequalities, (2.80) becomes

∫ t

0

|q̄(1)K (s)− q̄
(2)
K (s)|2ds ≤ C

(

∥ϕ(1) − ϕ(2)∥2H1(0,T ) + τ +

∫ t

0

∥WK(·, s)∥2ds
)

. (2.84)

Taking χ = WK(·, t) for t ∈ (0, T ] in (2.81), and integrating over (0, t), we have

1

2
∥WK(·, t)∥2 +

∫ t

0

(∥∂xxWK∥2 − ∥∂xWK∥2)ds+
∫ t

0

q̄
(2)
K ∥WK∥2ds

= −
∫ t

0

⟨∂xxw̄K − ∂xxWK , ∂xxWK +WK⟩ ds−
∫ t

0

(q̄
(1)
K − q̄

(2)
K ) ⟨w̄K ,WK⟩ ds

−
∫ t

0

q̄
(2)
K ⟨w̄K −WK ,WK⟩ ds−

∫ t

0

(q̄
(2)
K − q̄

(1)
K )
〈

ū
(2)
K ,WK

〉

ds

−
∫ t

0

〈

w̄K∂xū
(2)
K + ū

(1)
K ∂xw̄K ,WK

〉

ds =
5
∑

j=1

Ij. (2.85)
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Now for the integrals I1 to I5, using Young’s inequality and (2.82), (2.83) and (2.84), we obtain

|I1| ≤
3

2

∫ t

0

∥∂xxw̄K − ∂xxWK∥2ds+
1

4

∫ t

0

∥∂xxWK∥2ds+
1

2

∫ t

0

∥WK∥2ds

≤ C

(

τ +

∫ t

0

∥WK∥2ds
)

+
1

4

∫ t

0

∥∂xxWK∥2ds,

|I2| ≤
1

2

∫ t

0

|q̄(1)K − q̄
(2)
K |2∥w̄K∥2ds+

1

2

∫ t

0

∥WK∥2ds

≤ C

(

∥ϕ(1) − ϕ(2)∥2H1(0,T ) + τ +

∫ t

0

∥WK∥2ds
)

,

|I3| ≤
1

2

∫ t

0

|q̄(2)K (s)|
(

∥w̄K −WK∥2 + ∥WK∥2
)

ds ≤ C

(

τ +

∫ t

0

∥WK∥2
)

ds,

|I4| ≤
1

2

∫ t

0

|q̄(1)K − q̄
(2)
K |2

(

∥ū(2)K ∥2 + ∥WK∥2
)

ds

≤ C

(

∥ϕ(1) − ϕ(2)∥2H1(0,T ) + τ +

∫ t

0

∥WK∥2ds
)

,

|I5| ≤ C

(

τ +

∫ t

0

∥WK∥2
)

ds,

where we have used that

−I5 =
〈

∂xū
(2)
K WK ,WK

〉

+
〈

∂xū
(2)
K (w̄K −WK),WK

〉

+
〈

ū
(1)
K ∂x(w̄K −WK),WK

〉

+
〈

ū
(1)
K ∂xWK ,WK

〉

,
〈

ū
(1)
K ∂xWK ,WK

〉

= −1

2

〈

∂xū
(1)
K ,W 2

K

〉

, ∥∂x(w̄K −WK)∥2 = −⟨w̄K −WK , ∂xx(w̄K −WK).⟩

Finally, employing (2.1), we get

∥WK(·, t)∥2 +
∫ t

0

∥∂xWK(·, s)∥2ds ≤ C

(

∥ϕ(1) − ϕ(2)∥2H1(0,T ) + τ +

∫ t

0

∥WK(·, s)∥2ds
)

.

Then, ∥WK(·, t)∥2 ≤ C(∥ϕ(1) − ϕ(2)∥2H1(0,T ) + τ) due to Gronwall’s inequality, which implies

that the estimate (2.79) holds by applying (2.84) again.

Applying the convergence rate estimate (2.69) of Theorem 2.5, it is easy to see that

∥q(i) − q̄
(i)
K ∥2L2(0,T ) ≤ Cτ, i = 1, 2.

Consequently, this estimate along with (2.79) and the triangle inequality yield that

∥q(1) − q(2)∥2L2(0,T ) ≤∥q(1) − q̄
(1)
K ∥2L2(0,T ) + ∥q(2) − q̄

(2)
K ∥2L2(0,T ) + ∥q̄(1)K − q̄

(2)
K ∥2L2(0,T )

≤C(∥ϕ(1) − ϕ(2)∥2H1(0,T ) + τ).

Since such inequality holds for any τ ∈ (0, τ0], we therefore have

∥q(1) − q(2)∥L2(0,T ) ≤ C∥ϕ(1) − ϕ(2)∥H1(0,T ), (2.86)

which implies the following stability result.

Theorem 2.6. Let the assumptions of Theorem 2.3 be fulfilled. Then the solution q of the
inverse problem (1.6)–(1.9) depends continuously upon the measured data ϕ in the norms given
by expression (2.86).
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3 Tikhonov regularization method

Throughout this section, we assume that g ∈ H2
0 (0, l), f ∈ L2(QT ), ρ ∈ L2(0, l) and ϕ ∈

H1(0, T ). Now, for q ∈ L∞(0, T ), from Theorem 2.2 we have that the direct problem (1.6)–
(1.8) has a unique weak solution u ∈ V . Since equation (1.6) can be written as ut = f−uxxxx−
uxx − uux − qu, this yields that

∥ut∥L2(QT ) ≤ C
(

∥u∥L2(0,T ;H4(0,l)) + ∥f∥L2(QT )

)

. (3.1)

Thus, we obtain that u also belongs to H1(0, T ;L2(0, l)).
In practical applications, the non-local observation ϕ in (1.9) usually contains noise, i.e.,

ϕϵ, which is assumed to be in L2(0, T ) and satisfies

∥ϕ− ϕϵ∥L2(0,T ) ≤ ϵ, (3.2)

where ϵ ≥ 0 is the amount of noise. We thus reformulate the original inverse problem (1.6)–
(1.9) to determine q(t) as follows: find q ∈ A such that

F[q](t) := ⟨ρ, u(·, t; q)⟩ = ϕϵ(t), ∀t ∈ (0, T ), (3.3)

where u(x, t; q) (or u(q)) indicates the weak solution of (1.6)–(1.8) which belongs to V ∩
H1(0, T ;L2(0, l)), and A := {q ∈ L2(0, T ); 0 < q− ≤ q(t) ≤ q+ < ∞ a.e. (0, T )} denotes the
admissible set for the unkown q(t) with two given positive constants q− and q+.

We remark that the stability estimate (2.86) expresses the continuous dependence of the
solution q ∈ L2(0, T ) upon the data ϕ ∈ H1(0, T ). However, in real world, ϕ is contaminated
with random noise and measured as the non-smooth perturbation ϕϵ ∈ L2(0, T ) satisfying
(3.2). So, in general, ϕϵ ̸∈ H1(0, T ), hence one cannot invoke the stability estimate (2.86). In
fact, the following example shows that the inverse problem is ill-posed if the data (1.9) is not
in H1(0, T ).

Example of instability. Consider the following example that satisfies the inverse problem
(1.6)-(1.9):

l = 1, qn(t) = n, g(x) = x2(1− x)2, ρ(x) = x2(1− x)2,

fn(x, t) = 2x3(2x− 1)(x− 1)3e−2nt + 24e−nt, un(x, t) = e−ntx2(1− x)2, ϕn(t) = e−nt/630,

for n ∈ N
∗. Then, it can be seen that fn, un and ϕn tend to zero in L2, as n → ∞, but

the solution qn(t) tends to ∞, as n → ∞. The reason for why the H1(0, T )-stability estimate
(2.86) cannot be applied is that, ∥ϕ′

n∥2L2(0,T ) = n(1− e−2nT )/793800 → ∞, as n→ ∞.

The above example shows that the inverse problem (1.6)-(1.9) is ill-posed if the input
measured data ϕϵ ∈ L2(0, T )\H1(0, T ) and therefore regularization needs to be employed in
order to obtain a stable solution. In this section, we develop the Tikhonov regularization
method which consists of solving the nonlinear operator equation (3.3) by minimizing

Jβ(ϵ)(q) :=
1

2
∥F[q]− ϕϵ∥2L2(0,T ) +

β

2
∥q − q∗∥2L2(0,T ), (3.4)

where β = β(ϵ) > 0 is the regularization parameter, which depends on the amount of noise ϵ
present in (3.2), and q∗ ∈ A is an a priori estimate of the unknown q, which plays the role of
a good initial guess to the minimizer of (3.4). The notation qβ(ϵ) shall be applied to denote
the minimizer of (3.4), which approximates the solution of the inverse problem (1.6)–(1.9). In
addition, we utilize the notation

q† := argmin
q∈A;F[q]=ϕ

∥q − q∗∥L2(0,T ) (3.5)

to denote the q∗-minimizing solution of (3.3) (with ϵ = 0).
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3.1 Well-posedness

In this section, the existence, stability and convergence, namely the well-posedness of the
minimizer to the Tikhonov functional (3.4) are addressed.

Theorem 3.1. There exists at least a minimizer qβ(ϵ) ∈ A to the Tikhonov functional (3.4).

Proof. Since infq∈A Jβ(ϵ)(q) is finite, there exists a minimizing sequence {qn}n∈N ⊂ A such
that limn→∞ Jβ(ϵ)(qn) = infq∈A Jβ(ϵ)(q), which implies that the sequence {qn}n∈N is bounded
in L2(0, T ). Hence, a subsequence (denoted by {qn}n∈N again) of {qn}n∈N and q̄ ∈ L2(0, T )
exist such that qn ⇀ q̄ in L2(0, T ), as n → ∞. Meanwhile, q̄ ∈ A due to {qn}n∈N ⊂ A and
the convexity and closedness of A. Then, since the sequence {un := u(x, t; qn)}n∈N is bounded
in V ∩ H1(0, T ;L2(0, l)), there exist a subsequence still denoted by {un}n∈N and an element
ū ∈ V ∩ H1(0, T ;L2(0, 1)) such that un ⇀ ū in L2(0, T ;H4(0, l)), un → ū in L2(QT ) and
(un)t ⇀ ūt in L

2(QT ). The weak solution un = u(qn) of (1.6)–(1.8) with q = qn ∈ A satisfies
the identity:

∫

QT

[ut(qn)η + uxx(qn)ηxx + uxx(qn)η + u(qn)ux(qn)η + qnu(qn)η] dxdt =

∫

QT

fηdxdt,

∀η ∈ L2(0, T ;H2
0 (0, l)).

For the last two terms in the left-hand side of the above identity, we have

∣

∣

∣

∣

∫

QT

(u(qn)− ū)ux(qn)ηdxdt

∣

∣

∣

∣

≤ ∥u(qn)− ū∥L2(QT )∥ux(qn)∥L∞(QT )∥η∥L2(QT ) → 0,

∣

∣

∣

∣

∫

QT

qn(u(qn)− ū)ηdxdt

∣

∣

∣

∣

≤ q+∥u(qn)− ū∥L2(QT )∥η∥L2(QT ) → 0,

∫

QT

u(qn)ux(qn)ηdxdt =

∫

QT

ūux(qn)ηdxdt+

∫

QT

(u(qn)− ū)ux(qn)ηdxdt→
∫

QT

ūūxηdxdt,

∫

QT

qnu(qn)ηdxdt =

∫

QT

qnūηdxdt+

∫

QT

qn(u(qn)− ū)ηdxdt→
∫

QT

q̄ūηdxdt,

as n→ ∞. Consequently, the weak convergence results of {qn}n∈N and {un}n∈N lead to

∫

QT

(ūtη + ūxxηxx + ūη + ūūxη + q̄ūη)dxdt =

∫

QT

fηdxdt,

which implies that ū = u(x, t; q̄). Then applying the weak lower semi-continuity of L2-norm,
we have

Jβ(ϵ)(q̄) =
1

2
∥F[q̄]− ϕϵ∥2L2(0,T ) +

β

2
∥q̄ − q∗∥2L2(0,T )

≤ lim inf
n→∞

{

1

2
∥F[qn]− ϕδ∥2L2(0,T ) +

β

2
∥qn − q∗∥2L2(0,T )

}

≤ Jβ(ϵ)(q),

hence q̄ ∈ A is a minimizer of (3.4).

The continuous dependence (stability) of the Tikhonov minimizer qϵβ on the measurement
ϕϵ, and the convergence of minimizers to a q∗-minimizer solution of (3.3), as ϵ tends to zero, are
given in the following two theorems. Both theorems can be proved by employing the arguments
in [17, 18] for instance, and the proof procedure is omitted.
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Theorem 3.2. Suppose that {ϕn} is a sequence converging to ϕϵ in L2(0, T ), and {qn} is a
sequence of minimizers to the problem:

min
q∈A

{

1

2
∥F[q]− ϕn∥2L2(0,T ) +

β

2
∥q − q∗∥2L2(0,T )

}

.

Then, {qn} has a subsequence which converges to a minimizer of Jβ(ϵ) in L
2(0, T ).

Theorem 3.3. Assume that the sequence {ϵn} converges to zero and that ϕϵn ∈ L2(0, T ) fulfills
∥ϕ − ϕϵn∥L2(0,T ) ≤ ϵn. In addition, suppose that the regularization parameter βn := β(ϵn) is
chosen so as to satisfy

βn → 0,
ϵ2n
βn

→ 0, as n→ ∞.

Let {qβn
} be a sequence of minimizers to the problems:

min
q∈A

{

1

2
∥F[q]− ϕϵn∥2L2(0,T ) +

βn
2
∥q − q∗∥2L2(0,T )

}

.

Then the sequence {qβn
} has a subsequence converging in L2(0, T ) to a q∗-minimizer q† defined

in equation (3.5). Moreover, if the q∗-minimizer q† is unique, then qβn
→ q† in L2(0, T ), as

n→ ∞.

3.2 Convergence rates for Tikhonov regularization

In this section, we establish convergence rate estimates for the minimizer qβ(ϵ) ∈ A of the
Tikhonov functional (3.4). According to the general convergence theory and convergence rate
estimates to nonlinear ill-posed problems presented in [9], the minimizer qβ(ϵ) ∈ A converges
to q†, as ϵ→ 0, together with the following convergence rate estimate:

∥qβ(ϵ) − q†∥L2(0,T ) = O(
√
ϵ), (3.6)

under a priori choice of the regularization parameter β ∼ ϵ, when the following hypotheses on
the nonlinear operator equation (3.3) are fulfilled: (a) F : A → H1(0, T ) is weakly (sequentially)
closed, i.e., for any sequence {qn}n∈N ⊂ A, {F[qn]}n∈N converges weakly to F[q] if {qn}n∈N
converges to q ∈ A weakly, and such property of F can be obtained by applying the arguments
in Theorem 3.1; (b) F is Fréchet differentiable, see Lemma 3.3, and its Fréchet derivative F′[q]
is Lipschitz continuous with a Lipschitz constant L > 0; (c) there exists a function ω ∈ L2(0, T )
such that the source condition:

q† − q∗ = F
′[q†]∗ω (3.7)

holds, where ω is small enough, in the following sense:

L∥ω∥L2(0,T ) < 1. (3.8)

Note that such small enough condition in (c) appears to be extremely restrictive and difficult
to verify. In order to avoid the smallness condition, the nonlinear ill-posed problem (3.3) has to
be investigated in Banach space settings under certain assumptions, see e.g., [17, 18, 28]. One
technique is the so-called variational source condition (VSC), and for the Tikhonov functional
(3.4) considered in this paper, such inequality takes the following form:

〈

q† − q∗, q† − q
〉

L2(0,T )
≤ γ1∥q − q†∥2L2(0,T ) + γ2Ψ

(

∥F[q]− F[q†]∥H1(0,T )

)

, ∀q ∈ A, (3.9)
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where γ1 ∈ [0, 1) and γ2 ≥ 0 are two constants, and Ψ : (0,∞) → (0,∞) is a continuous
and strictly increasing function, which satisfies limt→0 Ψ(t) = 0. Compared to the general
convergence theory in [9], neither the Fréchet differentiability of the operator F[q] nor the
smallness condition (3.16) is required, when the VSC (3.9) is satisfied. For instance, in the
inverse radiativity problems for elliptic and parabolic equations investigated in [7], some new
VSCs were verified rigorously, from which convergence rates of the Tikhonov regularized so-
lutions were deduced. Moreover, a new convergence theory with a simpler and weaker source
condition without requiring the Fréchet differentiability of F, the Lipschitz continuity of F′ or
the smallness requirement (3.16) was developed in [10, 15].

In the present work, the VSC (3.9) for the Tikhonov regularization of the inverse problem
(1.6)–(1.9) shall be verified, and henceforth the convergence rate estimate of qβ(ϵ) to q

† will be
obtained under a suitable choice of the regularization parameter β = β(ϵ). We first present a
stability estimate in Theorem 3.4.

Lemma 3.1. Assume f ∈ L2(QT ), g ∈ H2
0 (0, l) and q ∈ A. Then the solution u ∈ V ∩

H1(0, T ;L2(0, l)) of the direct problem (1.6)–(1.8) satisfies the following estimate:

∥u∥H1(0,T ;L2(0,l)) + ∥u∥V ≤ C, (3.10)

where C is a positive constant depending on T , q+, f and g.

Proof. Multiplying (1.6) by u, integrating with respect to x over (0, 1) and using that
∫ l

0
u2uxdx =

0, we have

1

2

d

dt
∥u(·, t)∥2 + ∥uxx(·, t)∥2 − ∥ux(·, t)∥2 ≤

∫ l

0

f(x, t)u(x, t)dx, ∀t ∈ [0, T ]. (3.11)

Then, using equation (2.1) it yields that

1

2

d

dt
∥u(·, t)∥2 + π2 − l2

π2
∥uxx(·, t)∥2 ≤ ∥f(·, t)∥∥u(·, t)∥, ∀t ∈ [0, T ]. (3.12)

Denoting Qt := (0, l)× (0, t), from (3.12) it follows that

1

2

d

dt
∥u(·, t)∥2 ≤ ∥f(·, t)∥∥u(·, t)∥ =⇒ d

dt
∥u(·, t)∥ ≤ ∥f(·, t)∥

=⇒ ∥u(·, t)∥ − ∥g∥ ≤
∫ t

0

∥f(·, τ)∥dτ ≤
√
t∥f∥L2(Qt) ≤

√
t∥f∥L2(QT )

=⇒ ∥u(·, t)∥ ≤
√
t∥f∥L2(QT ) + ∥g∥, ∀t ∈ [0, T ], (3.13)

Squaring (3.13) and integrating with respect to t we obtain

∥u∥2L2(Qt)
≤
∫ t

0

(

2τ∥f∥2L2(QT ) + 2∥g∥2
)

dτ = t2∥f∥2L2(QT ) + 2t∥g∥2. (3.14)

Also, integrating (3.12) with respect to t we obtain

1

2
∥u(·, t)∥2 − 1

2
∥g∥2 + π2 − l2

π2
∥uxx(·, t)∥2L2(Qt)

≤
∫ t

0

∥f(·, τ)∥∥u(·, τ)∥dτ

≤ 1

2
∥f∥2L2(Qt)

+
1

2
∥u∥2L2(Qt)

. (3.15)
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Combining (3.14) and (3.15) yields

∥uxx∥2L2(Qt)
≤ π2(t2 + 1)

2(π2 − l2)
∥f∥2L2(QT ) +

π2(2t+ 1)

2(π2 − l2)
∥g∥2

= A
[

(t2 + 1)∥f∥2L2(QT ) + (2t+ 1)∥g∥2
]

, ∀t ∈ [0, T ], (3.16)

where A := π2

2(π2−l2)
. In addition, using the inequality

u2x(x, t) ≤ l∥uxx(·, t)∥2, (3.17)

from (3.16), we also have that

∥ux∥2L2(0,t;L∞(0,l)) ≤ Al
[

(t2 + 1)∥f∥2L2(QT ) + (2t+ 1)∥g∥2
]

, ∀t ∈ [0, T ]. (3.18)

Multiplying (1.6) by uxxxx and integrating the result with respect to x, we obtain

1

2

d

dt
∥uxx(·, t)∥2 + ∥uxxxx(·, t)∥2 =

∫ l

0

fuxxxxdx−
∫ l

0

uxxuxxxxdx

−
∫ l

0

uuxuxxxx − q(t)

∫ l

0

uuxxxxdx,

and applying Young’s inequality,

1

2

d

dt
∥uxx(·, t)∥2 ≤ ∥f(·, t)∥2 + ∥uxx(·, t)∥2 +

∫ l

0

u2u2xdx+ (q+)2∥u(·, t)∥2. (3.19)

Note that
∫ t

0

∫ l

0

u2u2xdxds ≤ ∥ux∥2L2(0,t;L∞(0,l))∥u∥2L∞(0,t;L2(0,l)), ∀t ∈ [0, T ].

Then integrating (3.19) with respect to t and using (3.13) and (3.18) imply

∥uxx(·, t)∥2 ≤ ∥g′′∥2 + 2
(

∥f∥2L2(QT ) + ∥uxx∥2L2(Qt)

+∥u∥2L∞(0,t;L2(0,1))∥ux∥2L2(0,t;L∞(0,1)) + (q+)2∥u∥2L2(Qt)

)

≤ 2∥f∥2L2(QT ) + ∥g′′∥2

+2A
[

1 + 2l
(

t∥f∥2L2(QT ) + ∥g∥2
)](

(t2 + 1)∥f∥2L2(QT ) + (2t+ 1)∥g∥2
)

+2(q+)2
(

t2∥f∥2L2(QT ) + 2t∥g∥2
)

≤ C
(

(∥f∥2L2(QT ) + ∥g∥2)2 + ∥f∥2L2(QT ) + ∥g∥2H2
0 (0,1)

)

, (3.20)

where C > 0 is a constant depending on q+, l and T . A similar method yields that

∥uxxxx∥2L2(QT ) ≤ C
(

(∥f∥2L2(QT ) + ∥g∥2)2 + ∥f∥2L2(QT ) + ∥g∥2H2
0 (0,l)

)

. (3.21)

Hence, the estimate (3.10) can be derived from (3.18), the above inequalities and (3.1).

Lemma 3.2. Suppose that f ∈ L2(QT ), g ∈ H2
0 (0, l), a ∈ L∞(0, T ;W 1,∞(0, l)) and b ∈

L∞(QT ). Then the problem:










ut + uxxxx + uxx + a(x, t)ux + b(x, t)u = f(x, t), (x, t) ∈ QT ,

u(0, t) = u(l, t) = ux(0, t) = ux(l, t) = 0, t ∈ [0, T ],

u(x, 0) = g(x), x ∈ (0, l)

(3.22)
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has a unique weak solution u ∈ V ∩H1(0, T ;L2(0, l)), and the following estimate holds:

∥u∥H1(0,T ;L2(0,l)) + ∥u∥V ≤ C
(

∥f∥L2(QT ) + ∥g∥H2
0 (0,l)

)

, (3.23)

where C is a positive constant depending on l, T , a and b.

Proof. The unique solvability of the linear problem (3.22) can be obtained by using the ar-
guments in [27]. Multiplying by u and uxxxx the first equation in (3.22), respectively, and
integrating with respect to x, we have

1

2

d

dt
∥u(·, t)∥2 + ∥uxx(·, t)∥2 − ∥ux(·, t)∥2 =

∫ l

0

fudx−
∫ l

0

auxudx−
∫ l

0

bu2dx

=

∫ l

0

fudx+

∫ l

0

(

1

2
ax − b

)

u2dx,

1

2

d

dt
∥uxx(·, t)∥2 + ∥uxxxx(·, t)∥2

=

∫ l

0

fuxxxxdx−
∫ l

0

uxxuxxxxdx−
∫ l

0

auxuxxxxdx−
∫ l

0

buuxxxxdx.

Then, by Young’s inequality (with weights 2 and 1/8) and (2.3), we have

d

dt
∥u(·, t)∥2 ≤ ∥f(·, t)∥2 + (1 +K1 + 2K2)∥u(·, t)∥2,

2(π2 − l2)

π2
∥uxx∥2L2(QT ) ≤ ∥f∥2L2(QT ) + (1 +K1 + 2K2)∥u∥2L2(QT ) + ∥g∥2,

{

∥uxx(·, t)∥2, ∥uxxxx∥2L2(QT )

}

≤4
(

∥f∥2L2(QT ) + ∥uxx∥2L2(QT ) +K2
1∥ux∥2L2(QT ) +K2

2∥u∥2L2(QT )

)

+ ∥g′′∥2,

where K1 := ∥ax∥L∞(QT ) and K2 := ∥b∥L∞(QT ). Then, Gronwall’s inequality implies that

∥u(·, t)∥2 ≤ eT (1+K1+2K2)
(

∥f∥2L2(QT ) + ∥g∥2
)

,

∥uxx∥2L2(QT ) ≤ A(TeT (1+K1+2K2) + 1)
(

∥f∥2L2(QT ) + ∥g∥2
)

,
{

∥uxx(·, t)∥2, ∥uxxxx∥2L2(QT )

}

≤ C
(

∥f∥2L2(QT ) + ∥g∥2
)

+ ∥g′′∥2, ∀t ∈ [0, T ],

where C > 0 depends on l, T , K1 and K2. Consequently, the estimate (3.23) can be deduced
by the above three inequalities and (3.1).

Lemma 3.3. The nonlinear mapping F : A → H1(0, T ), defined by (3.3), is Fréchet differen-
tiable.

Proof. Taking any δq ∈ L2(0, T ) such that q+ δq ∈ A, then the function δu := u(q+ δq)−u(q)
solves the problem given by:



















(δu)t + (δu)xxxx + (δu)xx + u(q)(δu)x + ux(q + δq)δu

+(q + δq)δu = −δqu(q), (x, t) ∈ QT ,

δu(0, t) = δu(l, t) = (δu)x(0, t) = (δu)x(l, t) = 0, t ∈ [0, T ],

δu(x, 0) = 0, x ∈ (0, l).

(3.24)
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Since q, q + δq ∈ A, then u(q), u(q + δq) ∈ L∞(0, T ;W 1,∞(0, l)) by the Sobolev embedding
H2

0 (0, l) →֒ L∞(0, l) and Lemma 2.2. Hence, the problem (3.24) has a unique solution δu ∈
V ∩H1(0, T ;L2(0, l)). By Lemma 2.2, we can deduce that ∥u(q)∥V ≤ C and ∥u(q+ δq)∥V ≤ C,
which yields that ∥ux(q)∥L∞(QT ) ≤ C and ∥ux(q + δq)∥L∞(QT ) ≤ C, with a positive constant C
depending on l, T , q+, f and g. Hence, by the estimate (3.23) in Lemma 3.2, the solution δu
of problem (3.24) satisfies the estimate:

∥δu∥H1(0,T ;L2(0,l)) + ∥δu∥V ≤ C∥δqu(q)∥L2(QT )

≤ C∥δq∥L2(0,T )∥u(q)∥L∞(0,T ;L2(0,l)) ≤ C∥δq∥L2(0,T ), (3.25)

and C is a positive constant independent of δq. Consider now the problem:











vt + vxxxx + vxx + u(q)vx + ux(q)v + qv = −u(q)δq, (x, t) ∈ QT ,

v(0, t) = v(l, t) = vx(0, t) = vx(l, t) = 0, t ∈ [0, T ],

v(x, 0) = 0, x ∈ (0, l).

(3.26)

Analogous arguments presented above for the problem (3.24) can be employed for the problem
(3.26). Then such problem has a unique solution v ∈ V ∩H1(0, T ;L2(0, l)), and

∥v∥H1(0,T ;L2(0,l)) + ∥v∥V ≤ C∥δq∥L2(0,T ). (3.27)

Thus, ⟨ρ, v(δq)⟩ defines a linear bounded operator mapping from L2(0, T ) to H1(0, T ), since

∥ ⟨ρ, v(δq)⟩ ∥H1(0,T ) ≤
∫ l

0

|ρ(x)|∥v(x, ·)∥H1(0,T )dx ≤ ∥ρ∥∥v∥H1(0,T ;L2(0,l)) ≤ C∥δq∥L2(0,T ).

Now the function w =: δu− v satisfies the problem:











wt + wxxxx + wxx + u(q)wx + ux(q + δq)w + qw = −(δu)xv − δqδu, (x, t) ∈ QT ,

w(0, t) = w(l, t) = wx(0, t) = wx(l, t) = 0, t ∈ [0, T ],

w(x, 0) = 0, x ∈ (0, l).

Clearly, −(δu)xv − δqδu ∈ L2(QT ) since δq ∈ L2(0, T ), δu ∈ V and v ∈ V . Hence, the above
problem has a unique solution w ∈ V ∩H1(0, T ;L2(0, l)), and using (3.25) and (3.27),

∥w∥H1(0,T ;L2(0,l)) + ∥w∥V ≤ C∥(δu)xv + δqδu∥L2(QT ) ≤ C∥δq∥2L2(0,T ).

We thus obtain that

∥F[q + δq]− F[q]− ⟨ρ, v(δq)⟩ ∥H1(0,T ) =

∥

∥

∥

∥

∫ l

0

ρ(x)w(x, ·)dx
∥

∥

∥

∥

H1(0,T )

≤
∫ 1

0

|ρ(x)|∥w(x, ·)∥H1(0,T )dx ≤ ∥ρ∥∥w∥H1(0,T ;L2(0,l)) ≤ C∥δq∥2L2(0,T ), (3.28)

where C is a positive constant depending on T , q+, f , g and ρ. Consequently,

lim
∥δq∥

L2(0,T )→0

∥F[q + δq]− F[q]− ⟨ρ, v(·, t; δq)⟩ ∥H1(0,T )

∥δq∥L2(0,T )

= 0.

Therefore, the nonlinear operator F is Fréchet differentiable, and F
′[q](δq) := ⟨ρ, v(δq)⟩ is its

Fréchet differential, where v(δq) solves the problem (3.26).
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In order to establish the stability estimate for the inverse problem (1.6)–(1.9), we consider
the problem (3.24) with δq = q† − q for q ∈ A, namely,










(δu)t + (δu)xxxx + (δu)xx + u(q)(δu)x + ux(q
†)δu+ qδu = −u(q†)δq, (x, t) ∈ QT ,

δu(0, t) = δu(l, t) = (δu)x(0, t) = (δu)x(l, t) = 0, t ∈ [0, T ],

δu(x, 0) = 0, x ∈ (0, l),

(3.29)

to determine the function pair (δu, δq) from the additional data:

⟨ρ, δu(·, t)⟩ = F[q†](t)− F[q](t) (3.30)

The problem (3.29) and (3.30) to find the unknown pair (δu, δq) can be regraded as an inverse
source problem for a linear fourth-order parabolic equation.

Theorem 3.4. Suppose that f ∈ L2(QT ), g ∈ H2
0 (0, l), ρ ∈ L2(0, l) and ϕ ∈ H1(0, T ). Assume

also that |ϕ(t)| ≥ ϕ0 > 0 for all t ∈ [0, T ], with a positive constant ϕ0, and f , g satisfy

3M

2
≤ π2(π2 − l2)

l4
, (3.31)

where M is defined in (3.34) below. This inequality is satisfied for the example given in Remark
2.1. Then, the solution (δu, δq) ∈ V∩H1(0, T ;L2(0, l))×L2(0, T ) to the inverse source problem
(3.29) and (3.30) exists uniquely. Moreover, the following stability estimate holds:

∥q − q∥L2(0,T ) ≤ C∥F[q†]− F[q]∥H1(0,T ), (3.32)

where C = C(l, T, q+, ϕ0, ρ, f, g) is a positive constant.

Proof. For any t ∈ (0, T ], the inequalities (3.17) and (3.20) yield that

{|ux(q)|, |ux(q†)|} ≤M, (3.33)

with

M =
√

2(q+)2T 2 + 2T 2 + 4∥f∥L2(QT ) +
√

4(q+)2T + 4T + 2∥g∥+ ∥g′′∥
+
√
4T 3 + 6T 2 + 6T + 2∥f∥2L2(QT ) +

√
6T 2 + 10T + 6∥g∥2. (3.34)

Hence, the condition (3.31) implies that
∣

∣

∣

∣

1

2
ux(q)− ux(q

†)

∣

∣

∣

∣

≤ 3

2
M ≤ π2(π2 − l2)

l4
. (3.35)

Multiplying (3.29) by ρ, integrating with respect to x and using that F[q†] = ϕ, we have

δq = −(δF[q])′ +
〈

ρ, (δu)xxxx + (δu)xx + u(q)(δu)x + ux(q
†)δu+ qδu

〉

ϕ
, (3.36)

where δu ∈ V∩H1(0, T ;L2(0, l)) is the solution of (3.29), by utilizing Lemma 3.2 and q, q† ∈ A,
u(q), u(q†) ∈ V . Such identity yields the operator equation:

δq = C[δq], (3.37)

where the operator C : L2(0, T ) → L2(0, T ) is defined by

C[δq] := −(δF[q])′ +
〈

ρ, (δu)xxxx + (δu)xx + u(q)(δu)x + ux(q
†)δu+ qδu

〉

ϕ
. (3.38)
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For any δq(1), δq(2) ∈ L2(0, T ), let δu(1) and δu(2) denote the corresponding solutions to the
problem (3.29), respectively. Then, the function w := δu(1)− δu(2) solves the problem given by











wt + wxxxx + wxx + u(q)wx + ux(q
†)w + qw = −F (t)u(q†), (x, t) ∈ QT ,

w(0, t) = w(l, t) = wx(0, t) = wx(l, t) = 0, t ∈ [0, T ],

w(x, 0) = 0, x ∈ (0, l),

(3.39)

where F (t) := δq(1)(t)− δq(2)(t). Multiplying the first equation in (3.39) by u and integrating
with respect to x, we have

1

2

d

dt
∥w(·, t)∥2 + ∥wxx(·, t)∥2 − ∥wx(·, t)∥2

= −
∫ l

0

F (t)u(q†)wdx+

∫ l

0

(

1

2
ux(q)− ux(q

†)− q(t)

)

w2dx. (3.40)

Then, using (2.1), (2.2) and (3.35) in (3.40) yield

1

2

d

dt
∥w(·, t)∥2 +

(

π2(π2 − l2)

l4
− 3

2
M + q−

)

∥w(·, t)∥2

≤ −
∫ l

0

F (t)u(q†)wdx ≤ |F (t)|∥u(q†)(·, t)∥∥w(·, t)∥. (3.41)

For t ∈ (0, t∗] with t∗ ∈ (0, 1), using (3.13) and (3.41) we then obtain that

∥w(·, t)∥ ≤
√
t∥F∥L2(0,t∗)∥u(q†)∥L∞(0,t∗;L2(0,l))

≤
√
t∥F∥L2(0,t∗)(

√
t∗∥f∥L2(QT ) + ∥g∥) ≤ C

√
t∥F∥L2(0,t∗), (3.42)

with C = C(f, g) > 0. In addition, using (2.3), (3.33), (3.40) and (3.41), we have

1

2

d

dt
∥w(·, t)∥2 + 1

2
∥wxx(·, t)∥2 ≤− F (t)

∫ l

0

u(q†)wdx+

∫ l

0

(

1

2
ux(q)− ux(q

†)

)

w2dx

≤|F (t)|∥u(q†)(·, t)∥∥w(·, t)∥+ 3

2
M∥w(·, t)∥2,

which by integration and using (3.13) and (3.42) yield

∥wxx∥2L2(Qt)
≤ Ct∥F∥2L2(0,t∗) +

3

2
Mt2∥F∥2L2(0,t∗) ≤ Ct∥F∥2L2(0,t∗), t ∈ (0, t∗]. (3.43)

Multiplying the first equation in (3.39) by uxxxx, integrating with respect to x and using
Young’s inequality, we have

1

2

d

dt
∥wxx(·, t)∥2 + ∥wxxxx(·, t)∥2

= −F (t)
∫ l

0

u(q†)wxxxxdx−
∫ l

0

wxxwxxxxdx−
∫ l

0

u(q)wxwxxxxdx

−
∫ l

0

(ux(q
†) + q)wwxxxxdx ≤ −F (t)

∫ l

0

uxx(q
†)wxxdx+ ∥wxx(·, t)∥2

+∥u(q)(·, t)∥L∞(0,l)∥wx(·, t)∥2 + (q+ + ∥ux(q†)∥L∞(0,l))∥w(·, t)∥2 +
3

4
∥wxxxx(·, t)∥2.
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Integrating with respect to t, after some computations/estimations, we get

∥wxxxx∥2L2(Qt)
≤ Ct∥F∥2L2(0,t∗), ∀t ∈ (0, t∗], (3.44)

where C = C(q+, f, g) > 0. Consequently, there exists a positive constant c = c(q+, ϕ0, ρ, f, g)
such that

∥C[δq(1)]− C[δq(2)]∥L2(0,t)

=





∫ t

0

∣

∣

∣

∣

∣

〈

ρ, wxxxx + wxx + u(q)wx + ux(q
†)w + qw

〉

ϕ

∣

∣

∣

∣

∣

2

dt





1/2

≤2∥ρ∥
ϕ0

(

∥wxxxx∥L2(Qt) + ∥wxx∥L2(Qt) + ∥u(q)∥L∞(Qt)∥wx∥L2(Qt) + ∥ux(q†) + q∥L∞(Qt)∥w∥L2(Qt)

)

≤c
√
t∥δq(1) − δq(2)∥L2(0,t∗).

Hence, taking t∗ = min
{

1, 1
4c2

}

> 0, we obtain that

∥C[δq(1)]− C[δq(2)]∥L2(0,t∗) ≤
1

2
∥δq(1) − δq(2)∥L2(0,t∗), (3.45)

which means that C is a contraction operator on L2(0, t∗). Therefore, the operator equation
(3.37) has a unique fixed point δq ∈ L2(0, t∗), i.e., the inverse problem (3.29) and (3.30) has a
unique solution δq ∈ L2(0, t∗), and δu ∈ C(0, t∗;H2

0 (0, l))∩L2(0, t∗;H4(0, l))∩H1(0, t∗;L2(0, l))
due to Lemma 3.2.

Now, for any δq0 ∈ L2(0, t∗), the solution δq ∈ L2(0, t∗) can be approximated successively
by δqn+1 = C[δqn] for n ∈ N, and then

∥δq − δqn∥L2(0,t∗) = ∥C[δq]− C[δqn−1]∥L2(0,t∗) ≤
1

2
∥δq − δqn−1∥L2(0,t∗)

≤ · · · ≤ 1

2n
∥δq − δq0∥L2(0,t∗),

which illustrates that δqn → δq in L2(0, t∗) as n → ∞. Taking δq = 0 in the problem (3.29),
we have δu = 0 by Lemma 3.2, and

∥C[0]∥L2(0,t∗) =

∥

∥

∥

∥

(δF[q])′

ϕ

∥

∥

∥

∥

L2(0,t∗)

≤ 1

ϕ0

∥δF[q]∥H1(0,t∗).

Consequently, setting δq0 = 0, we obtain that

∥δq∥L2(0,t∗) = lim
n→∞

∥δqn+1∥L2(0,t∗) = lim
n→∞

∥C[δqn]∥L2(0,t∗)

= lim
n→∞

∥C[δqn]− C[δqn−1] + C[δqn−1]− C[δqn−2] + · · ·+ C[δq0]∥L2(0,t∗)

≤
∞
∑

n=1

∥C[δqn]− C[δqn−1]∥L2(0,t∗) + ∥C[δq0]∥L2(0,t∗)

≤
∞
∑

n=0

1

2n
∥C[0]∥L2(0,t∗) = 2∥C[0]∥L2(0,t∗) ≤

2

ϕ0

∥δF[q]∥H1(0,t∗), (3.46)

where in the last identity we have used mathematical induction to derive that

∥C[δqn]− C[δqn−1]∥L2(0,t∗) ≤
1

2n
∥C[0]∥L2(0,t∗), ∀n ∈ N

∗.
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Finally, for t ≥ t∗, the inverse problem (3.29) and (3.30) shall be investigated in the
interval (t∗, 2t∗) with the initial data δu(x, t∗) ∈ H2

0 (0, l). Thus, the employment of analogous
arguments illustrates that the problem (3.29) and (3.30) has a unique solution in (t∗, 2t∗).
Then the solution (δu, δq) ∈ V ∩ H1(0, T ;L2(0, l)) × L2(0, T ) to the inverse source problem
(3.29) and (3.30) exists uniquely by repeating the approach a finite number of times N∗ :=
[T/t∗] + 1. Meanwhile, the estimate (3.32) can be obtained by summing up N∗ times the
inequality (3.46).

Remark 3.1. From (3.28), (3.32) and the Fréchet differentiability of the operator F, the so-
called η-condition (e.g., [28]) of F can also be derived. This states that for any q ∈ A there
exists a positive constant η = η(T, q+, ϕ0, ρ, f, g) such that

∥F[q]− F[q†]− F
′[q†](q − q†)∥H1(0,T ) ≤ C∥q − q†∥2L2(0,T )

≤ 2q+
√
TC∥q − q†∥L2(0,T ) ≤ η∥F[q]− F[q†]∥H1(0,T ). (3.47)

Moreover, for any q ∈ A, from (3.9) and (3.32) we have
〈

q† − q∗, q† − q
〉

L2(0,T )
≤ ∥q∗ − q†∥L2(0,T )∥q† − q∥L2(0,T )

≤ C∥q∗ − q†∥L2(0,T )∥F[q]− F[q†]∥H1(0,T ) = γ2∥F[q]− F[q†]∥H1(0,T ), (3.48)

which implies that the VSC (3.9) holds by setting γ1 = 0, γ2 = C∥q† − q∗∥L2(0,T ) > 0 and
Ψ(t) = t, provided the assumptions of Theorem 3.4 are fulfilled. The convergence rate is
presented in the following theorem.

Theorem 3.5. Under the assumptions of Theorem 3.4, the following convergence rate esti-
mates hold:

∥F[qβ(ϵ)]− ϕϵ∥L2(0,T ) = O(ϵ), (3.49)

∥qβ(ϵ)− q†∥L2(0,T ) = O(
√
ϵ), (3.50)

for the choice of regularization parameter β ∼ ϵ.

Proof. Since qβ(ϵ) ∈ A is the minimizer of Jβ(ϵ)(q), we have that Jβ(ϵ)(qβ(ϵ)) ≤ Jβ(ϵ)(q
†), which

implies that

1

2
∥F[qβ(ϵ)]− ϕϵ∥2L2(0,T )

+
β

2
∥qβ(ϵ) − q∗∥2L2(0,T ) ≤

1

2
∥F[q†]− ϕϵ∥2L2(0,T ) +

β

2
∥q† − q∗∥2L2(0,T )

≤ 1

2
ϵ2 +

β

2
∥q† − q∗∥2L2(0,T ). (3.51)

This together with (3.5), (3.48) and the triangle inequality imply that

1

2
∥qβ(ϵ) − q†∥2L2(0,T ) =

1

2
∥qβ(ϵ) − q∗∥2L2(0,T ) −

1

2
∥q† − q∗∥2L2(0,T )

+
〈

q† − q∗, q† − qβ(ϵ)
〉

L2(0,T )

≤ 1

2
∥qβ(ϵ) − q∗∥2L2(0,T ) −

1

2
∥q† − q∗∥2L2(0,T ) + γ2∥F[qβ(ϵ)]− F[q†]∥H1(0,T )

≤ 1

2β

(

ϵ2 − ∥F[qβ(ϵ)]− ϕϵ∥2L2(0,T )

)

+ γ2∥F[qβ(ϵ)]− F[q†]∥H1(0,T )

≤ 1

2β

(

2ϵ2 − ∥F[qβ(ϵ)]− F[q†]∥2H1(0,T )

)

+ γ2∥F[qβ(ϵ)]− F[q†]∥H1(0,T ). (3.52)
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Taking β = O(ϵ), the above inequalities yield

∥F[qβ(ϵ)]− F[q†]∥2H1(0,T ) ≤ 2ϵ2 + Cϵ∥F[qβ(ϵ)]− F[q†]∥H1(0,T ),

from which
∥F[qβ(ϵ)]− F[q†]∥2H1(0,T ) ≤ Cϵ2.

Hence the convergence rate estimate (3.49) can be derived from

∥F[qβ(ϵ)]− ϕϵ∥2L2(0,T ) ≤ ∥F[qβ(ϵ)]− F[q†]∥2L2(0,T ) + ϵ2 ≤ Cϵ2.

Meanwhile, from (3.51) and the second row in equation (3.52) we have

∥qβ(ϵ) − q†∥2L2(0,T ) ≤∥qβ(ϵ) − q∗∥2L2(0,T ) − ∥q† − q∗∥2L2(0,T ) + 2γ2∥F[qβ(ϵ)]− F[q†]∥H1(0,T )

≤ϵ
2

β
+ 2γ2∥F[qβ(ϵ)]− F[q†]∥H1(0,T ) ≤ Cϵ,

which concludes the estimate (3.50).

Remark 3.2. The regularization parameter β = β(ϵ) chosen above is an a priori choice,
which is independent of the additional observation ϕϵ. The so-called Morozov’s discrepancy
principle (e.g. [1, 2]), which is an a posteriori parameter choice of β = β(ϵ, ϕϵ) depending
both on the noise level ϵ and the measured data ϕϵ, is defined as follows: for 1 ≤ τ1 ≤ τ2,
choose β = β(ϵ, ϕϵ) for some qβ(ϵ) ∈ A, such that τ1ϵ ≤ ∥F[qβ(ϵ)] − ϕϵ∥L2(0,T ) ≤ τ2ϵ. Then, the
convergence estimates (3.49) and (3.50) can be obtained by using the arguments in [2] together
with the η-condition (3.47) and the VSC (3.48).

4 Conclusions

The determination of the unknown time-dependent coefficient q(t), which physically represents
the effective ion collision efficiency, in the nonlinear equation (1.6) subjected to the initial
and boundary conditions (1.7) and (1.8), respectively, from the integral-type measurement
(1.9) has been accomplished. Based on a time-discrete scheme, the original inverse problem
has been written in a discrete form. Then, the existence and uniqueness of the solution to
the inverse problem has been proved rigorously by employing the Rothe’s method and the
Schaefer’s fixed point theorem. The convergence rate of the approximations generated by the
time-discrezation and a stability result has also been derived. For measured noisy data, the
Tikhonov regularization method has been applied, and the well-posedness of the minimizer have
been illustrated. Then, by investigating the solvability of an auxiliary inverse source problem
for a fourth-order parabolic problem, a stability estimate for the unknown coefficient has been
deduced. We henceforth have obtained the convergence rates of the Tikhonov minimizer by
using the VSC generated by the stability estimate. Future work will be concerned with the
computational implementation for obtaining a stable numerical solution to the investigated
nonlinear inverse coefficient problem.
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