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1  |  INTRODUC TION

Proteomics is the study of proteins within a sample and involves 

the use of techniques that provide high molecular specificity for a 

broad range of peptides in a single measurement (Alfaro et al., 2016). 

Proteins are predominantly responsible for biological functions, and 

therefore acquiring qualitative and quantitative data on proteins can 

help us understand microbiological processes, such as lignocellulose 

breakdown (Nielsen, 2017).

Fungi are exceptional wood degraders and produce an array 

of bioproducts, including secreted enzymes used in commercial 

enzyme cocktails for the valorisation of lignocellulosic biomass.  

Parascedosporium putredinis NO1 is an ascomycete fungus from which 

new extracellular lignin- degrading enzymes have previously been  
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Abstract

The increasing availability of microbial genome sequences provides a reservoir of in-

formation for the identification of new microbial enzymes. Genes encoding proteins 

engaged in extracellular processes are of particular interest as these mediate the in-

teractions microbes have with their environments. However, proteomic analysis of 

secretomes is challenging and often captures intracellular proteins released through 

cell death and lysis. Secretome prediction workflows from sequence data are com-

monly used to filter proteins identified through proteomics but are often simplified 

to a single step and are not evaluated bioinformatically for their effectiveness. Here, 

a workflow to predict a fungal secretome was designed and applied to the coding 

regions of the Parascedosporium putredinis NO1 genome. This ascomycete fungus is 

an exceptional lignocellulose degrader from which a new lignin- degrading enzyme 

has previously been identified. The ‘secretome isolation’ workflow is based on two 

strategies of localisation prediction and secretion prediction each utilising multiple 

available tools. The workflow produced three final secretomes with increasing lev-

els of stringency. All three secretomes showed increases in functional annotations 

for extracellular processes and reductions in annotations for intracellular processes. 

Multiple sequences isolated as part of the secretome lacked any functional annota-

tion and made exciting candidates for novel enzyme discovery.

K E Y W O R D S
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identified (Oates et al., 2021). With an available reference genome 
containing 9998 protein- coding sequences for P. putredinis NO1, 

more effective proteomics experiments can now be carried out to 

help to identify the full repertoire of enzymes secreted by the fun-

gus to facilitate growth on lignocellulose (Scott, 2023).

A ‘secretome’ is defined as the set of proteins secreted by a 

cell or an organism at a given time (Alfaro et al., 2016). However, 

extracellular protein studies are not straightforward and often un-

avoidably identify contaminant intracellular proteins in abundance 

because of cell death and lysis (Rodrigues et al., 2011). For secre-

tomic investigations, this adds an additional layer of complexity 

and redundancy, especially for novel enzyme identification. Bioin-

formatic techniques could instead be used to filter proteomic data 

to predict in silico secretomes, allowing extracellular processes to 

be more clearly and accurately understood and simplifying new 

enzyme identification.

Previous attempts to predict in silico fungal secretomes have 

used single prediction tools, such as the prediction of secretion 

signal peptides (Artzi et al., 2017; de Paula et al., 2019; Moremen 

& Haltiwanger, 2019). However, proteins with signal peptides may 

be targeted to secretory pathways, but not necessarily secreted  

(Nielsen, 2017). Additionally, fungal protein secretion is more com-

plex as proteins can be secreted via conventional or unconventional 

pathways (Alfaro et al., 2016). For example, it has been demonstrated 

that various metabolic enzymes are secreted by fungi despite the  

absence of secretion signals (Miura & Ueda, 2018). Perhaps, the most 

well- investigated method of fungal unconventional protein secretion 

is through vesicles, which are utilised by fungi as efficient vehicles 

for the release of proteins into the extracellular environment, along 

with polysaccharides and pigments (Rodrigues et al., 2011). Other 

secretomic investigations attempt to create basic workflows for in 

silico secretome prediction (Alfaro et al., 2016; Gogleva et al., 2018). 

However, these often lack diversity in the tools used in each step 

and fail to confirm their effectiveness bioinformatically. As such, 

many available data sets are considered (meta- ) exo- proteomes as 

they include contaminant intracellular proteins due to the lack of se-

cretome identification pipelines.

Here, a bioinformatic workflow was designed to isolate sequences 

of the P. putredinis NO1 genome predicted to be secreted. The work-

flow is built around two initial strategies of prediction: localisation 

prediction and secretion prediction. In both strategies, more than one 

tool is used to capture secretome sequences which may be missed by 

a single tool alone. The effectiveness of each tool to predict a sub-

set of sequences enriched in sequences encoding enzymes known 

to be extracellular and secreted was evaluated through annotation 

of sequences for COG category, CAZyme class and KEGG metabolic 

pathways. Three resulting secretomes were produced with increasing 

levels of stringency on the sequences included: relaxed, strict and 

super strict. All secretomes contained greatly reduced numbers of se-

quences compared to the total number of sequences in the P. putredi-

nis NO1 genome and showed increases in annotations for extracellular 

functions. Subsets containing 1933, 812 or 509 sequences were pro-

duced for the relaxed, strict or super strict secretomes, respectively. 

This will allow comparative investigations with proteomic data to be 

more accurate and the identification of enzymes and other new pro-

teins to be made much simpler.

2  |  RESULTS AND DISCUSSION

2.1  |  Designing a workflow to isolate the  
P. putredinis NO1 secretome

The first genome of the genus Parascedosporium provides a unique 

resource to explore for potentially new enzymes. The genome assem-

bly is 39 Mb, consists of 21 contigs, and contains 9998 protein- coding 
sequences. P. putredinis NO1 belongs to the Microascaceae family 

of ascomycete fungi and is the sister taxon of Scedosporium species, 

of which genomes for four species are available. The genomic reper-

toires of predicted lignocellulose degrading enzymes were compared 

previously between P. putredinis NO1 and Scedosporium boydii and 

were found to be very similar (Scott, 2023). To identify and isolate se-

quences in the P. putredinis NO1 genome predicted to encode proteins 

that are actively secreted into the extracellular space, a secretome 

isolation workflow was designed (Figure 1). Localisation prediction 

was performed using the tools DeepLoc and BUSCA to identify se-

quences predicted to encode extracellular proteins. SignalP, TargetP 
and SecretomeP were used to identify sequences predicted to contain 
proteins with secretion signal peptides. SecretomeP was simultane-

ously used to attempt to predict sequences encoding non- classically 

secreted proteins. All sequences were submitted to TMHMM for the 

prediction of sequences encoding proteins containing transmembrane 

helices and therefore transmembrane proteins. Multiple annotation 

strategies were used to build information on the potential functions 

of all sequences of the P. putredinis NO1 genome and were used for 

evaluation of the workflow.

2.2  |  Investigating discrepancies in prediction 
tools of the secretome isolation workflow

Differences in the sequences captured by each tool were observed for 

both localisation and secretion branches of the workflow, highlighting 

the importance of utilising multiple tools during secretome prediction. 

This also reflects the differences in conventional and unconventional 

release of extracellular proteins in fungi. Proteins favouring vesicle- 

mediated release and without the presence of secretion signal peptides 

would be missed if only tools for conventionally secreted protein pre-

diction (Miura & Ueda, 2018; Rodrigues et al., 2011). This is especially 

relevant here in the context of lignocellulose breakdown as vesicle- 

mediated secretion of lignocellulose- degrading enzymes has been 

demonstrated for Trichoderma reesei, another ascomycete degrader of 

plant biomass (de Paula et al., 2019). In total, 769 coding regions of 
the P. putredinis NO1 genome were predicted to be extracellular by 

DeepLoc. Considerably more sequences at 1588 were predicted to be 
extracellular by BUSCA and 622 of these sequences were identified 
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by both tools (Figure 2a). Comparing prediction of classical secretion 

signal peptides across the three secretion tools revealed 798 protein 
sequences predicted to contain signal peptides by all three tools, 975 
by at least two tools and 411 exclusively by SecretomeP (Figure 2b). 

SecretomeP also predicted an unusually large number of sequences, 
3226, to encode non- classically secreted proteins. These predictions 

showed little overlap with sequences predicted to encode classically 

secreted proteins by SignalP and TargetP (Figure S1). This suggested 

overprediction for non- classically secreted proteins with this tool.

2.3  |  Evaluating individual tools of the secretome 
isolation workflow

COG category assignments and KEGG metabolic pathway terms from 

the eggNOG mapper and CAZyme class annotations from dbCAN were 

used to evaluate the effectiveness of the workflow. Proportions of 

each annotation in the whole genome were compared to the subsets 

of proteins from each of the prediction tools. Both localisation predic-

tion tools and all classical secretion prediction tools demonstrated ex-

pected increased proportions of functional annotations associated with 

proteins of fungal secretomes. These tools demonstrated increased 

proportions of sequences assigned to COG category G for carbohy-

drate metabolism, which is expected as carbohydrate breakdown be-

gins outside of the cell. The tools showed reductions in the proportion 

of intracellular Glycosyl Transferase (GT) class CAZymes (Moremen & 
Haltiwanger, 2019). Finally, all tools except for classical secretion pre-

diction by SecretomeP showed increased proportions of assignments 
to the KEGG metabolic pathway for carbohydrate metabolism. Other 

increases and reductions were observed for all validation methods re-

spective to the whole- genome annotation, and these patterns varied 

by tool (Figures S2– 4A– F). This is likely a reflection of the different se-

quences captured by each tool due to the different prediction methods. 

F I G U R E  1  Secretome isolation workflow. The bioinformatic workflow was developed to identify and isolate coding regions of the  
P. putredinis NO1 genome predicted to encode actively secreted extracellular proteins.

F I G U R E  2  Visualising discrepancies between prediction tools. 
The differences in sequences predicted to encode extracellular 

proteins by each localisation prediction tool (a), and sequences 

predicted to encode classically secreted proteins by each secretion 

prediction tool (b).
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For new enzyme identification, this is important for capturing as much 

of the secretome as possible. Sequences predicted to encode non- 
classically secreted proteins by SecretomeP did not show the expected 
increases in proportions. SecretomeP is designed for bacterial or mam-

malian sequences but has been used for fungal secretome prediction  

before and so was investigated here (Alfaro et al., 2016). However, 

its inability to accurately isolate sequences encoding secretome pro-

teins, and due to the unusually large number of sequences captured by  

SecretomeP, non- classical secretion was omitted from secretome isola-

tion. The tools used in this workflow could be readily applied to any 

sequence data from other fungal species or other microorganisms and 

the tools contain options for either eukaryotic or prokaryotic predic-

tion. The removal or incorporation of transmembrane proteins could 

be altered based on the purpose of the in silico secretome isolation or 

based on the microorganism of interest. For example, in the context of 

lignocellulose breakdown some anaerobic fungi and bacteria have been 

demonstrated to assemble extracellular cell surface tethered constructs 

known as cellulosomes to enhance lignocellulose dissolution and prod-

uct uptake (Artzi et al., 2017). Therefore, the membrane- associated pro-

teins involved in these structures may be of interest for investigations of 

these microorganisms.

2.4  |  Filtering the P. putredinis NO1 genome to 
isolate the secretome

Discrepancies between prediction tools inspired the creation of multi-

ple ‘secretome’ subsets with different levels of stringency. Sequences 
predicted to encode extracellular proteins and sequences predicted to 

encode secretion signals were merged into three final subsets: relaxed, 

strict and super strict. For each subset, proteins predicted to encode 

transmembrane proteins by TMHMM were removed to give the final 

‘secretomes’. Conventionally, fungal secretomes consider membrane- 

bound extracellular proteins (Oates et al., 2021), however, for the pur-

pose of investigating lignocellulose breakdown by aerobic fungi, these 

were omitted as the free extracellular proteins are more likely to be in-

volved in depolymerisation reactions. If membrane- bound proteins are 

of interest, then this step could be removed. The ‘relaxed’ secretome 

subset contained coding regions predicted to encode extracellular 

proteins by at least one localisation prediction tool or predicted to 

encode secreted proteins by at least one secretion prediction tool, 

totalling 1933 sequences. The ‘strict’ secretome subset contained 
coding regions predicted to encode extracellular proteins by both lo-

calisation tools or sequences predicted to encode secreted proteins 

by all three secretion signal prediction tools, totalling 812 sequences. 
Finally, the ‘super strict’ secretome contains sequences predicted to 

encode extracellular proteins by both localisation prediction tools and 

which were also predicted to encode secretion signals by all secretion 

prediction tools, totalling 509 sequences.
To evaluate the secretomes, the COG category, CAZyme class and 

KEGG pathway proportions were again compared for each secretome 

against the whole genome. All secretome subsets demonstrated in-

creased proportions of protein sequences assigned to COG categories 

G (carbohydrate metabolism), O (post- translational modification/turn-

over/chaperone functions) and X (Unassigned) (Figure 3). For category 

G, the degree of increase correlated with the strictness of the secre-

tome subset (genome: 5.8%, relaxed: 12.7%, strict: 20.0%, super strict: 
23.0%), the same pattern was observed for category O (genome: 5.1%, 
relaxed: 6.4%, strict: 10.3%, super strict: 12.5%), whereas for category 
X, it was the strict secretome that had the largest increase (genome: 

24.5%, relaxed: 34.0%, strict: 37.8%, super strict: 37.1%). Protein se-

quences with no clear functional annotation were abundant in the  

P. putredinis NO1 genome and were assigned to category X for com-

parison with other functional categories. The large proportion of these 

proteins in the P. putredinis NO1 genome reflects the novelty of this 

organism with this being the first genome assembly of the Parascedo-

sporium genus. These proteins also represent a reservoir of potentially 

interesting new sequences and even new activities. For many of the 

other COG categories, reductions were observed compared to the 

genome for all secretome subsets and again the degree of reduction 

increased with how strictly the secretomes were filtered. Regarding 

some COG categories, differences between the secretomes were ob-

served. For COG category E (amino acid metabolism and transport), 

a slight increase in proportions of assignments was observed for the 

relaxed and strict secretomes but a reduction was seen in the super  

strict secretome (genome: 4.5%, relaxed: 5.9%, strict: 4.7%, super 
strict: 3.9%). Only the relaxed secretome showed an increase in 
the proportion of assignments to category Q (secondary structure)  

(genome: 3.7%, relaxed: 4.0%, strict: 1.8%, super strict: 1.4%). The rea-

sons for the increases in these COG categories that are not expected to 

include extracellular enzymes were not clear but may be due to mis- 

assignment of secretome proteins to these categories. Importantly, 

all secretomes showed increased proportions of proteins that lacked 

any functional annotations (i.e. assigned to category X). All secretomes 

also contained large proportions of protein sequences assigned to 

COG Category S (Function Unknown) (genome: 19.9%, relaxed: 20.2%, 
strict: 18.3%, super strict: 17.2%). Protein sequences assigned to this 
category were found to have predicted putative domains but lacked 

an overall functional annotation. Altogether, the sequences belonging 

to S and X categories represent an important subset of sequences for 
new enzyme identification and the persistence of these proteins in 

all secretomes demonstrates how such a bioinformatic workflow can 

isolate a subset of protein sequences that potentially contain new en-

zymes and activities. Considering the lignocellulose- degrading lifestyle 

of P. putredinis NO1 and the previous identification of a new secreted 

phenol oxidase enzyme involved in lignocellulose breakdown, it can be 

hypothesised that this fungus may contain other new lignocellulose- 

degrading enzyme activities (Oates et al., 2021). Indeed, the protein 

sequence encoding this new enzyme was isolated in all secretomes 

and assigned to COG category S, inspiring confidence that other new 
enzymes belonging to S and X categories have also been isolated.

When comparing CAZyme class annotation proportions across 
the secretomes and the whole genome, all secretomes had largely 

reduced proportions of intracellular Glycosyl Transferase (GT) 

class CAZymes (Figure 4) (Moremen & Haltiwanger, 2019). In par-

ticular, the super strict secretome contained no GT class CAZymes 
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(genome: 14.2%, relaxed: 3.1%, strict: 1.3%, super strict: 0.0%). Mir-
roring this GT reduction, all secretomes had increased proportions 

of Carbohydrate Esterase (CE) (genome: 6.4%, relaxed: 8.5%, strict: 
10.0%, super strict: 11.8%), carbohydrate- binding module (CBM) 
(genome: 20.3%, relaxed: 25.6%, strict: 29.8%, super strict: 32.3%) 
and polysaccharide lyase (PL) class CAZyme sequences (genome: 

2.3%, relaxed: 3.3%, strict: 3.6%, super strict: 3.9%). These increases 

correlated with the strictness of the filtering used to obtain each 

secretome. All secretomes had increased proportions of auxiliary 

activity (AA) class CAZymes (genome: 20.4%, relaxed: 23.6%, strict: 
25.4%, super strict: 21.1%), however, the super strict secretome 
had the smallest increase. As these CAZyme classes all predomi-

nantly act on extracellular substrates, this was expected. A reduc-

tion in Glycoside Hydrolase (GH) class proportions was seen for all 

F I G U R E  3  Investigating COG annotation proportions for secretome protein sequences. The proportion of each COG category in the 
whole- genome COG annotation compared to the relaxed, strict and super strict secretome subsets. A, RNA processing and modification; 

B, chromatin structure; C, energy production and conversion; D, cell cycle control and mitosis; E, Amino acid metabolism and transport; 

F, nucleotide metabolism and transport; G, carbohydrate metabolism and transport; H, coenzyme metabolism; I, lipid metabolism; J, 
translation; K, transcription; L, replication and repair; M, cell wall/membrane/envelope biogenesis; N, cell motility; O, post- translational 

modification/turnover/chaperone functions; P, Inorganic ion transport and metabolism; Q, Secondary structure; T, signal transduction; U, 
intracellular trafficking and secretion; Y, nuclear structure; Z, cytoskeleton; S, function unknown; X, unassigned.

F I G U R E  4  Investigating CAZyme 
annotation proportions for secretome 

protein sequences. The proportion of 

each CAZyme class in the whole- genome 

CAZyme annotation compared to the 

relaxed, strict and super strict secretome 

subsets. AA, auxiliary activity; CBM, 

carbohydrate- binding module; CE, 

carbohydrate esterase; GH, glycoside 

hydrolase; GT, glycosyl transferase; PL, 

polysaccharide lyase.

 1
3
6
5
2
9
5
8
, 2

0
2
3
, 5

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/m

m
i.1

5
1
4
4
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

0
/1

1
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



    |  759SCOTT et al.

secretomes with the strict subset showing the largest reduction 

(genome: 36.5%, relaxed: 35.8%, strict: 29.6%, super strict: 30.8%). 
This is the largest class of CAZymes and many members of this class 

have been suggested to have intracellular activities previously (Park 

et al., 2018). Therefore, a reduction in the proportion of GH CA-

Zymes may be expected.

KEGG metabolic pathway assignments were found to be less 

clear than COG categories and CAZyme class annotations and 

tended to differ more between tools. However, expected increases 

in the proportions of assignments to metabolic classes were still 

observed. All secretomes show increased proportions of assign-

ments to the carbohydrate metabolism pathway (genome: 21.2%, 
relaxed: 21.5%, strict: 28.8%, super strict: 38.9%), however, this is 
only a slight increase for the relaxed secretome (Figure 5). A sim-

ilar pattern was observed for the metabolism of other amino acid 

pathways (genome: 4.2%, relaxed: 4.6%, strict: 6.3%, super strict: 
9.3%). For other pathways, differences were observed between the 
secretomes. For example, no assignments to the xenobiotics bio-

degradation and metabolism pathway were present in the super 

strict secretome, although the strict secretome only showed a 

slight reduction in proportion of assignments to this pathway com-

pared to the genome, and the relaxed secretome even showed an 

increase (genome: 5.5%, relaxed: 9.7%, strict: 4.5%, super strict: 
0.0%). Only the strict secretome showed an increased proportion 
of assignments to the metabolism of terpenoids and polyketide 

pathways (genome: 2.1%, relaxed: 1.7%, strict: 3.6%, super strict: 
1.9%). The strict and super strict secretomes were observed to 
have increased proportions of assignments to the glycan biosyn-

thesis and metabolism pathway (genome: 6.3%, relaxed: 4.3%, 
strict: 9.0%, super strict: 9.3%). These assignments may be the re-

sult of mis- assignment due to the action of many extracellular fun-

gal enzymes on the β- glycosidic linkages that are present in glycans 

(Krautter & Iqbal, 2021). The super strict secretome had a large 

increase in the proportion of assignments to the biosynthesis of 

other secondary metabolites, whereas the relaxed and strict secre-

tomes only showed slight increases (genome: 3.4%, relaxed: 4.6%, 
strict: 4.5%, super strict: 9.3%). The relaxed and strict secretome 
showed increases in assignments to amino acid metabolism path-

ways compared to a reduction in assignments to these pathways 

for the super strict secretome (genome: 19.6%, relaxed: 21.8%, 
strict: 20.7%, super strict: 14.8%).

To determine and quantify the effect of the workflow on the 

P. putredinis NO1 protein data set, principal component analysis of 

K- Means clustered outputs for each of the tools was performed 

(Figure 6). The first, second and third components explained 

40.25%, 20.69% and 11.29% of the total variance respectively. 
Cluster 1 (pink; N = 3583; SecretomeP outlier subset) contained 
proteins exclusively with positive identifications from SecretomeP 
which were proteins omitted from the original workflow. Cluster 2 

(blue; N = 1224; secretome subset) clustered distinctly separately 
from the other clusters and consisted of proteins with positive se-

cretion results from all tools and as such represents the identified 

secretome. Cluster 3 (orange; N = 1169; transmembrane subset) 
contained proteins weighted towards both positive DeepLoc out-

puts and a higher number of TMHMM helices suggesting this clus-

ter contained predominantly transmembrane proteins. Cluster 4 

(purple; N = 4023; intracellular) contained proteins with little to no 
positive identifications from any tools and as such represented the 

intracellular fraction. While further resolution in subcellular locali-
sations could be achieved with this data, these results support the 

identification of the putative secretome with this workflow.

Overall, the expected patterns were observed for all three se-

cretomes which suggests the ability of this workflow to capture se-

cretome proteins.

F I G U R E  5  Investigating KEGG 
pathway annotation proportions for 

secretome protein sequences. The 

proportion of KEGG assignments to 

metabolic pathways in the whole genome 

compared to the relaxed, strict and super 

strict secretome subsets.
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3  |  CONCLUSIONS

Here, a workflow for predicting a fungal in silico secretome from 

genomic sequences was presented and evaluated. The workflow in-

corporated two strategies of localisation and secretion prediction both 

using multiple tools. Each tool demonstrated patterns in the propor-

tions of annotations associated with secretome proteins compared to 

the whole genome annotation. This included increased proportions of 

assignments to pathways for carbohydrate metabolism and reduced 

proportions of intracellular GT class CAZymes. There were also dif-

ferences in patterns of proportional increases and reductions across 

the tools for each of the evaluation methods. This demonstrated the 

importance of incorporating multiple tools into secretome prediction 

workflows. The expected patterns were also observed in the final 

filtered secretomes. Again, differences were observed between the 

secretomes, however, the main patterns were observed for all se-

cretomes, and intensity correlated with the stringency of filtering.

Depending on the purpose of the in silico secretome, it is envisaged 

that different secretomes could be used. For example, for new enzyme 

identification, the relaxed secretome would be more appropriate to 

maximise captured sequences where novel sequences are unlikely to 

be captured by all secretome prediction tools. For the identification of 

new extracellular enzymes where functional annotation is impossible 

due to high sequence or structural divergence, bioinformatic workflows 

like that presented here can quickly and simply allow these enzyme 

sequences to be isolated. Indeed, sequences assigned to COG catego-

ries for unknown functions were present in all secretomes alongside 

the new phenol oxidase enzyme identified previously from this fungus 

(Oates et al., 2021). This suggested that this workflow can effectively 

isolate subsets of sequences encoding potentially new enzymes and ac-

tivities. Combination with proteomic data would reduce the number of 

sequences further. In contrast, for comparative secretomic studies, the 

stricter secretomes would be favourable as confidence is increased that 

most of the sequences in these secretomes are truly secreted and ex-

tracellular. The workflow is readily adaptable across eukaryotic and pro-

karyotic organisms, as all tools used here have options for predictions 

from bacterial sequences. Modifications can be made through decisions 

on the incorporation or removal of protein sequences at each stage of the 

workflow, for example, whether to include extracellular transmembrane 

protein sequences as part of the predicted secretome. As easily as extra-

cellular proteins can be identified they can also be removed if interest is 

instead focused on intracellular proteins. As new tools are developed and 

become popularised, they can easily be incorporated into the workflow.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Localisation prediction

Localisation prediction was carried out for all predicted cod-

ing regions of the P. putredinis NO1 genome using the online tool 

BUSCA (Savojardo et al., 2018) and with DeepLoc v1.0 on the high- 

performance computing cluster at the University of York (Almagro 

Armenteros et al., 2017).

4.2  |  Secretion prediction

Secretion signal prediction was carried out for all predicted coding 
regions of the P. putredinis NO1 genome using the online tools Sig-

nalP v6.0 (Teufel et al., 2022) and TargetP v2.0 (Almagro Armenteros 

et al., 2019). Secretion signal prediction and simultaneous non- classical 
secretion prediction were performed using the online tool SecretomeP 
v2.0, where sequences not predicted to encode signal peptides but 

with an NN score >0.6 were predicted to be non- classically secreted 

(Bendtsen et al., 2004).

4.3  |  Transmembrane helices prediction

Transmembrane helix prediction for the identification of transmem-

brane proteins was performed for all predicted coding regions of 

the P. putredinis NO1 genome using the online tool TMHMM v2.0 

(Krogh et al., 2001). Sequences predicted to encode more than one 

F I G U R E  6  Principal component 
analysis of K- means clustered predictions 

for protein localisation. K- Means 

clustering was performed using protein 

localisation predictions generated for each 

protein (n = 9998) from workflow tools; 
BUSCA, DeepLoc, SignalP, SecretomeP, 
TargetP and TMHMM. Clusters (n = 4) are 
coloured by K- Means cluster. Subplots 
are ordinated for clarity. PC, principal 

component.
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transmembrane helix were assumed to be transmembrane proteins. 

Sequences predicted to encode a single transmembrane helix, but 
with less than 10 amino acids of this helix occurring in the first 60 

amino acids of the protein sequence (indicating a signal peptide) were 

also assumed to be transmembrane proteins and were also removed.

4.4  |  Sequence annotation

Sequences of all predicted coding regions in the P. putredinis NO1 

genome were annotated for COG categories and KEGG pathway 

annotations using the online tool eggNOG mapper v2 (Cantalapie-

dra et al., 2021). CAZyme domain annotation with dbCAN (Zhang 

et al., 2018) of all predicted coding regions was performed using the 

CAZyme database v09242921 as described previously (Scott, 2023).

4.5  |  Prediction clustering

K- Means cluster principal component analysis (PCA) was performed 

with scikit- learn (SKlearn) (Pedregosa et al., 2011) on output data 

from each of the tools. Categorical variables were factorised into 

secretion positive results (Oates et al., 2021) and secretion nega-

tive results (0). Numerical outputs (TMHMM First60 and helices 

and SecretomeP NN values) were unchanged. Within- cluster sum of 
squares indicated a four- cluster solution was optimal.

4.6  |  Secretome isolation

The database of localisation prediction, secretion signal pre-

diction, transmembrane helix prediction and annotation for all 

predicted coding regions of the P. putredinis NO1 genome was as-

sembled in R v4.2.0 (R Development Core Team, 2022). Evaluation 

of each tool used was performed using annotation information 

and plotted in R using the ggplot2 package ggplot2 (Villanueva & 
Chen, 2019).
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