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A B S T R A C T   

With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The 
aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. 
This study assesses whether we could safely clean up our oceans with Artificial Intelligence without disrupting 
the delicate balance of aquatic ecosystems. 

Our research compares a simple convolutional neural network with a VGG-16 model using an original data-
base of 1644 underwater images and a binary classification to sort synthetic material from aquatic life. Our 
results show first insights to safely distinguishing between debris and life.   

1. Introduction 

1.1. Background 

Marine debris has a devastating effect on marine life. Mammals, sea 
birds and larger fish are frequently found to have ingested litter or have 
become entangled within nets and other materials, such as plastics 
(D’Aurelio, 2019, McAdam, 2017, Day, 1980, Bjornadal et al., 1994). 
This results in lethal consequences as plastic fragments absorb toxic 
materials and are highly contaminated with biphenyl polychlorinated 
(PCB), heavy metals and other noxious substances. Often leached out of 
common plastics are organophosphate esters (OPEs), particularly 
organophosphate flame retardants (OFPRs), though the effects are still 
not fully understood, this group of additives has been associated with a 
toxic effect on animals and humans, corresponding with different 
carcinogenic properties, diabetes and reproductive issues (Sala et al., 
2021). OPEs have been detected within marine vertebrates; such as in 
studies with loggerhead turtles (Caretta caretta) and the first evidence of 
OFPRs has been detected within fin whales (Balaenoptera physalus) as 
well as their main diet source, krill (Meganyctiphanes norvegica)(Garcia- 
Garin et al., 2020a). 

Once ingested, plastic consumption will likely cause other re-
percussions including reproductive disorders, hormone changes, higher 
disease risk or most commonly; obstructing the gastrointestinal tract; 
resulting in starvation and fatality (D’Aurelio, 2019, Mato et al., 2001, 
de Stephanis et al., 2013). Additionally, entanglement causes a serious 

threat to marine ecosystems (Stelfox et al., 2016, Tekman et al., 2022). 
As well as an “inestimable number of birds, turtles, fish and other 

species” (WAP, 2018, WAP, 2014). At least 136,000 pinnipeds and 
whales; are killed every year by discarded fishing equipment (France- 
Presse, 2011). The consequence of high whale fatalities is that they are 
key contributors to the ecosystem of phytoplankton. This is crucial, as 
phytoplankton “contribute at least 50 percent of all oxygen to our at-
mosphere” and capture “an estimated 40 percent of all [Carbon Mon-
oxide] CO produced.” Acting as the equivalent of 1.7 trillion trees or four 
Amazon rain forests; our environment depends on phytoplankton pop-
ulations (Chami et al., 2019). 

This global dilemma not only impacts marine life and the environ-
ment but human health also, as micro plastics are now being discovered 
within all water systems (McAdam, 2017, Viehman et al., 2011) and 
ultimately, human consumption (Luo et al., 2020; Liu et al., 2021; 
Sharma and Chatterjee, 1987). The level of health risks are rising in 
correlation with fish consumption, as a study by Garcia-Garin et al. 
(2020b) concludes that by consuming contaminated, edible fish such as 
the bogue species (Boop boops), OFPRs are ingested, with their potential 
toxic effects and a recent discovery has even now detected nano plastics 
in our blood (Vethaak and J, 2021). Even though this is an accelerating 
issue, a solution has not yet come to fruition. Therefore, it is critical we 
begin to use technology to address the above challenges. 

Although our piece of research is a very small aspect of the bigger 
picture, it has the potential to be a vital part of the first application of 
deep learning to clean up our oceans and water systems. By successfully 
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distinguishing between waste and fauna, an artificial intelligence 
framework could eventually be applied to automation, protecting our 
rapidly declining marine life and improving the negative impacts on 
human health. 

The application of machine learning to detect and classify litter, is 
still very minimal but far outweighs the efficiency of current methods 
which are hugely time consuming and extremely limited. They also 
require manual labour and are susceptible to human error. Being “one of 
the most pervasive and solvable pollution problems plaguing the world's 
oceans and waterways” (Sheavly and Register, 2007), it is critical we 
invest more research into deep learning as a progressive solution. 

The aim is to successfully use deep learning methods to distinguish 
between synthetic debris and aquatic life by using the following 
objectives: 

• Collect a coloured (RGB) image database, that includes underwater 
debris and marine life in a variety of settings. 

• Compare the train and test results of two CNN frameworks against 
this new database, to categorise synthetic waste and marine fauna 
successfully. 

2. Gaps in the current literature 

Most studies on the application of Artificial Intelligence [AI] have 
neglected to consider the appropriate safety measures involved with 
clearing the ecosystem without causing further harm. 

Interestingly, popular categories studied in the oceans are plastic 
bottles, bags and food packaging, however, disregarded fishing nets 
cause a high fatality and are responsible for the greatest percentage of 
plastic in the ocean and one of the categories responsible for the highest 
fatalities (Lebreton et al., 2018, WAP, 2018). Furthermore, many studies 
including (Garcia-Garin et al., 2021) only considered floating plastics, 
which contributes to a very minimal percentage of marine litter. 

Although the problematic debris is found near the surface where 
creatures mistake it for food or something to play with, therefore 
ingesting it (D’Aurelio, 2019, McAdam, 2017), most of the ocean's 
plastic is in micro form and found in the deepest parts (Peng et al., 
2018). Moreover, only 1 % of marine litter floats (Ferries, 2021). 

Most algorithms in current research are only looking at three or four 
separate categories. These categories (usually including plastic bags, 
bottles and straws) represent only a tiny portion of the vast quantity of 
synthetic debris currently polluting our oceans (Jambeck et al., 2015) 
that is continuing to rapidly expand (Lebreton et al., 2018). Addition-
ally, the image databases used to identify and categorise these specific 
objects do not account for varying degrees of degradation and subse-
quent distortion to captured imagery from wear, being underwater and 
sea conditions (light, density, turbulence). 

There are also a plethora of conditions that such an algorithm would 
have to work under, with visibility being the most important factor. The 
authors in some of the papers are in fact currently testing this problem in 
real life ocean scenarios; however, current prototypes will still need 
further development, particularly in rivers which have completely 
different conditions and are responsible for approximately 1.15–2.41 
million tonnes of plastic entering our oceans (Lebreton et al., 2017). 

Recent work on the Great Garbage Patch by de Vries et al. (2021) has 
proven to successfully use AI to track parts of the patch by collecting 
photographic data with a GPS enabled GoPro from above the waterline. 
Using a convolutional neural network [CNN] to detect debris, they were 
able to survey the litter and map out the garbage patch in better detail. 

3. Related work 

The paper on using deep learning to detect floating debris by Kylili 
et al. (2018) used VGG-16 pretrained on ImageNet to successfully train 
their own data set (after having applied transfer learning), to classify 
their research with a success rate of 86 %. Their paper focused on 
floating debris and to collect their data, they had to use a large amount 

of augmentation to create a dataset consisting of 12,000 images, which 
were classified into three different categories: bottles, buckets and 
straws at a testing accuracy of 99 %. 

Fulton et al. (2019) compared training four object detection methods 
(including R-CNN, YOLOv2, Tiny-YOLO & SSD) and concluded that 
Faster R-CNN had the highest accuracy, at the compromise of speed. 
YOLOv2 had an accuracy that was close to the R-CNN results, but it 
performed faster. They discovered that marine debris can be detected in 
real time using deep learning visual object detection methods - although 
this was from the surface and the authors do express their belief that it 
could be used underwater if the data limitations are overcome. 

de Vries et al. (2021) recently studied whether they could trace 
macro debris location and transportation. They used a two-fold 
approach, testing both the Faster RCNN and YOLOv5 architectures. 
The authors found that YOLOv5 outperformed FRCNN with the quantity 
of objects detected and with the smallest object size, however, they 
report this could be due to the hyper-parameter settings they applied. 
They go on to explain that YOLOv5 only needed minimal changes for 
better performance and that both network architectures could have been 
further improved with more optimization. They successfully produced, 
what they describe as “the first real-world demonstration of a large-scale 
automated camera transect survey of floating marine litter”; however 
due to limitations (such as that they are currently unable to detect 
anything smaller than macro debris), they believe their work is a strong 
framework for a method ology, rather than an example of findings. 

An alternative experiment aiming to track and identify floating 
marine debris compared the use of CNN with a ‘bag of features’ method 
(Sreelakshmi et al., 2019). The CNN used convolutional and bottleneck 
layers achieving 77.5 % accuracy when classifying. However, the bag of 
features method only achieved a 62.5 % accuracy (using MatLab & SURF 
features). 

Comparing the two results clearly indicates that CNN was more ac-
curate with an added benefit of speed - it took half the computational 
time that the Bag of Features needed. 

Another application of AI to detect marine debris was explored by 
Wang et al. (2019) using Long Short Term Memory Network (LSTM) 
with Cross Correlations and Association rules (Apriori) to identify 
characteristics of water pollutants. They discovered that the water 
quality correlation maps they produced were in fact able to accurately 
identify fluctuations effectively. Whilst this is useful to detect where 
large quantities of litter are within the ocean, this would work better as a 
technology used in addition to a Deep Learning algorithm, to encourage 
accurately pinpointing our largest problematic areas (Wang et al., 
2019). Particularly as they have claimed that their AI scheme could 
potentially work within aquatic systems. 

The paper by Chazhoor et al. (2021) bench marked the three widely 
implemented architectures on the WaDaBa data set to find out the best 
model with the support of transfer learning. To ease the recycling pro-
cess worldwide, seven different types of plastic have been categorised 
based on their chemical composition. These are Polyethylene Tere-
phthalate (PET or PETE), High Density Polyethylene (HDPE), Polyvinyl 
Chloride (PVC or Vinyl), Low-Density Polyethylene (LDPE), Poly-
propylene (PP), and Polystyrene (PS or Styrofoam). PET, HDPE PP and 
PS dominate the household waste and segregating them into their 
respective types will allow the reuse of certain types and recycling of 
other types of plastics. The paper is the first benchmark paper aimed 
towards classifying different types of plastics from the images using deep 
learning models, and this has stimulated the research in this area and 
serve as a baseline for future research work. 

To conclude, the current algorithms available are successful and 
effective; however, comparing the studies, the results clearly indicate 
that CNN was the most accurate and fastest approach. Convolutional 
Neural Networks (CNN) can train themselves on debris and continue to 
learn using transfer learning, concluding in highly accurate and efficient 
results (Kylili et al., 2018). 

Within this research, we have collated an extensive and original 
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database of not only litter but also aquatic life with an emphasis on 
submerged imagery that covers a diverse and comprehensive range of 
data. Incorporating different sea conditions, light levels and depths, as 
well as all varieties of synthesised materials and in various stages of 
degradation (or other distortions). This is important to ensure that the 
CNN does not just learn what is correct but also what is incorrect. 

Our paper is especially unique in its binary classification - we split all 
the data into two simple categories of what is ‘living’ and what is not - 
putting the protection of the ecosystem and of life as the priority and 
trained the system how to differentiate between the two with a current 
accuracy of 89 %. Therefore, picking up most synthesised matter and 
avoiding (protecting) aquatic life. It also covers a broader spectrum of 
items rather than focusing on specific categories at a specific depth. 
Therefore, training it to recognize properties of either debris or life, 
rather than single items. We have used data augmentation to diversify 
the different aspects of images as well as increasing the number of im-
ages to deal with class imbalance issues. 

4. Materials and methods 

4.1. Database collection 

A diverse range of organisations and dive centres collaborated with 
us by providing their images. 

We clearly outlined a list of requirements including: 
• In colour and as high quality as possible. 
• Dimensions for objects photographed would need to be larger than 

microplastics and smaller than roughly 16′′2. 
• Preferably, they would also have some general labels 
We also specified including any of the following within their 

imagery: 
• Underwater Litter 
• Underwater Nets 
• Underwater Animals (this can include fish, crustaceans, cnidaria 

etc) 
• Underwater Plants 
• Anything else miscellaneous that is ecological and shot underwater 
The main database acquired was obtained from Japan Agency for 

Marine-Earth Science and Technology (JAMSTEC). JAMSTEC has a huge 
database of sub marine images and footage of deep-sea debris in Japan 
called J-EDI. Their imagery was suitable for different depths, density 
and light but also for the variety of objects within the photos, with 
different levels of degradation. 

The dataset we obtained included a vast array of marine fauna as 
shown in Fig. 1 including but not limited to (fish, jellyfish, shells, star-
fish, anemone) as well as an even wider selection of synthetic debris as 
shown in Fig. 2 (nets, masks, cardboard, plastic bags, plastic sheets, 
cloth). As we wanted diversity in our database, it was particularly useful 
to receive this wide selection of objects. 

4.2. Data augmentation process 

On our data set, only a small amount of data augmentation was used 
by manually cropping and rotating any images that were particularly 
rich in information; mostly in instances where both categories (such as a 
fish and a plastic bottle) were in one image; that image would then be 
split into two separate images, individually cropping the items. We 
started with 1318 photos, after augmentation was applied, our training 
set consisted of 1644 images and 100 images for the testing set. 

4.3. Sorting data 

Our first task was to ensure a high-quality collection (Fig. 3). Poor 
quality images were therefore removed to benefit the system. (This 
process was subjective. In future research, we could use benchmarks 
based on a set of predefined parameters.) 

Furthermore, imagery containing subject matter deemed irrelevant 
were also manually removed, to determine clear parameters and prevent 
confusion within the algorithm. In the case of our dataset, it was mostly 
the JAMSTEC sub marine machinery parts that were in the way, which 
was resolved by manually cropping the images. 

The biggest issue that arose was the strange (yet incredible) phe-
nomenon of how much aquatic life had chosen to inhabit pollutants. An 
ethical dilemma therefore arises, as to not disturb the sensitive and 
delicate balance of the ecosystem, by removing these items (Fulton et al., 
2019). We chose to remove any such images to prevent confusion when 
training the network architectures. From sorting the dataset, it was often 
questioned whether the Convolutional Neural Networks would be able 
to safely distinguish between very commonly confused items. For 
example, a jellyfish and a plastic bag closely resemble each other. There 
were also cases of starfish that we ourselves found difficult to distinguish 
whether they were real or plastic. Therefore, there is a very real danger 
that a neural network could make the same mistake. 

4.4. Training a model for a binary classification task 

In this study, classes are defined as follows: an image which has man- 
made debris in it (‘Litter’ or ‘1’), or it has natural aquatic life in it 
(‘Animals’ or ‘0’), this class can include plants or any variety of marine 
biology. 

For now, we chose not to use subclasses, in order to test this version 
first and see if it is successful. In further tests, a training set of multiple 
categories would be valuable to improve the detail and accuracy of the 
system. 

4.5. Network architecture 

We chose convolutional neural networks as they can handle a large 
quantity of data and have a high-performance rate in the ever- 
developing machine learning industry. CNN algorithms are the 

Fig. 1. Examples of marine life images. Photo Credit: JAMSTEC.  
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strongest neural network for image recognition. The system learns to 
strategically, on different layers, detect the lines and edges in the input 
image. It is then able to distinguish between them, identifying segments 
of an image resulting in feature extraction. 

A major disadvantage to deep learning algorithms having many pa-
rameters, and the use of max pooling, is the higher risk of overfitting 
(Guo et al., 2016). As one of our models is an entirely new architecture 
with a brand new, untrained data set, it required a large amount of trial 
and error of adjusting the different parameters to avoid overfitting. To 
closely monitor the progress of the architecture, TensorBoard was used, 
so that we could frequently compare graphs on where overfitting was 
occurring and make appropriate adjustments. All images were resized, 
to a width and height of 140px, using Python to maintain a uniform size 
throughout all images and ensure that parts would not be cropped out. 
Additionally, 140px when tested, showed enough detail to recognize the 
shapes and patterns within the image but was not too high to slow down 
the run time. 

In the case of using such a vast variety of underwater debris and 
aquatic life, it was felt that the most information necessary should be 
used, even if it compromises speed; so, three channel values RGB were 
used, instead of one. To eliminate the issue of class imbalance, the data 
set has been split to have exactly 50 % of each category. Therefore, out 
of the 1644 training images, 822 were in each category. An additional 
precaution taken, was to randomly shuffle the data, as the system would 
otherwise learn that the data is in order and again, guess accordingly. 

This system was created on a Dell Inspiron i7-7700HQ CPU 2.8GHz, 
16GB RAM, 64-Bit with a Nvidia GeForce GTX graphics card, using 
Windows 10. The algorithm was programmed using Python in PyCharm 
and the specs of the system used were: Tensorflow, Keras and ReLU. 
Using cv2, we imported the collected and built a data set, created 2 × 2 
windows, extracted the max pooling value and used the Adam 
optimization. 

This resulted in the architecture having the following parameters: 
Three convolutional layers with 32 nodes and no dense layers, the 

second kernel size was reduced to a (2,2) window, the validation split 
had to be reduced to 0.1 and it ran 95 epochs. As shown in Fig. 4. We 
used the Rectified Linear activation Unit (ReLU) as the activation 
function and the last layer used the logistic sigmoid function to enable 
binary classification. The validation split is usually optimised at 20 % 
(0.2) of the set, however, this architecture would favour one of the 
classifications, if at this setting. 

When the final architecture was confirmed, we ran it 10 times to take 
an average of the Training Loss and Training Accuracy shown in Table 1, 
intermittently between rerunning the architecture, we continued to run 
Tests against Training Images and Test Images, periodically testing for 
correct classification. To train the VGG-16 model, we imported the VGG 
model using Keras and then applied transfer learning from the ImageNet 
weights. We used softmax activation and only 2 dense layers to keep our 
model close to the framework that (Kylili et al., 2018) had promising 
results with. To train the model on our data set, we then ran 50 epochs 
on a model checkpoint function, so that the highest accuracy model 
would be saved. 

5. Results, analysis and evaluation 

The original aim of this research was to test if we could successfully 
train a CNN framework to distinguish between underwater debris and 
aquatic life, safely and to an accuracy of at least 85 %, as we collected a 
new database. 

The test results have shown that from a set of 100 tested images, 89 
% were 13 correctly classified. When we ran evaluation metrics on this 
test (Fig. 5), we calculated a set of strong results such as 0.9 F1 score for 
‘Animal’ detection and 0.88 F1 score for ‘Litter’, as shown in Table 2. 
When running a 95 % confidence interval on our results, we found that 
the classification error of the model is 86 % ± 0.061. Given these results, 
the true classification error of the model is between 80 % and 92 %. 

The obtained result shows promising signs of being able to adapt to a 
much larger scale database, with more detail and a stronger CNN 

Fig. 2. Examples of synthetic debris images. Photo Credit: JAMSTEC.  

Fig. 3. Examples of database images. Photo Credit: Maria Shokouros-Oskarsson.  
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architecture. Furthermore, we compared our simple CNN model with 
the VGG-16 architecture by training our dataset onto the framework and 
using transfer learning and the final output layer of softmax (as sug-
gested by Kylili et al., 2018) (Fig. 6). Our train had a loss of 0.0093 and 
accuracy of 1.0000, with test results achieving a 95 % accuracy in pre-
dictions. Also shown in Table 3 the VGG-16 model achieved an F1 score 
of 0.95 for both categories, additionally the classification error is 95 % 
± 0.043. Therefore, the true classification of the model is between 91 % 
and 99 %. This shows promising signs that CNN models can be used to 
successfully classify all types of debris without disturbing marine life, 
particularly when using transfer learning on VGG-16. Overall, we 
conclude that transfer learning with a VGG-16 framework is more ac-
curate and though these are our initial findings; with a larger data set 
and finer tuned parameters, we could have very positive results. 

There were limitations to this study, as finding publicly accessible 
underwater images of debris proved particularly difficult, and the im-
ages that were donated to us were not already labelled, so we had to 
complete this manually, which was time consuming. 

We also found similar challenges with de Vries et al. (2021), that 
many images were not of a high enough quality, consequently reducing 
our database to a size that was not suitable for CNN training. However, 
after the use of data augmentation, we were successfully able to create a 
new database that had a high accuracy level. From here we believe this 
research is therefore, a strong preliminary methodology for future 
research in this field with a larger database and a more powerful solu-
tion that can allow further depth and contain more classification groups. 

As mentioned previously, other papers have strived to identify ma-
rine debris using neural networks and have encountered relevant chal-
lenges. Similarly to our paper, Fulton et al. (2019)'s study produced their 
own dataset, which heavily drew from JAMSTEC's imagery and far 
outweighed our own as it consisted of 5720 images. They had a trinary 
classification of plastics, man-made debris and other bio matter, their 
separation of classifications is close to our binary system and can be 
quite fairly compared. Much like ours, their dataset was designed to 
challenge the deep learning algorithm to maintain an accurate repre-
sentation of a real-life scenario. We followed in similar footsteps by 
trying to vary our data as greatly as we could. Though this reduces the 
performance as Fulton et al. (2019) mentioned; it is “a better evaluation 
of what the detector's performance would be in the field”, to which the 
authors of this study concur with. Their study produced promising re-
sults by comparing four different models; though they looked into object 
detection, whereas our paper compares image recognition models. With 
object detection; (including transfer learning on YOLOv2); their stron-
gest results were using Faster-RCNN which detected plastics at an 

Fig. 4. Block diagram of simple CNN classifier.  

Table 1 
Training result comparisons.  

CNN VGG-16 
Train loss Train accuracy Train loss Train accuracy  

0.23  0.90  0.0093  1.00  
0.21  0.90  0.0224  1.00  
0.19  0.92  0.0064  1.00  
0.22  0.90  0.0055  1.00  
0.16  0.93  0.0054  1.00  
0.18  0.92  0.1132  0.9844  
0.20  0.92  0.0013  1.00  
0.19  0.93  0.0136  1.00  
0.21  0.90  0.0052  1.00  
0.21  0.91  0.02  1.00  
0.20  0.91  0.02023  1.00  

Fig. 5. Confusion matrix of CNN model.  

Table 2 
Evaluation metrics of CNN.   

Precision Recall f1-score Support 
Animal  0.85  0.94  0.90  50 
Litter  0.93  0.84  0.88  50 
accuracy   0.89  0.89  100 
macro avg.  0.89  0.89  0.89  100 
weighted avg.  0.89   0.89  100  

Fig. 6. Confusion matrix of VGG model.  

Table 3 
Evaluation metrics of VGG-16.   

Precision Recall F1-score Support 
Animal  0.92  0.98  0.95  50 
Litter  0.98  0.92  0.95  50 
Accuracy  0.95  0.95  0.95  100 
Macro avg.    0.95  100 
Weighted avg.  0.95  0.95  0.95  100  
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average precision rate of 83.3 %. de Vries et al. (2021) were able to 
capture their own dataset of over 18,000 images of floating debris and 
chose to compare object detection results of YOLOv2 with Faster-RCNN; 
yet they concluded that YOLOv2 obtained stronger results. However, 
their study only focused on surface level debris, so their database would 
have been far less complex for the neural network to predict. 

Other studies looked into using image recognition on surface level 
marine debris such as Kylili et al. (2018), who also produced their own 
dataset (12,000 images) and used VGG-16 transfer learning which 
concluded in strong test results of 99 % and a validation accuracy of 86 
%. It is interesting to note that their paper focuses on three specific 
categories of litter, whereas our study consists of much broader and less 
focused classifications; including data affected by degradation, wear and 
visibility, therefore as expected, our study should be producing less 
accurate results. 

When comparing with relevant neural network studies, the authors 
of this paper strongly believe that, when introduced to a larger dataset, 
the use of image recognition methods such as VGG-16, underwater to 
detect marine debris will perform very positively. 

This research is unique in its type; that it is one of the first papers that 
not only is looking for a feasible solution for our polluted water crisis but 
also has an emphasis on the perspective of animal welfare and ecological 
conservation. Additionally, our paper has reported some insight into 
progressive steps that using CNNs could successfully distinguish be-
tween any debris and any marine fauna. The paper has therefore, 
collated a large quantity of thoroughly thought-out scenarios and in-
formation that future papers will hopefully prioritise their studies and 
development with. 

6. Conclusions and recommendations 

This research sets out to answer the question: can deep learning 
successfully distinguish between marine life and man-made debris un-
derwater? From the research we conducted, the authors believe that 
with a larger data set, the possibility of using image recognition to safely 
remove debris underwater without disrupting aquatic ecosystems is 
strong. Fulton et al. (2019) quite rightly expressed concern about using 
image recognition underwater with the vast variety of debris available, 
however we have proven that subclasses are possible to use as a base to 
start with, and with future development on this research, we believe this 
could develop into a working large-scale prototype. 

While this research scratches the surface of potentially using artifi-
cial intelligence to distinguish successfully and safely between life and 
man-made debris; there are plenty of other factors that should be 
considered and researched moving forward. 

Our paper has been unique by comparing the effects of trained CNNs 
on a wide variety of categories, as opposed to three or four groups of 
objects. In particular, we have taken our study below the surface to 
detect debris and marine fauna underwater, as well as training the 
models to distinguish between the two. 

Although part of the novelty of this research was the diversity of data 
in its nature of depth, geographic location, and sea conditions, it did not 
cover a wide enough variety and would need to comprise of a database 
that includes these variables or considers fresh waterways and the 
aquatic life that lives there. Additionally, these algorithms were only 
trained on matter that exceeded the size of micro plastics (micro plastics 
are <5 mm). Therefore, it remains untested on any debris or living 
creatures under that size. 

Future research should be tested for image segmentation (or retest 
object detection) to ensure that biological entities (such as plants or 
animals) attached onto debris, are not categorised as litter. 

Other variables would be to diversify the nature of species of all 
underwater creatures, such as how would this algorithm specifically 
respond to stingrays embedded within the sand or coral with plastic 
wrapped on it. Additionally, an entire classification could be dedicated 
to entangled sea creatures and plants, which if applied to automation 

could be used to alert users to the finding of an endangered life. 
Further considerations include asking if it would be able to handle 

more complex situations? Such as accurately pinpointing floating plastic 
in a sea of jellyfish. Although de Vries et al. (2021) at Ocean Cleanup are 
doing a fantastic job of mapping patches of debris within the gyre, could 
we test our method on retrieving large quantities of underwater debris 
without picking up small life within something as vast and compact as 
the Great Garbage Reef? 

It would also be valuable for the algorithms to be combined with 
unsupervised learning using positive and negative reinforcement, so that 
they constantly train themselves and continue to improve their 
accuracy. 

Programming and architecture building 

sentdex (2018) Loading in your own data - Deep Learning basics with 
Python,TensorFlow and Keras p.2. Available at: https://www.youtube. 
com/watch?v=j3vuBynnOElist=PLRDkPq9P 
fnkxO2p9vHR4n7LptqdqQ9FKindex = 14abchannel =sentdex (Accessed 
on: 26/05/2021) 

sentdex (2018) Convolutional Neural Networks - Deep Learning ba-
sics with 

Python, TensorFlow and Keras p.3. 
Available at:https://www.youtube.com/watch?v=WvoLTXIjBYUlist 

=PL15abchannel = sentdex(Accessed on: 26/05/2021) 
sentdex (2018) Analyzing Models with TensorBoard - Deep Learning 

with Python, TensorFlow and Keras p.4. Available at: https://www. 
youtube.com/watch?v=BqgTU7cBnklist = P LRDkP q9P fnkxO2p 
9vHR4n7LptqdqQ9FKindex = 18abchannel = sentdex(Accessed on: 26/ 
05/2021_ 

sentdex (2018) Optimizing with TensorBoard - Deep Learning w/ 
Python, TensorFlow Keras p.5. Available at: https://www.youtube. 
com/watch?v=lV098432V Aabchannel = sentdex (Accessed on: 26/05/ 
2021) 

sentdex (2018) How to use your trained model - Deep Learning basics 
with Python, TensorFlow and Keras Available at: p.6 https://www. 
youtube.com/watch?v=A4K6Dgx2Iwt = 1sabchannel = sentdex 
(Accessed on: 26/05/2021) 
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