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A B S T R A C T 

We present a set of codes for calculating and displaying solutions to diverse problems within thermal convection and magnetic 

field generation in rotating fluid-filled spheres and spherical shells. There are diverse programs for the kinematic dynamo 

problem, the onset of thermal convection, and boundary-locked thermal convection, and time-stepping codes for non-magnetic 

convection and the dynamo with either homogeneous or spatially varying thermal boundary conditions. Where possible, all 

programs have been benchmarked against other codes and tested by reproducing previously published results. Each program 

comes with the complete source code, a pdf instruction manual, and at least one example run with a sample input file and all 

necessary files for describing an initial condition. The only prerequisite for running most of the codes is a FORTRAN compiler. 

The plotting programs require in addition the PGPLOT graphics library. All source code, examples, input files, solutions, and 

instructions are available for download from github and Zenodo. 

Key w ords: Softw are – Numerical Methods – Dynamo theory – Convection – Core–mantle coupling – Earth’s magnetic field. 

1  I N T RO D U C T I O N  

The processes in Earth’s outer core that generate the geomagnetic 

field are best understood through numerical simulations. Over a 

quarter of a century has now passed since the first fully self- 

consistent simulations of the geodynamo in which the induction 

equation, the heat equation, and the Navier Stokes equation are 

solved simultaneously in rotating spherical geometry (e.g. Glatz- 

maier & Roberts 1995 ; Christensen, Olson & Glatzmaier 1998 ; 

Kono & Roberts 2002 ). Around this time, processing capabilities 

had impro v ed to the extent that it was possible for the first time to 

run a complete simulation on very modest computational resources 

and ensemble calculations could be performed to investigate the 

effect of changing parameters (e.g. Christensen, Olson & Glatzmaier 

1999 ). The Benchmark Dynamo project (Christensen et al. 2001 ) 

provided a first baseline dynamo model by which new codes could 

be validated. Subsequent studies (e.g. Jones et al. 2011 ; Jackson 

et al. 2014 ; Marti et al. 2014 ) hav e pro vided benchmark solutions for 

dynamo simulations for a broader range of models. 

Man y codes hav e since been dev eloped that hav e simulated the 

processes at ever higher spatial and temporal resolution (e.g. Matsui 

et al. 2016 ) with an increasing focus on high performance computing. 

Two geodynamo codes, XSHELLS (Schaeffer et al. 2017 ) and 

PAR ODY-PD AF (Fournier , Nerger & Aubert 2013 ), were optimized 

further towards deployment on the next generation of supercomputers 

within the EU-funded ChEESE Center of Excellence (Folch et al. 

2023 ). The challenge is approaching parameters rele v ant to Earth’s 

core, for which the decreasing temporal and spatial scales make 

⋆ E-mail: steven.gibbons@ngi.no 

the computations increasingly e xpensiv e and demanding. Aubert 

( 2023 ) presents recent progress in geodynamo modelling towards 

Earth’s parameter regime. Like many previous studies, Aubert ( 2023 ) 

mitigates the numerical difficulties by applying a hyperdif fusi ve 

treatment to the smallest scales. 

Since the full geodynamo problem couples all the go v erning 

equations, is strongly time-dependent, and acts at a cascade of 

different spatial and temporal scales, the physical mechanisms that 

result in features such as geomagnetic reversals and core–mantle 

coupling can be difficult to isolate among the full spectrum of 

processes occurring in a given simulation. Causality can often only 

be suggested in a statistical sense o v er long durations of numerical 

simulations. It can therefore be beneficial to understanding cause and 

effect by isolating components of the full geodynamo problem and 

performing e xtensiv e sensitivity studies on the more limited systems. 

The kinematic dynamo problem, for instance, explores the magnetic 

field generating properties of a given fluid flow. Gubbins & Sarson 

( 1994 ), for example, demonstrated how virtual geomagnetic poles 

during a reversal in a kinematic model followed paths concentrated on 

longitudes where the magnetic flux was concentrated. Calculations in 

the absence of a magnetic field can help us to understand the force bal- 

ance in the outer core (e.g. Gastine, Wicht & Aubert 2016 ; Long et al. 

2020 ) and provide clues as to how the geodynamo will be influenced 

by a spatially varying heat-flux at the outer boundary. Gubbins & Gib- 

bons ( 2004 ), for example, demonstrated how a heat-flux pattern at the 

core–mantle boundary (CMB) with anomalously low heat-flux below 

both Africa and the Pacific suppressed columnar convection only 

below the Pacific, due to the length scales of the heat-flux anomalies. 

The control of the CMB heat-flux has since been investigated exten- 

sively also on full dynamo simulations (e.g. Mound & Davies 2023 ). 

Properties observed in such more limited systems may of course not 

© 2023 The Author(s). 
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apply to the full magnetohydrodynamic system. Ho we ver, a com- 

plete understanding of the parameter space defining a geodynamo 

simulation is necessary. For example, would thermal convection take 

place in the absence of a magnetic field? How would the length scale 

of convection change were the magnetic field to collapse? 

This paper presents a set of codes that address a number of topics 

related to the geodynamo. The flagship codes were designed to 

perform complete geodynamo simulations, with special attention 

paid to the influence of a laterally varying heat-flux at the CMB. At 

the same time, it was desired that there should be codes utilizing 

the same basis of routines and the same numerical formulation that 

addressed a number of the simpler systems. The language of choice 

was Fortran 77. This was partly due to the fact that the le gac y codes at 

the University of Leeds for the kinematic dynamo were FORTRAN- 

based and partly in order to exploit most easily the BLAS and 

LAPACK libraries and the then-recently released ARPACK code. 

While not exploiting an object-oriented language, a special effort 

was made to modularize the code into far smaller units than had been 

used previously. The common blocks which had characterized earlier 

codes were also a v oided. On the one hand, the new code contained a 

vast number of functions and subroutines: many with exceptionally 

long argument lists. On the other hand, these routines could be unit- 

tested far more easily than before and it w as f ar easier to generate 

a new code from these building blocks. Although Fortran 77 seems 

like an illogical choice in 2023, with more modern alternatives such 

as Python and Julia available, the presented codes compile as readily 

now as they did 20 yr ago with freely available compilers. 

All codes address the problems of convection and/or magnetic 

field generation in fluid-filled rotating spheres and spherical shells. 

The problems fall into five broad categories: 

(i) The kinematic dynamo (5 codes), 

(ii) The onset of thermal convection (4 codes), 

(iii) Boundary locked (steady-state) convection (3 codes), 

(iv) The time-dependent non-magnetic convection problem, with 

or without spatially varying heat-flux at the boundaries (2 codes), 

and 

(v) The time-dependent dynamo problem, with or without spa- 

tially varying heat-flux at the boundaries (5 codes). 

The Boussinesq approximation applies to all models. An ad- 

ditional 10 codes generate and manipulate the files defining the 

temperature, flow, and magnetic field variables. For example, if 

we want to change the spatial resolution of a calculation, there are 

programs that interpolate the solutions from one spatial specification 

to another. All of these 29 codes, described briefly in Section 3 , are 

written in near-standard Fortran 77 and compile readily using, for 

example, the gfortran compiler. 

An additional set of 10 programs, utilizing the PGPLOT plotting 

library (Pearson 2011 ), generate postscript plots of the specified 

fields with, optionally, arrows to indicate the direction and strength 

of the fluid flow. The postscript files generated are vector graphics 

that are readily converted to other formats, such as pdf and png. 

There are both free and commercial tools that will perform this 

conversion and we have found that the free psconvert program of 

GMT will perform the job well (see Data Availability statement). 

Two programs plot on surfaces of constant radius, four programs plot 

meridian or equatorial sections, or sections of constant distance from 

the equatorial plane, and four programs plot spherical projections. 

These codes are discussed separately in Section 4 . 

We note of course that other codes are openly available to the 

community. XSHELLS is openly available as is the SINGE code 

(Vidal & Schaeffer 2015 ; Monville et al. 2019 ). The links to both 

of these codes are provided in the Data Availability section. Our 

aim with this paper is to explain the scope and limitations of the 

programs presented here such that a user can determine whether or 

not a given program is relevant to an application. The codes were 

used to generate results for a sequence of publications (e.g. Gibbons 

& Gubbins 2000 ; Gubbins et al. 2000a , b ; Christensen et al. 2001 ; 

Gubbins & Gibbons 2002 , 2004 ; Gibbons, Gubbins & Zhang 2007 ; 

Gubbins & Gibbons 2009 ) at a time when it was less usual than 

it is today to include or publish source code. This paper rectifies 

this retrospectively. The descriptions of the individual codes explain 

which codes were used for which studies. 

Each of the programs has its own directory in the github/Zenodo 

distribution with a pdf instruction manual, the full source code, a 

Makefile, at least one input file for an example run, and any state 

files required as initial conditions. In addition, every subroutine has 

e xtensiv e comments in the source code, describing in detail the input 

and output parameters. This should make it far easier to recycle the 

code to form new applications. In this paper, we start by presenting 

the equations that are solved and provide a brief o v ervie w of ho w the 

fields are stored (Section 2 ). In Section 3 , we present briefly each of 

the main programs and outline their applicability and the publications 

in which they have featured. Readers wishing to know more about 

the numerical methods employed in the various codes will find this 

information most comprehensively presented in the corresponding 

publications. In Section 4 , we present briefly the graphics programs, 

together with sample outputs. This paper does not contain any 

operational instructions; a user manual is provided together with 

each of the codes. We finally provide some general considerations. 

2  F O R M U L AT I O N  

This section gives a brief overview of the equations which are solved 

by the various programs and how the solutions are represented numer- 

ically. The quantities in the different codes are steered by seemingly 

arbitrarily named parameters. These are ho we ver consistent across 

the whole suite of programs and are detailed here for convenience. 

2.1 The heat equation 

The equation defining the advection of heat (see Gubbins & Roberts 

1987 ) is 

∂T 

∂t 
+ u . ∇ T = κ∇ 

2 T + 
q 

C p ρ
, (1) 

where u is the fluid flow, T the temperature, κ the thermal diffusivity 

(m 
2 s −1 ), q the rate of local heating (Jm 

−3 s −1 ), C p the specific heat 

capacity (Jkg −1 K 
−1 ), and ρ the density (kg m 

−3 ). 

The convection codes assume that the temperature, T , is expressed 

as follows:- 

T ( t, r, θ, φ) = T 0 ( r) + T 1 ( t, r, θ, φ) , (2) 

where t , r , θ , and φ are the time, radius, colatitude, and longitude, 

respectively . The steady , basic-state, temperature distribution, T 0 ( r ), 

is given the form 

T 0 ( r) = −
1 

2 
b 1 r 

2 + 
b 2 

r 
+ b 3 , (3) 

where b 1 , b 2 , and b 3 are constants. Its purpose is to define the 

basic state temperature profile for the sphere or spherical shell, 

incorporating any internal heating sources. It satisfies 

∇T 0 = −
(

b 1 r + b 2 r 
−2 
)

e r , (4) 
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where e r is the unit vector in the radial direction, and 

∇ 
2 T 0 = −3 b 1 . (5) 

If we substitute the definition ( 2 ) into equation ( 1 ) and apply ( 4 ) and 

( 5 ) we derive 

∂T 1 

∂t 
= κ∇ 

2 T 1 − 3 κb 1 + 
q 

C p ρ
+ u . 

(

b 1 r + b 2 r 
−2 
)

e r − u . ∇T 1 (6) 

It is now clear that the constant b 1 defines the sources of internal 

heating with 

b 1 = 
q 

3 C p ρκ
. (7) 

If there are no internal heating sources, then q = 0 and hence b 1 = 

0. The constant b 2 is chosen appropriately for systems which have a 

simple temperature gradient from the inner to the outer boundary. 

For numerical simplicity, it is best to solve for temperature 

functions with homogeneous boundary conditions. We therefore 

decompose T 1 , the perturbation from the basic state temperature, 

T 1 ( t, r, θ, φ) = � ( t, r, θ, φ) + εT a ( r, θ, φ) . (8) 

� is the function which is solved for in all of the calculations. T a 

is an additional temperature which is imposed if, for example, an 

inhomogeneous heat-flux at the outer boundary is required. 

If we denote the radial component of the velocity u r , then applying 

equation ( 8 ) to equation ( 6 ) gives us the heat equation as applied in 

all of the programs: 

c a 
∂� 

∂t 
= c d ∇ 

2 ( � + εT a ) + b 1 u r r + b 2 
u r 

r 2 
− c c u . ∇( � + εT a ) . (9) 

The constants c a , b 1 , b 2 , c c , and c d are arbitrarily named, with no 

physical meaning attached to them. Their use simply allows for any 

scaling to be applied to the equations. In the codes, c a is stored in the 

double precision variable CA ; and similarly with b 1 ( CB1 ), b 2 ( CB2 ), 

c c ( CC ), and c d ( CD ). Many of the codes are restricted to uniform 

thermal boundaries and so only work for ε = 0. Codes which are 

designed to implement inhomogeneous thermal boundaries usually 

denote ε with the double precision variable SCAL . 

2.2 The momentum equation 

In the Boussinesq approximation, all density variations except those 

with respect to the buoyancy force are considered to be negligible, and 

following the analysis of Gubbins & Roberts ( 1987 ), the momentum 

equation is written 

∂ u 

∂t 
+ u . ∇ u + 2 � × u = −∇ ̃  ω + 

δρ

ρ0 
g + 

J × B 

ρ0 
+ ν∇ 

2 u , (10) 

where J and B are, respectively, the electric current and magnetic 

field. The scalar function ˜ ω combines the pressure, p , and the 

centrifugal force such that 

˜ ω = 
p 

ρ
−

1 

2 
| � × r | 2 , 

and can be remo v ed from the problem by taking the curl of 

equation ( 10 ). The density variation δρ is expressed in terms of the 

thermal expansivity, α (K 
−1 ), and T , the temperature perturbation 

from a well mixed state ( ρ = ρ0 ), to give 

δρ

ρ0 
= −αT . (11) 

The acceleration due to gravity, g is written in terms of the radial 

vector r as 

g = −γ r , (12) 

for a constant γ (with units s −2 ). The linear dependence of g on r 

is a good approximation for the core (see for example Dziewonski 

& Anderson 1981 or Anderson 1989 ), but would not be appropriate 

for the mantle. ν is the viscosity (m 
2 s −1 ) and � = �k is the rotation 

vector, in terms of the unit vector, k , perpendicular to the equatorial 

plane and oriented upwards at the origin given counterclockwise 

rotation. The electric current is related to the magnetic field by 

∇ × B = μJ , (13) 

where μ is the magnetic permeability and assumed to equal μ0 , the 

magnetic permeability of free space everywhere. 

In order to eliminate the pressure gradient from the momentum 

equation, we take the curl of equation ( 10 ) and apply equations ( 11 ) 

and ( 12 ). If we denote the vorticity (the curl of u ) by ω , then our 

vorticity equation becomes 

∂ ω 

∂t 
= −∇ × ( u . ∇ u ) − 2 �∇ × ( k × u ) 

+ αγ∇ × ( T r ) + 
1 

ρμ0 
∇ × [ ( ∇ × B ) × B ] + ν∇ 

2 
ω . (14) 

It is assumed here that the kinematic viscosity, ν, is not a function 

of space. The basic state temperature, T 0 , is a function of radius 

alone and therefore cannot contribute to the buoyancy term in the 

vorticity equation. Giving arbitrarily defined names to the scalings 

which multiply the terms in our equation ( 14 ), we write the curl of 

the momentum equation 

c e 
∂ ω 

∂t 
= −c f ∇ × ( u . ∇ u ) − c g ∇ × ( k × u ) + c h ∇ × [ ( � + εT a ) r ] 

+ c j ∇ × [ ( ∇ × B ) × B ] + c i ∇ 
2 
ω . (15) 

There are two vector quantities in the momentum equation, the 

velocity u and the magnetic field B . B must al w ays satisfy the 

solenoidal condition 

∇. B = 0 (16) 

and similarly, for a Boussinesq fluid, u must satisfy 

∇. u = 0 . (17) 

We can therefore express both velocity and magnetic field in 

poloidal/toroidal decompositions 

B = ∇ × ∇ ×
[

P B( t, r, θ, φ) r 
]

+ ∇ ×
[

T B( t, r, θ, φ) r 
]

(18) 

and 

u = ∇ × ∇ ×
[

P v( t, r, θ, φ) r 
]

+ ∇ ×
[

T v( t, r, θ, φ) r 
]

. (19) 

Note that these definitions are different from those of, for example 

Bullard & Gellman ( 1954 ), who use the unit radial vector, ˆ r , instead 

of r . 

2.3 The induction equation 

The equation describing the evolution of a magnetic field, B , in a 

conducting fluid with velocity u is derived from the pre-Maxwell 

equations 

∇ × E = −
∂ B 

∂t 
, ∇ × B = μJ and ∇. B = 0 , (20) 
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and Ohm’s law 

J = σ ( E + u × B ) , (21) 

where E is the electric field and σ the electrical conductivity. The 

pre-Maxwell forms are used since the displacement current, ∂ E /∂t , 

will be negligible for the relatively slow variations appropriate for the 

Earth. Assuming the electrical conductivity to be a constant, taking 

the curl of equation ( 21 ) and applying the relations of ( 20 ) together 

with the vector identity 

∇ × ( ∇ × V ) = ∇ ( ∇ . V ) − ∇ 
2 V , 

gives the induction equation 

∂ B 

∂t 
= ∇ × ( u × B ) + 

1 

μ0 σ
∇ 

2 B . (22) 

The generalized form of the induction equation, as used by the 

programs, is 

c k 
∂ B 

∂t 
= c m ∇ × ( u × B ) + c l ∇ 

2 B . (23) 

As in equations ( 9 ) and ( 15 ), the constants c k , c m , and c l are arbitrarily 

named with no physical implications intended. 

2.4 Numerical r epr esentation 

The parameters go v erning the scalings of the terms in the heat, 

momentum, and induction equations are specified in equations ( 9 ), 

( 15 ), and ( 23 ), respectiv ely. We here describe v ery briefly how the 

solution vectors representing the various fields are constructed and 

stored on file. 

In equations ( 8 ), ( 18 ), and ( 19 ), we hav e fiv e scalar functions of 

space and time, � , P v , T v , P B , and T B , which can all be expressed in 

the form 

f ( t, r, θ, φ) = f 0 c 0 ( r, t) 

+ 

L 
∑ 

l= 1 

f 0 c l ( r, t) P 
0 
l ( cos θ ) 

+ 

L 
∑ 

l= 1 

M( l) 
∑ 

m = 1 

f mc 
l ( r, t) cos mφP 

m 
l ( cos θ ) 

+ 

L 
∑ 

l= 1 

M( l) 
∑ 

m = 1 

f ms 
l ( r, t) sin mφP 

m 
l ( cos θ ) , (24) 

where P 
m 
l ( cos θ ) is an associated Legendre function, here satisfying 

the Schmidt quasi-normalization condition 
∫ π

0 

[

P 
m 
l ( cos θ ) 

]2 
sin θdθ = 

2(2 − δm 0 ) 

2 l + 1 
. (25) 

The entire solution can be described completely in terms of the radial 

functions f mc 
l ( r, t) and f ms 

l ( r, t) where the scalar f can be each of 

� , P v , T v , P B , and T B . For a true 3D solution, the integer function M 

is given by 

M( l) = l. (26) 

Ho we v er, there are man y cases where it is valid to restrict the 

resolution in the φ direction. If the energy spectra in m decay much 

faster than in l , it may be appropriate to impose a maximum value of 

m , M max for instance, such that 

M( l) = min ( l, M max ) . (27) 

This can lead to significant time savings by reducing the size of 

the ( r , θ , φ) grid which needs transforming, and especially in 

reducing the time spent in the F ast F ourier Transforms. Also, we 

may impose a fundamental wavenumber, m 0 , such that only m which 

are integer multiples of m 0 are included in the solution. In some 

instances, this may actually be valid for the physical solution which 

may display natural symmetry properties. An example of this is 

the dynamo benchmark solution of Christensen et al. ( 2001 ) which 

displays a four-fold symmetry in φ and can therefore be represented 

by a spherical harmonic expansion containing only m which are 

integer multiples of 4. A fully 3D solution for the model parameters 

described in Christensen et al. ( 2001 ) will integrate towards a solution 

which is zero for all m which are not multiples of m 0 . Care must of 

course be taken as the symmetry is likely to be broken when the 

physical parameters are changed and other symmetries are excited. 

Even for cases where the physical solution is not exactly described 

by a limited set of wavenumbers, much can be learned from 

solutions with a reduced resolution in the φ-direction. Many authors 

(for example Sarson & Jones 1999 , and references therein) have 

obtained great insights by restricting the solution to two azimuthal 

wavenumbers: m = 0 and one non-zero wavenumber. These have 

been termed 2.5D dynamos. Impro v ements in computational power 

since the 1990s have of course limited the circumstances in which 

such measures are necessary, but exploiting symmetry considerations 

may still permit far higher resolution in radius or latitude than would 

be possible with full resolution in azimuth. 

Only the temperature variable, � , has an l = 0 term: this is 

absent from the other terms due to the solenoidal condition ( 16 ) and 

the incompressibility condition ( 17 ). There are numerous additional 

symmetry considerations described by Gubbins & Zhang ( 1993 ) 

which can further reduce the number of radial functions in the 

expansions of the form in equation ( 24 ) needed to describe a 

completely viable physical solution. 

If N h gives the total number of radial functions of the form f mc 
l ( r, t) 

and f ms 
l ( r, t) (cf. equation 24 ) we need, and N r gives the number of 

points in radius, then a vector of N h × N r numbers is sufficient to 

store our solution. In addition, we need a single array of N r numbers 

giving the values of radius to use and a set of five integers describing 

the nature of each of the N h radial functions. The first of these integers 

tells us which of � , P v , T v , P B , or T B the radial function represents. 

The second gives l and the third gives m for a cos m φ function or 

−m for a sin m φ function. The fourth and fifth integers specify the 

boundary condition to be applied to the radial function at the inner 

and outer boundary, respectively. 

Each solution is saved in three files. These can have any 

name the user wishes but we usually label them [stem].ints , 

[stem].vecs , and [stem].xarr . The ints file has in the first 

row the number of radial functions ( N h ) and this is followed by N h 

rows each containing the fiv e inte gers described abo v e. The xarr 

file contains N r numbers defining the radial node locations (which are 

in principle arbitrary, but must increase strictly) following a header 

line of two integers: NR and IFORM (where the latter describes the 

format of the numbers). The vecs file contains N h × N r numbers 

providing the values of the radial functions themselves following a 

header line of four integers: IORD NR , NH and IFORM . If IORD is 3 

then the value of radial function i h at node i r is stored at location ( i r 
− 1) N h + i h in the solution vector. (This ordering groups together 

the values of every spherical harmonic coefficient at a given radial 

grid node, as is needed for all programs that form matrices with 

interactions between different spherical harmonics. This is the case 

for the kinematic dynamo and boundary-locked convection codes that 

need to maintain a banded structure of large matrices.) If IORD is 4, 

it is stored at location ( i h − 1) N r + i r . (This ordering groups together 

the values of all radial grid nodes for a given spherical harmonic 
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function. This is the ordering necessary for the time-stepping codes 

for which the matrices do not couple different radial functions.) It is 

possible to switch from one ordering to another using the svpnsmap 

auxiliary program. The number IFORM al w ays tak es the value 1 for 

the FORTRAN type format 5(1PD16.7) ; no other format was ever 

considered, although this could easily be implemented. 

For dynamo calculations where we have a conducting inner core 

and/or a conducting layer at the base of the mantle, we represent the 

magnetic field in a separate set of files to the other functions (i.e. 

six files in total). The radii for the outer core nodes must correspond 

exactly in both sets of xarr files. The naming convention in the 

e xamples giv en is intsm , vecsm , and xarrm for the magnetic 

field and intsv , vecsv , and xarrv for the remaining functions. 

A full o v erview of the mathematical and numerical formalism 

behind the codes is contained in the file DOC fundamentals.pdf 

document in the additional documentation directory of the 

LEOPACK-2022-revision repository. 

3  OV ERVIEW  O F  MAIN  P RO G R A M S  

This section provides a brief overview of the main codes arranged in 

groups of applications. An at-a-glance o v erview is pro vided in Fig. 1 

while the lists below provide a somewhat expanded description of 

applicability. 

3.1 The kinematic dynamo 

All of these codes impose a prescribed and fixed velocity field and 

solve for the magnetic-field-generating properties of this flow. Only 

two flows have been implemented: the flow of Dudley & James 

( 1989 ) in the code djiepgrf and the flow of Kumar & Roberts ( 1975 ) 

in all the other codes. All of the codes solve an eigenvalue system 

using the Implicitly Restarted Arnoldi Method (Arnoldi 1951 ) as 

implemented in the ARPACK software (Sorensen 1992 ; Lehoucq, 

Sorensen & Yang 1998 ). To specify a different form of flow would 

necessitate creating a new code from one of these programs as 

starting points. 

The five codes are as follows: 

(i) djiepgrf . Calculates the generally complex growth rates, σ , of 

a magnetic field subject to the flow of Dudley & James ( 1989 ) with 

different specifications of coefficients. 

(ii) kriepgrf . Calculates the generally complex growth rates, σ , 

of a magnetic field subject to the flow of Kumar & Roberts ( 1975 ) 

with different specifications of coefficients. 

(iii) krcmrnif . Calculates a critical magnetic Reynolds number, 

R 
c 
m , for which the real part of the growth rate, σ , is zero for the 

flow of Kumar & Roberts ( 1975 ). The procedure is iterative and not 

guaranteed to find a value of R 
c 
m . 

(iv) krddmcmrnif . Calculates a critical magnetic Reynolds num- 

ber, R 
c 
m , for which the real part of the growth rate, σ , is zero for 

the flow of Kumar & Roberts ( 1975 ) but where the scalings of 

the different components of the flow are defined by the D and 

M parameters (controlling the relative strengths of the differential 

rotation and meridian circulation, respectively) as introduced by 

Gubbins et al. ( 2000a ). The procedure is iterative and not guaranteed 

to find a value of R 
c 
m . This code was subsequently used to map out the 

parameter spaces in the studies of Gubbins et al. ( 2000b ), Gubbins 

& Gibbons ( 2002 ), and Gubbins & Gibbons ( 2009 ). 

(v) krssgeps . Calculates a critical magnetic Reynolds number, 

R 
c 
m , for a strictly zero growth rate. This program solves a generalized 

eigenvalue problem. The flow is of the form specified by Kumar & 

Roberts ( 1975 ). 

3.2 The onset of thermal convection 

There are four codes for solving for the critical Rayleigh number 

for the onset of thermal convection in a rotating fluid-filled sphere or 

spherical shell. (The sphere is just a special case of the spherical shell 

with the inner radius set to zero.) The exact definition of the Rayleigh 

number can vary so, in these programs, we refer only to the parameter 

c h specified in equation ( 15 ). All programs perform essentially the 

same task. linons1 and linons2 differ only in that linons1 takes a 

single initial guess for c c h and it estimates an initial gradient of the 

growth rate as a function of c h based on a small perturbation, whereas 

linons2 solves for a value of c c h between two bounds within which c c h 
is known to be found. The codes sbrlinons1 and sbrlinonsd apply a 

solid body rotation in order to solve for a system rotating at the same 

angular velocity as the convection rolls at onset. This was found to be 

necessary as the eigensolvers struggle to find the correct eigenvalues 

when the imaginary parts of the growth rates become too large. 

By imposing a solid body rotation, we solve in a rotating frame 

of reference and the imaginary part of the growth rate is defined 

by the difference between the drift rate and the imposed rotation. 

The growth rate can therefore become purely real if the solid body 

rotation corresponds exactly with the drift rate. sbrlinons1 imposes 

a fixed solid body rotation and sbrlinonsd attempts to iterate to the 

solid body rotation which makes the relative drift rate zero. 

Note that this problem decouples in the wavenumber, m , such that 

each run is performed for a specified m . Each set of parameters has a 

critical Rayleigh number for each wavenumber so the o v erall critical 

Rayleigh number will have an associated preferred wavenumber. 

The four codes are as follows: 

(i) linons1 . Finds the critical Rayleigh number for the onset of 

thermal convection in a rotating fluid-filled sphere or spherical shell 

from an initial guess. 

(ii) linons2 . As for linons1 but iterates between a lower and an 

upper bound. 

(iii) sbrlinons1 . As for linons2 but imposes a fixed solid body 

rotation. (i.e. solves in a fixed rotating frame of reference.) 

(iv) sbrlinonsd . As for sbrlinons1 but attempts to solve for the 

solid body rotation for which the imaginary part of the growth rate 

vanishes for the onset of thermal convection. (i.e. solves in a rotating 

frame of reference that is modified on each iteration.) 

These codes were validated by reproducing the results of Zhang & 

Busse ( 1987 ), in which a fixed temperature was specified at the outer 

boundary, and were used to calculate the critical Rayleigh numbers 

in the study of Gibbons et al. ( 2007 ), for which a fixed heat-flux was 

specified at the outer boundary. 

3.3 Boundary-lock ed conv ection 

When there is a spatially varying temperature or heat-flux as a 

boundary condition, convection will al w ays occur. That is to say that 

there is no critical regime like there is for the onset of convection 

in the uniform boundary problem. Convection driven by the thermal 

boundary is even possible when the fluid is stably stratified. There are 

three codes for calculating boundary-locked convection as follows: 

(i) blscnlsc . Solv es iterativ ely for steady-state boundary-locked or 

boundary-driv en conv ection. Note that there is no time-dependence 

to the solution but that we cannot tell, from this calculation alone, 

whether or not the solution is stable or not. 

(ii) blscnlsic . As for blscnlsc but the resulting steady-state solution 

is also subject to an instability analysis. This is an eigenvalue problem 

and a growth rate with a positive real part indicates that a perturbation 
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The Kinematic Dynamo Problem

The Dudley-James velocity

The Kumar-Roberts velocity

The Onset of Thermal Convection
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... in a rotating frame of reference

Time-Stepping Codes

Uniform Thermal Boundaries Heterogeneous Thermal Boundaries

Non-magnetic

Convectiono2ubtctsc2 o2ibtctsc2

o2ubcdts2

Insulating Inner Core

cicubcdts2

Conducting Inner Core

cicibcdts2

cicmubcdts2

Conducting Inner Core and Layer at the Outer Boundary

cicmibcdts2

The full dynamo

Problem

Manipulation of

Solution Vectors

svpnsmap rsvfg

cicsvpnsmap

cicmsvpnsmap

iic2cicsc

msvip

itfvf

Generation of

Solution Vectors

cicm2ocdisplay

svenspec

Postprocessing

mfcanal1

Find from guess

Find in interval

Specify frame

Solve for frame

Figure 1. At-a-glance summary of the main programs listed in Section 3 . 

to the steady-state boundary-locked or boundary-dri ven flo w would 

grow. 

(iii) blscnlsic evecs . As for blscnlsic but produces different out- 

put. The programs are essentially identical but blscnlsic evecs writes 

out all of the eigenvectors from the instability analysis. This of 

course will consume a lot of disk space, so only use this program 

for spot-checking and displaying of the spatial form of the thermal 

instabilities. 

These codes were validated by reproducing the results of Zhang 

& Gubbins ( 1993 ) and Zhang & Gubbins ( 1996 ), for which a fixed 

temperature outer-boundary-condition was imposed, and were used 

to calculate the boundary-locked solutions in the study of Gibbons 
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et al. ( 2007 ), for which a fixed heat-flux outer-boundary-condition 

was imposed. An earlier version of the code blscnlsc had been used 

to calculate the solutions in the study of Gibbons & Gubbins ( 2000 ). 

Note that all of these three programs use large matrices with cross- 

terms between different radial functions. The size of these matrices 

increases rapidly as the spatial resolution of the problem increases. 

You will rapidly reach a limit regarding memory demands and time- 

to-solution as the dimensions of the problem increase. Ho we v er, an y 

boundary-driven or boundary-locked flow should also result from 

the time-stepping code o2ibtctsc2 . If you run o2ibtctsc2 and blscnlsc 

with identical resolution and identical parameter settings then the 

time-stepping code should result in a steady-state solution identical 

to that obtained using blscnlsc . If the steady-state solution is unstable, 

as indicated by the program blscnlsic , then this should result in a 

time-dependent solution in o2ibtctsc2 . The philosophy behind the 

two types of programs is rather different and the likeness of the two 

solutions should provide a degree of validation. 

3.4 Time-stepping codes for non-magnetic convection 

There are two codes which solve the heat and the vorticity equa- 

tions in the absence of a magnetic field for general time-dependent 

temperature and flow fields. They differ only in whether we wish a 

spatially heterogeneous thermal boundary condition or not. The two 

codes are 

(i) o2ubtctsc2 . Time-stepping code for non-magnetic convection 

with a uniform temperature or heat-flux at the boundaries. A slightly 

earlier version of this code was used for the contribution labelled 

GJZ in the benchmark study (Case 0) of Christensen et al. ( 2001 ). 

(ii) o2ibtctsc2 . Time-stepping code for non-magnetic convection 

with the possibility of spatially varying temperature or heat-flux at 

the boundaries. This code was used to compute the time-dependent 

solutions in the studies of Gubbins & Gibbons ( 2004 ) and Gibbons 

et al. ( 2007 ). These studies considered only laterally varying heat-flux 

at the outer boundary, although the code also allows full flexibility 

in specifying laterally varying heat-flux at the boundary of the inner 

core. 

3.5 Time-stepping codes for the full dynamo problem 

There are five codes for solving the full set of equations for 

temperature, flow, and magnetic fields. They are summarized as 

follows: 

(i) o2ubcdts2 . Time-stepping code for conv ection-driv en mag- 

netic field generation with a uniform temperature or heat-flux at the 

boundaries and an insulating inner core. A slightly earlier version of 

this code was used for the contribution labelled GJZ in the benchmark 

study (Case 1) of Christensen et al. ( 2001 ). 

(ii) cicubcdts2 . Time-stepping code for conv ection-driv en mag- 

netic field generation with a uniform temperature or heat-flux at 

the boundaries and a conducting inner core that co-rotates with the 

mantle. The fluid must have a no-slip boundary condition at the inner 

boundary. 

(iii) cicibcdts2 . Time-stepping code for conv ection-driv en mag- 

netic field generation with the possibility of a spatially varying 

temperature or heat-flux at the boundaries and a conducting inner 

core that co-rotates with the mantle. The fluid must have a no-slip 

boundary condition at the inner boundary. 

(iv) cicmubcdts2 . Time-stepping code for conv ection-driv en 

magnetic field generation with a uniform temperature or heat-flux 

at the boundaries and a conducting inner core that co-rotates with the 

mantle and, optionally, a conducting layer at the base of the mantle. 

The fluid must have a no-slip boundary condition at boundaries at 

which we solve for a magnetic field on either side. 

(v) cicmibcdts2 . Time-stepping code for conv ection-driv en mag- 

netic field generation with the possibility of a spatially varying 

temperature or heat-flux at the boundaries and a conducting inner 

core that co-rotates with the mantle and, optionally, a conducting 

layer at the base of the mantle. The fluid must have a no-slip boundary 

condition at boundaries at which we solve for a magnetic field on 

either side. 

3.6 Auxiliary codes 

The 10 codes listed here are miscellaneous tools for manipulating 

files acted on by the main programs: 

(i) svpnsmap . Converts a set of solution vectors from one spatial 

mesh to another. We can change the locations of the radial grid nodes 

and change the set of radial functions present. 

(ii) cicsvpnsmap . As for svpnsmap but operates on the double 

sets of solution vectors (i.e. six files) for the conducting inner core 

calculations. 

(iii) cicmsvpnsmap . As for cicsvpnsmap but co v ers the cases 

where we also have a conducting layer at the base of the mantle. 

(iv) iic2cicsc . Converts a set of files from the insulating inner core 

code ( o2ubcdts2 ) to the six-file conducting inner core format for one 

of the other magnetic field time-stepping codes. 

(v) msvip . Combines multiple sets of solution vector files. Useful 

when displaying solutions with inhomogeneous thermal boundary 

conditions. 

(vi) rsvfg . Generates a random initial solution vector (a set of 

three files). 

(vii) itfvf . Generates a set of files for imposing a spatially varying 

thermal boundary condition. 

(viii) cicm2ocdisplay . Combines the magnetic field and 

flow/temperature files to a single solution vector specification (i.e. 

3 files) for the outer core only. This is to generate temporary files 

for plotting since the constant radius plotting programs only take in 

single sets of files. 

(ix) svenspec . Calculates the kinetic and magnetic energy as a 

function of l and m . 

(x) mfcanal1 . Calculates a number of properties of the magnetic 

field. The properties calculated were specifically chosen for one 

particular investigation. If more different properties were to be 

required, this would necessitate a ne w code. Ho we ver, this program 

may provide a suitable starting point. 

4  OV ERVIEW  O F  G R A P H I C S  P RO G R A M S  

There are 10 programs which provide postscript displays of the 

temperature, flow, and magnetic fields generated. An at-a-glance 

o v erview is provided in Fig. 2 . There are three types of projection 

which we will consider separately: rectangular plots of fields for con- 

stant radius (two codes), spherical shell sections in polar coordinates 

(four codes), and quasi-3D images of fields on the surface of a sphere 

(four codes). 

Should the user prefer to use alternative software for making 

the plots [for example, the Generic Mapping Tools (GMT): Wessel 

et al. 2019 ], the programs in the gprograms directory could easily be 

adapted to simply write out the functions to be plotted to ASCII files 

which could be interpreted by other plotting programs. Subroutines 

such as CONSTANT R RECT EVAL , EQ SEC POLAR EVAL , and 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ra
s
ti/a

rtic
le

/2
/1

/6
3
7
/7

2
5
8
8
2
3
 b

y
 g

u
e
s
t o

n
 2

4
 N

o
v
e
m

b
e
r 2

0
2
3



644 S. J. Gibbons et al. 

RASTAI 2, 637–648 (2023) 

Spherical Section Programs

Overlaying of Continent Outlines

ps_2plot_z_eq_merid4

arrows_z_eq_merid4

cic_arrows_z_eq_merid4

cicm_arrows_z_eq_merid4

Sphere Programs

shc_sphere_plot

cutout_sphere_plot

full_sphere_plot

continent_full_sphere_plot

Constant Radius Plotting Programs

arrows_const_r3 continent_arrows_const_r3

Figure 2. At-a-glance summary of the graphics programs listed in Section 4 . 

MERID SEC POLAR EVAL look after all the interpolation of radial 

functions and the e v aluation of the correct spherical harmonic terms. 

These routines return simple 2D arrays with the requested functions. 

(The coordinates in r , θ , and φ are al w ays equally spaced between 

the requested limits.) 

4.1 Programs for plotting on fixed-radius projections 

Two codes are provided for plotting functions and flo w arro ws on 

surfaces of constant radius. They are: 

(i) arrows const r3 . Colour or contour plots of scalar functions 

(optionally with flow arrows) on a surface for a specified constant 

radius. Sample output in Fig. 3 (a). 

(ii) continent arrows const r3 . As for arrows const r3 except 

that a simple outline of the continents is drawn on top. Sample 

output in Fig. 3 (b). 

4.2 Programs for plotting on spherical sections 

Four codes are provided for plotting scalar functions and, optionally, 

flo w arro ws in equatorial sections, meridian sections, or sections of 

constant distance from the equatorial plane (constant z ). 

(i) arrows z eq merid4 . Plots section of scalar and, optionally, 

flo w arro ws for spherical shells (i.e. inner core is not included). 

Sample output in Fig. 4 (a). 

(ii) cic arrows z eq merid4 . As for arrows z eq merid4 except 

that it plots solutions from the conducting inner core codes. Sample 

output in Fig. 4 (b). 

(iii) cicm arrows z eq merid4 . As for cicm arrows z eq merid4 

except that it plots solutions with a conducting layer at the base of 

the mantle. Sample output in Fig. 4 (c). 

(iv) ps 2plot z eq merid4 . Plots two hemispherical sections side 

by side. There are many examples in the study of Gubbins & Gibbons 

( 2002 ). 

4.3 Programs for plotting on the surface of a sphere 

There are four programs which plot scalar fields on the surface of a 

sphere. 

(i) shc sphere plot . Plots a scalar function on a spherical surface 

specified by a file of spherical harmonic coefficients. Sample output 

in Fig. 5 (a). 

(ii) cutout sphere plot . Plots a scalar function from a standard 

3-file solution vector on a spherical surface with a cut out section as 

displayed in Fig. 5 (b). 

(iii) full sphere plot . Plots a scalar function from a standard 3-file 

solution vector on a spherical surface. Sample output in Fig. 5 (c). 

(iv) continent full sphere plot . As full sphere plot except that a 

simple outline of the continents is drawn on top. Sample output in 

Fig. 5 (d). 

5  C O N C L U S I O N S  

We present a set of codes for calculating and displaying solutions 

to diverse problems in convection and magnetic field generation in 

rotating fluid-filled spheres and spherical shells. The codes are freely 

available from both github and Zenodo. Each of the codes has a pdf 

user manual with an explanation of the parameters used and at least 

one set of input files for a sample run. (Some of the codes have several 

w ork ed examples.) The main codes are purely written in FORTRAN 

with no external dependencies and compile under the free gfortran 

compiler (GNU Fortran version 9.4.0 on Ubuntu 20.04.1 was used 

for the most recent test of the code prior to submitting this work). 

The graphics codes require in addition the PGPLOT library (version 

5.2 was used). All codes were tested thoroughly prior to uploading 

to github in late 2022, with every w ork ed example being reproduced 

using newly compiled code. 

These codes represent a relatively brief snapshot in the develop- 

ment of the dynamo simulation toolbox at the University of Leeds 

but are worth preserving and detailing as they 
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arrows_const_r3

continent_arrows_const_r3

(a)

(b)

Figure 3. Example outputs from the constant radius plotting programs listed in Section 4.1 Panel (a) shows arrows of flow and coloured contours of v θ for the 

Case 0 Dynamo Benchmark study of Christensen et al. ( 2001 ) generated using the solution vector and an input file in the directory GRAPHICS arrows const r3 

of the distribution. Panel (b) shows contours of the temperature perturbation together with outlines of continents and arrows of flow for the same solution from 

the directory GRAPHICS continent arrows const r3 of the distribution. All documentation for each program is contained within a pdf file in the appropriate 

directory. 
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(a)

(b)

(c)

arrows_z_eq_merid4

cic_arrows_z_eq_merid4

cicm_arrows_z_eq_merid4

Figure 4. Example outputs from the spherical section plotting programs as indicated listed in Section 4.2 The plots in panels (a), (b), and (c) can be generated 

using the solution vectors and input files in the directories of the distribution GRAPHICS arrows z eq merid4, GRAPHICS cic arrows z eq merid4, and 

GRAPHICS cicm arrows z eq merid4, respectively. All documentation for each program is contained within a pdf file in the appropriate directory. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ra
s
ti/a

rtic
le

/2
/1

/6
3
7
/7

2
5
8
8
2
3
 b

y
 g

u
e
s
t o

n
 2

4
 N

o
v
e
m

b
e
r 2

0
2
3



Convection and geodynamo codes 647 

RASTAI 2, 637–648 (2023) 

(a) (b)

(c) (d)

shc_sphere_plot cutout_sphere_plot

full_sphere_plot continent_full_sphere_plot

Figure 5. Example outputs from the spherical surface plotting programs listed in Section 4.3 The plots in panels (a), (b), (c), and (d) can be generated using the 

solution vectors and input files in the directories of the distribution GRAPHICS shc sphere plot, GRAPHICS cutout sphere plot, GRAPHICS full sphere plot, 

and GRAPHICS continent full sphere plot, respectively . All documentation for each program is contained within a pdf file in the appropriate directory . 

(i) were documented in unprecedented depth at this time, 

(ii) formed a common basis for subsequent diverging develop- 

ments and optimizations of the codes, and 

(iii) consider many aspects of geodynamo simulation within a 

common framework. 

The codes described in this paper (LEOPACK) were used for 

numerous publications as detailed. Subsequent studies by the Leeds 

group addressed more diverse problems and required both different 

approaches and codes with better scalability. The code used by Willis, 

Sreeni v asan & Gubbins ( 2007 ) inherited much of the LEOPACK 

approach, including its fundamental spectral-finite difference dis- 

cretization. The LEOPACK codes contributed both as a source of 

routines for certain inherited elements and, more widely, for checking 

the accuracy of the new code. 

A limitation is that the codes with conducting inner cores do not 

permit the inner core to rotate at a different rate to the outer boundary 

and do not permit stress-free boundary conditions. At the time of the 

benchmark study of Christensen et al. ( 2001 ), a conducting inner core 

had not been implemented at all and there is no GJZ contribution for 

the Case 2 dynamo simulation. Subsequent development of these 

codes at the University of Leeds reproduced the Case 2 benchmark 

with a completely different representation of the magnetic field. 

The co-rotating inner core limitation means that the user cannot, 

for example, study the torque balance on the inner core. A second 

limitation is that this initial set of codes was not parallelized. 

Although the basis in Fortran 77 brings a number of disadvantages, 

such as the lack of dynamic memory allocation, it has helped the 

codes’ longevity. The lack of dependence on external libraries, often 

subject to frequent updates, has meant that the code has required no 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ra
s
ti/a

rtic
le

/2
/1

/6
3
7
/7

2
5
8
8
2
3
 b

y
 g

u
e
s
t o

n
 2

4
 N

o
v
e
m

b
e
r 2

0
2
3



648 S. J. Gibbons et al. 

RASTAI 2, 637–648 (2023) 

modifications since its initialization. It is our hope that the codes 

are easy to navigate, compile, and run, and that they will provide 

a useful baseline comparison for subsequent code developments in 

geodynamo simulations. 
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DATA  AVA ILA BILITY  

The code and examples are all available from 

https://github.com/stevenjgibbons/LEOPACK- 

2022-revision 

and the repository is obtained by typing 

git clone 

https://github.com/stevenjgibbons/LEOPACK- 

2022-revision.git 

A permanent zip file of the release v1.0.1 is found on Zenodo at 

https://doi.org/10.5281/zenodo.7932800 

The graphics programs require the PGPLOT library found at https: 

// sites.astro.caltech.edu/ ∼tjp/pgplot/ (last accessed 2023 August). 

The XSHELLS code is available from https://nschaeff.b 

itbucket.io/xshells/ (last accessed 2023 August). 

The SINGE code is available from https://bitbucket. 

org/vidalje/singe/src/master/ (last accessed 2023 Au- 

gust). 

The psconvert tool is part of the free Generic Mapping Tools soft- 

ware (GMT: Wessel et al. 2019 ) and can be obtained from https: 

//www.generic- mapping- tools.org/ (last accessed 2023 

August). 
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