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TECHNIQUES AND RESOURCES RESEARCH ARTICLE

Accurate staging of chick embryonic tissues via deep learning of

salient features
Ian Groves1,2, Jacob Holmshaw1, David Furley1,2, Elizabeth Manning2, Kavitha Chinnaiya2, Matthew Towers2,

Benjamin D. Evans3, Marysia Placzek2,* and Alexander G. Fletcher1,*

ABSTRACT

Recent work shows that the developmental potential of progenitor

cells in the HH10 chick brain changes rapidly, accompanied by subtle

changes inmorphology. This demands increased temporal resolution

for studies of the brain at this stage, necessitating precise and

unbiased staging. Here, we investigated whether we could train a

deep convolutional neural network to sub-stage HH10 chick brains

using a small dataset of 151 expertly labelled images. By augmenting

our images with biologically informed transformations and data-

driven preprocessing steps, we successfully trained a classifier to

sub-stage HH10 brains to 87.1% test accuracy. To determinewhether

our classifier could be generally applied, we re-trained it using images

(269) of randomised control and experimental chick wings, and

obtained similarly high test accuracy (86.1%). Saliency analyses

revealed that biologically relevant features are used for classification.

Our strategy enables training of image classifiers for various

applications in developmental biology with limited microscopy data.

KEY WORDS: Deep convolutional neural networks, Data

augmentation, Hypothalamus, Chick embryo, Somites, Wing bud

INTRODUCTION

Developmental biology studies rely on the accurate staging of

embryos, traditionally achieved with reference to simple

morphological features described in conventional charts

(Hamburger and Hamilton, 1951; O’Rahilly and Müller, 2010;

Theiler, 2013). However, new approaches are enabling a greater

temporal resolution of cellular and molecular events in developing

embryos, and consequently researchers increasingly require more

detailed staging systems (Newgreen and Erickson, 1986; Palmeirim

et al., 1997; Boehm et al., 2011; Sáenz-Ponce et al., 2012; Musy

et al., 2018).

Deep neural networks (DNNs) are increasingly used for image

classification (LeCun et al., 2015) and are promising tools for

staging embryos. Generally, DNNs require large training datasets

for optimal performance (Deng et al., 2009; Thompson et al., 2020

preprint; Jacquemet, 2021). When trained on small datasets

(hundreds to thousands of images), DNNs may exhibit poor

performance on new data owing to insufficient learning of general

classifying features (Rosin and Fierens, 1995). Data augmentation

techniques, which include image transformations, can improve

generalisation by helping DNNs to reduce overfitting, increasing

focus on class-defining image features and disregarding irrelevant

features such as acquisition artefacts (Simard et al., 2003). In this

way, DNNs have been used to classify embryonic developing

systems from small datasets, when acquiring more images is

impractical owing to time, cost or ethical considerations. For

example, a DNN was used to stage zebrafish tailbuds as a model for

posterior spinal cord growth (Pond et al., 2021). A second study

trained a DNN to accurately classify zebrafish embryos as normal or

malformed based on morphology, and demonstrated generalisation

capability (Ishaq et al., 2017). However, these studies did not

investigate how each DNN interpreted the datasets to achieve

classification successfully.

Saliency mapping, which highlights the image features used by a

DNN classifier (Simonyan et al., 2014 preprint), points to how

classifiers interpret images. This approach has recently been used in

the automatic quality sorting of cultured human embryos

(Thirumalaraju et al., 2021), but has yet to be leveraged for

developmental staging. By revealing the inner workings of high-

accuracy DNN classifiers, saliency maps will help to demystify their

‘black box’ nature, facilitating their wider adoption in

developmental biology.

In this study, we investigated whether we could train a DNN to

successfully classify sub-stages within the Hamburger–Hamilton

stage (HH) 10 chick brain. The embryonic chick benefits from a

well-defined, precise and detailed staging system that classifies

embryos from HH1 to HH46 (Hamburger and Hamilton, 1951;

Stern, 2018), but this classification can be insufficient for capturing

temporal transitions that occur within individual stages. Our recent

studies reveal rapid changes in gene expression in the ventral

forebrain throughout HH10 that reflect the changing developmental

potential of hypothalamic progenitor cells (Fu et al., 2017; Kim

et al., 2022; Chinnaiya et al., 2023). Precise staging is therefore

crucial to study embryos accurately during this period, particularly

for targeted experiments of live embryos. Although precise stages

can be easily assigned after post-hoc post-fixation analyses, such as

in situ hybridisation (Kim et al., 2022; Chinnaiya et al., 2023) this is

more challenging before fixation. More refined HH10 staging

(HH10−, HH10, HH10+) traditionally relies on somite number (9,

10, 11 somites, respectively), yet studies in Xenopus suggest that the

head and body do not always develop synchronously (Sáenz-Ponce

et al., 2012), and no study has examined, in the chick, whether

somite number is an accurate predictor of brain development.
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Here, we investigated whether we could train a DNN to accurately

sub-stage HH10 chick brains from a small microscopy dataset of the

heads of live chick embryos. A bespoke DNN performed optimally,

achieving classification up to 87.1% test accuracy. Saliency

analyses identified features of the brain typically used to classify

the sub-stages. These included the same features used by experts to

define the sub-stages, and an additional novel morphological

feature. We then showed that the classifier could be re-trained on

morphologically different datasets, control versus growth-inhibited

chick wing buds. Development of the limb bud has been

well-characterised both through traditional staging charts and

quantitatively based staging methods (Boehm et al., 2011), but

these do not readily capture the unusual morphological features that

present in the course of experimental perturbation. Our brain

classifier was successfully re-trained to categorise growth-inhibited

and normal wing buds, achieving a test accuracy of 86.1%. Here,

saliency analysis revealed that the classifier used features that were

not obvious to the human eye, demonstrating its applicability to

uncharacterised specimens. Our accurate classifiers are valuable

tools for chick embryo experimentation and our studies reveal how

saliency analysis provides unbiased insights into predictive

biological features.

RESULTS

Contemporary studies motivate an accurate sub-staging of

the HH10 chick brain

In recent studies, in which we live-imaged chick embryos

(Chinnaiya et al., 2023), we noted a continuous change in brain

morphology during HH10 that could not be easily appreciated in

fixed specimens with reference to conventional staging charts. The

prosencephalon changes from an oval-shaped to a triangular-shaped

structure as the optic vesicles widen, and the angle of the

prosencephalic neck changes from obtuse to orthogonal and then

acute (Fig. 1A). Simultaneously, the hindbrain widens, the

midbrain/hindbrain start to become distinct (Fig. 1A), and a

characteristic flexure forms in the prosencephalic ventral midline

(indicative of the region where tuberal hypothalamic progenitor

cells are generated) (Chinnaiya et al., 2023). Acutely dissected

HH10 embryos can be categorised into ‘early’ and ‘late’ based on

these morphologies by experts with years of experience, but those

with less experience can find this challenging (Fig. 1B-E′). We

examined whether we could sub-stage early and late HH10 chick

brains by counting somites. Unexpectedly, whereas head

morphology did correlate with somite number at a population

level, individual embryos with distinct brain morphologies could

show the same number of somites (Fig. 1F,G).

The accurate categorisation of the HH10 prosencephalon into

early versus late sub-stages is important, because over this period,

cells – at least those in the ventral prosencephalon – rapidly change

in character and developmental potential. In HH10 embryos with an

‘early’ prosencephalic morphology, SHH is co-expressed with

BMP7, marking hypothalamic floor plate-like (HypFP) cells

(Fig. 2A,A′), but in embryos with a ‘late’ prosencephalic

morphology, SHH extends more anteriorly than BMP7, marking

progenitors that will go on to generate tuberal hypothalamic neurons

(Fig. 2B,B′) (Kim et al., 2022; Chinnaiya et al., 2023).

Importantly, the changing gene expression profile at HH10

reflects changing developmental potential. Fate-mapping studies of

the ventral prosencephalon, from HH10 to HH18 when distinct

progenitor subsets can be identified based on position and

molecular profile (Fig. 2C-F) (Fu et al., 2017; Chinnaiya et al.,

2023), have shown that tuberal progenitors are sequentially

generated from HypFP cells, with those born earliest lying close

to the optic stalk and those born later lying above Rathke’s pouch.

Thus, HypFP cells targeted in chicks with ‘early’ versus ‘late’

prosencephalic morphology fate-map to sequentially more-posterior

parts of the tuberal hypothalamus at HH18 (Fig. 2G-G′″,H-H′″).

Finally, prosencephalic morphology is an accurate predictor of cell

specification. When prosencephalic tissue of equivalent size and

region (using the prosencephalic neck as a reference point) is

dissected from HH10 embryos (Fig. 2I,J) and cultured to a HH18

equivalent, explants taken from an ‘early’ prosencephalon express

optic stalk (PAX2) and tuberal progenitor (SIX6 and SHH) markers

(Fig. 2K), whereas explants taken from a ‘late’ prosencephalon

express only tuberal progenitor markers (SHH and SIX6) (Fig. 2L).

Together, these studies demonstrate the importance of accurately

staging the HH10 brain.We therefore investigated whether we could

accurately stage live HH10 embryonic brains using an automated

classification tool.

Fine-tuning the ResNet50 architecture classifies sub-stages

of HH10 with up to 75% accuracy

In order to train a classifier, we used our expertise to group (‘label’)

images of HH10 embryos into the two sub-stages (early and late).

These data comprised 152 brightfield images which varied in

composition and contrast (Fig. S3A; see Materials and Methods).

We first examined whether unsupervisedmachine-learning methods

could be used to classify these images. We tested clustering

approaches, including principal component analysis and k-means

(Ding and He, 2004), using both raw images and features extracted

using conventional Haralick ‘texture’ (Haralick et al., 1973). We

then tested traditional supervised classifiers (Amancio et al., 2014),

in particular, random forest classifier (RFC), support vector

machine (SVM) and k-nearest neighbours (KNN). We were not

able to train a sufficiently accurate classifier through any of these

approaches, achieving the highest individual and highest average

validation accuracies of only 54.8% (RFC) and 38.3% (KNN),

respectively, through supervised classifiers (Table S1, Figs S1, S2).

Therefore, we developed a strategy for training a deep

convolutional neural network (DCNN)-based classifier. DCNN

classifiers have proven particularly powerful in image classification,

as they contain convolutional layers that learn filters representing

important shape information contained in the images (LeCun et al.,

2015). First, we determined suitable data preprocessing approaches

(Fig. S3C; see Materials and Methods). Briefly, we resized images

to 200×200 pixels (a size that provides a good balance between

computational cost and resolution of key features). Additionally, we

preprocessed all images by normalising the image histograms,

ensuring that dim areas were brightened and vice versa. Next, we

implemented a cross-validation approach to improve our DCNN’s

generalisation by systematically changing the data in the training

and validation sets. In cross-validation, we varied both the training

data (used for fitting the DCNN) and the validation data (used to

evaluate the generalisation performance of the learned features).

However, prior to organising data for cross-validation we fixed a test

dataset to allow fair comparisons when ultimately evaluating the

classifier for an unbiased estimate of generalisation (see Materials

and Methods). This resulted in cross-validation data splits as

follows: 31/152 images in an independent test dataset, with the

remaining 121 images split into k folds of training/validation data

(108 training images, 13 validation images per fold; see Materials

and Methods). Next, we augmented the dataset through image

transformations, which expanded the number of datapoints for

training/validation from 121 to 4356 (single augmentations) or
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13,068 (combinatorial/additive augmentations; see Materials and

Methods), focusing on augmentations that normalised skewed

image features, such as subject orientation, that are unlikely

to be important for classification. We examined the benefits of

various image augmentations, setting rotations as our baseline

augmentation (Ishaq et al., 2017).

Using these approaches, we evaluated the viability of transfer

learning to train a DCNN classifier, a commonly used approach for

dealing with small datasets (Kora et al., 2022). Specifically, we

explored whether we could use the pre-trained DCNN classifiers

InceptionV3 (Szegedy et al., 2015) and ResNet50 (He et al., 2016).

Both have architectures well-suited to image classification, and each

has achieved high classification accuracies on a database

comprising over 14 million general images. InceptionV3 makes

use of different size convolutional filters, which aims to capture

both large and small shape features, whereas ResNet uses ‘residual

blocks’ to allow for a very deep neural network (which usually

improves accuracy). Generally speaking, InceptionV3 trades

accuracy against computational cost, whereas ResNet is more

computationally costly but potentially more accurate.

To re-train InceptionV3/ResNet, we initialised the layers of

InceptionV3/ResNet50 with the weights from training on

ImageNet, adding a classification layer at the end of the network

that reflected our two classes (whereas ImageNet has 1000). Our

motivation was that, whereas ImageNet is a much more diverse

dataset with mostly irrelevant images, the low-level layers should

contain useful shape extractors (lines, curves, angles, etc.) that may

be re-trained for our classification problem.

We re-trained these models on our brain dataset. Generally,

InceptionV3 performed poorly, with average accuracies in the range

Fig. 1. Somite number does not accurately

predict brain development at HH10. (A) Live

imaging reveals the rapid morphological

changes in the brain as a HH10 embryo (first

three panels) develops to HH11 (fourth panel)

(n=6). (A′) Schematics of images shown in A

pointing to key morphological features used for

classification: prosencephalic width (dotted,

double-headed arrows); angle of prosencephalic

neck; shape of developing midbrain/hindbrain

(arrowheads). (B-E) Brightfield views of

individual embryos, with early prosencephalic

morphology (B,C; schematics in B′,C′) or late

prosencephalic morphology (D,E; schematics in

D′,E′). (F) Brightfield views of embryos with

distinctive brain morphologies (early and late),

but similar somite numbers. Features as shown

in A′ are indicated. (G) Number of somites in

HH10 embryos (n=22), ordered independently

by two experts according to head morphology

from early to late (with reference to images in A).

Scale bars: 100 μm (A-E); 500 μm (F).
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of 47-52% across the various augmentation regimes (Table S2).

ResNet50 performed better (average accuracies in the range of 50-

70%), but the highest individual model accuracy achieved was still

only 75.9% (baseline and Gaussian blur regime). Additionally, this

regime achieved the second lowest standard deviation (6.8%), an

important metric in light of a limited dataset (Table S2). We then

investigated whether freezing the low-level layers of ResNet50

could improve our results, as these are likely basic shape extractors

(e.g. circles/lines) that could be useful for our classification

problem. We found that this did improve test accuracy, with a

maximum accuracy of 80.6% (Table S2, Freeze 10).

A bespoke neural network classifies brain sub-stages with

up to 87% accuracy

Having found that we could obtain a reasonably accurate classifier

throughout re-training ResNet50, we investigated whether we could

improve classification accuracy beyond that achieved by ResNet50

by designing a bespoke DCNN. Our investigations using

InceptionV3 and ResNet50 had revealed that performance could

be substantially improved by data preprocessing, and the selection

of particular augmentation regimes. In addition, classifier

performance can be improved by optimising parameters that are

set prior to training. These hyperparameters comprise the overall

computational architecture of the network, including the number of

computational units, and the rate at which these units update their

connection weights – the learning rate. Hyperparameters are

typically optimised via systematic (LeCun et al., 1998) or random

(Bergstra and Bengio, 2012) search. Bayesian optimisation

techniques are increasingly used, with a probability model

informing which values to test (Shin et al., 2020). An open

question then, when training DNNs on microscopy images, is how

best to exploit the combination of hyperparameters (e.g. network

architecture) and data augmentation techniques to suit typically

small datasets in developmental biology.

We chose to construct a model with a wide, VGG-16 block-style

architecture (Fig. S3D), which has been successful in image

classification (Simonyan and Zisserman, 2014 preprint). We used

Bayesian optimisation and empirical selection to tune the

hyperparameters (Table S4). We then determined the most useful

and robust augmentation regimes (Table 1, brain dataset). Overall,

our bespoke DCNN with our baseline augmentation regime

performed well, surpassing our best ResNet50 results (average

test accuracy of 73.5%). Better still, across the training process, each

augmentation resulted in a higher validation accuracy than the

baseline augmentation alone (rotation, see above), our best-

performing augmentation set being ‘baseline & shear’ (83.9% test

Fig. 2. Changing developmental potential in the HH10 chick brain. (A-B′) Ventral wholemount views of isolated brains from HH10 embryos with ‘early’

(A) and ‘late’ (B) morphologies after HCR to detect expression of SHH and BMP7. In embryos with ‘early’ morphology, anterior-most HypFP cells co-express

SHH and BMP7 and extend to a characteristic flexure in the ventral midline (white arrowheads in A,B). Tuberal progenitors express SHH but not BMP7 and are

readily detected in embryos with a ‘late’ prosencephalic morphology (green arrowhead in B) (n=20). Expression patterns are summarised schematically in A′,B′.

(C-F) Side views of hemisected HH18 heads after HCR to detect expression of PAX2 (C), SIX6 (D) or SHH (E), which mark cells with different positions along the

anterior-posterior axis (n=10), summarised schematically in F: optic stalk (PAX2); anterior tuberal neurogenic progenitors (SIX6); anterior tuberal and

supramammillary progenitors, ZLI and floor plate (SHH). (G-H‴) Targeted injection of DiI into nascent tuberal progenitors in HH10 embryos with ‘early’ (G) or ‘late’

(H) prosencephalic morphologies (n=10 each). Cells targeted in an ‘early’ embryo fate-map to the anterior-most tuberal region, just posterior/ventral to the optic

stalk (G′,G″; shown schematically in G‴); cells targeted in a ‘late’ embryo fate-map to more posterior tuberal regions, overlying Rathke’s pouch (H′,H″; shown

schematically in H‴). White arrowheads indicate DiI injection points. (I,J) Same embryos as in G,H, depicting regions explanted (boxed), encompassing anterior-

most HypFP cells and adjacent regions. (K,L) Explants taken from ‘young’ or ‘old’ HH10 embryos, cultured for 48 h, and analysed by HCR to detect PAX2

(green), SIX6 (red) and SHH (cyan) (n=5 each). Scale bars: 100 μm (A,B); 250 μm (C-E); 100 μm (G,H); 250 μm (G′,H′); 100 μm (G″,H″); 100 μm (I-L).
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accuracy). We also tested the efficacy of Möbius transformations, a

class of geometric mappings that have proven successful in other

limited data contexts (Zhou et al., 2021) but are untested for

microscopy image classification. We reasoned that Möbius

transformations could introduce the DCNN to common microscopy

artefacts, e.g. tissue bending during sample preparation. However, our

baseline andMöbius transformations performed more poorly than the

baseline alone (Table S3, average accuracy: 66.1%). We then tested

sparse addition of Möbius transformations on top of a successful

regime (Gaussian blur): augmenting only 10% of the data with

Möbius transformations improved test accuracy above Gaussian blur

alone (84.6% versus 80.7%; Table 1, Table S3) but simultaneously

introduced a lot of variance in model training, increasing the standard

deviation of all the folds from 0.1% to 5.8%.

Having confirmed that additive pairwise augmentations are

useful (e.g. baseline rotation and Gaussian blur; baseline rotation

and shear), we next examined whether more sophisticated

combinations would further test accuracy: a (random) choice

regime and a combined regime (Table 1). The first of these was

pairwise as before, but the augmentation on top of baseline was

chosen at random, so that each image had two augmentations

applied. In the second, the combined regime, every transformation

was applied to each image. In both cases, training a model using

these combinations improved performance. We identified an

informed combined regime that resulted in substantially higher

test accuracies (Table 1; brain dataset model 10: 87.1%), i.e. in

which the network had learned ‘difficult’ features of the images. We

suggest that this regime is optimal when dealing with small datasets

that exhibit high variability in DCNN training.

To assess how our DCNN classifier performs compared with

experimentalists, we asked several researchers of varying chick

embryology experience to classify the same test data set as the

DCNN (with researchers unaware of the stages of samples). The

accuracy of these experimentalists was as follows: 66%, 70%, 76%,

80%, 84% (<1 year of experience), and 76% and 87% (3-4 years of

experience).

At the same time, we investigated how the DCNN sub-stage

prediction compared with a post-hoc biological ground truth, the

differential expression of SHH and BMP7 in HH10 embryos

(Fig. 2A,B) (Chinnaiya et al., 2023). A set of HH10 embryos

(n=11) were analysed by in situ hybridization chain reaction

(HCR) for expression of SHH and BMP7, and wholemount images

taken under either brightfield or epifluorescence (Fig. 3A-B″). An

independent expert was then asked to classify embryos as sub-

stage 10 early or late on the basis of the epifluorescence profiles

alone (i.e. without morphological information) and vice versa

the machine classifier was provided with only brightfield images,

and asked to classify on the basis of morphology. We found

the DCNN predicted the sub-stage with 93% accuracy. For

comparison, we then provided the same morphological images to

two further independent experts. These individuals performed

similarly to the DCNN, predicting the sub-stages with 86% and

93% accuracy.

In summary, we constructed a bespoke DCNN that was

substantially better suited to classifying HH10 brain sub-stages

than ResNet50 or InceptionV3.

The re-trained DNN classifies chick wings with up to 86%

accuracy

We next investigated whether the convolutional layers from our

highest-scoring model (Table 1, model 10; 87.1% test accuracy),

and our preprocessing and data augmentation approach could be

applied to a second, similarly sized microscopy dataset, using

previously published data (Towers et al., 2008) comprising 269

images of HH24-HH28 chick wings (Fig. S3B; see Materials and

Methods). In contrast to the HH10 brains, the wings are rather

amorphous, and are not easily classifiable by the HH staging

system.

The wing dataset comprised images from embryos in which a

control bead, or a trichostatin A-conjugated bead, had been

implanted at HH20; the embryos developed for up to 56 h, and

were then analysed for expression of SHH. Images were divided into

two categories: ‘control’ (representing normal wing development)

and ‘treated’. Trichostatin A transiently inhibits growth and leads to

morphological changes in thewing bud, making it difficult to assign

an HH stage. We examined whether the DNN could categorise wing

Table 1. Augmentation exploration of the brain and wing datasets

Augmentation Fold test accuracy (%)

1 2 3 4 5 6 7 8 9 10 Average s.d.

Brain dataset

1 77.4 74.2 48.4 74.2 80.6 70.1 74.2 74.2 80.6 80.6 73.5 0.09

1+2 77.4 80.7 54.8 77.4 74.2 77.4 74.2 77.4 74.2 80.7 74.8 0.07

1+3 77.4 74.2 45.2 80.7 83.9 77.4 77.4 74.2 71.0 80.7 74.2 0.10

1+4 80.7 64.5 41.9 80.7 80.7 67.7 74.2 74.2 71.0 80.7 71.6 0.10

1+5 77.4 71.0 54.8 77.4 77.4 71.0 71.0 74.2 67.7 77.4 71.3 0.07

1+2/4/5 RC 77.4 67.7 54.8 74.2 74.2 74.2 77.4 71.0 77.4 83.9 73.2 0.08

1+2+4+5 77.4 51.6 58.1 77.4 87.1 80.6 74.2 83.9 74.2 87.1 74.5 0.11

Fold Avg. 77.9 69.1 51.1 77.4 79.7 74.1 74.7 74.7 72.6 81.6

Wing dataset

1 (flipped)+2+4+5 79.1 83.7 81.4 86.1 86.1 86.1 86.1 83.7 86.1 86.1 84.4 0.02

1 (flipped)+5 60.5 74.4 74.4 74.4 74.4 76.7 74.4 72.1 81.4 79.1 74.2 0.06

1 (flipped)+5 (SHH cutout) 69.8 67.4 69.8 69.8 69.8 74.4 72.1 67.4 67.4 67.4 69.5 0.02

For each dataset, we used nested cross-validation, utilising k-fold cross-validation for model tuning/augmentation selection and evaluating on an independent

held-out dataset. The individual fold test accuracies achieved by each network are shown in columns 1-10, followed by their averages and standard deviations.

Bold values represent maximum accuracy across folds for each augmentation regime. As a baseline processing step, all images were rotated 15 times, at equally

spaced degrees. For the brain dataset, we tested different augmentations on top of this baseline. For the wing dataset, we tested the combined augmentation

regime that gave the highest test accuracy for the brain dataset. Augmentations: (1) baseline – rotation and (wing only) flip; (2) shear; (3) crop; (4) Gaussian blur;

(5) cutout; (1+2/4/5 RC) random combination of baseline, Gaussian blur, and cutout. SHH cutout; a variant of cutout in which the SHH expression has been

manually cutout masked. Examination of the training/validation sets used for training fold three models highlighted that the validation set contained an unusually

high proportion of dark subject/light background images, which represent a smaller proportion of the overall dataset (Fig. S3A).
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buds on the basis of the drug-induced morphological changes,

regardless of their presumptive developmental stage.

The training regime was similar to that used for brain

classification, but with one additional augmentation: we included

images that were flipped along the horizontal axis. This was

motivated by the experimental design, whereby right wing buds

were treated and left wing buds were left as control (Towers et al.,

2008). Introducing flipped images was essential because the classes

were always oriented in one direction, so DCNNs that were trained

without the flipped versions would overfit substantially, with highly

exaggerated accuracy results. To determine whether the shape

features (‘filters’) learned by the DCNN during brain dataset

training could be useful for other morphological problems, we froze

the feature extractors (filters) learnt in the convolutional layers

learned on the brain dataset (Zeiler and Fergus, 2014) and trained

only the fully connected layers at the end of the network (Fig. S3D,

FC): the latter learn the relationship between the extracted shapes

and the classification (Yamashita et al., 2018).

We found that the test accuracies achieved were generally even

higher than for the brain classification (average test accuracy

84.4%; highest accuracy on any individual model 86.1%: Table 1,

wing dataset). Thus, our brain dataset-based DCNN, trained via a

strategy of reasoned data augmentations, extended well,

classifying another limited microscopy dataset of developing

wings with high accuracy with minimal modifications to the

training pipeline.

Saliency maps identify biologically relevant class-specific

features

Having trained two accurate DCNN classifiers on two separate

datasets, we next performed saliency analysis on each classifier to

determine the image region(s) to which it was sensitive. In the case

of the brain dataset, we examined whether the DCNN had

recognised the relevant features used by experimentalists. For the

brain dataset, we selected the best-performing classifier from

Table 1 (brain dataset, model 10) and generated saliency maps for

test images across each sub-stage (Fig. 4A-E), as well as maps in

which we had filtered out low-level activations (Fig. 4A′-E′), and

scored each image in the test dataset based on the areas with high

levels of attention (Fig. 4A″-E″). Additionally we generated a mean

saliency map of each sub-stage (Fig. 4F,G).

For both brain sub-stages, the most salient regions were those

used by the human experts to initially classify the data: the

prosencephalic neck and the midbrain/hindbrain edges (Fig. 4, cyan

and magenta arrowheads); 71% of the test dataset had high

activation in these regions. Additionally, 33% showed focus on the

characteristic flexure in the prosencephalic ventral midline where

the nascent tuberal hypothalamus is located (Fig. 4, orange

arrowheads). Additionally, 50% of the maps showed focus on the

anterior edge of the prosencephalon (Fig. 4, blue arrowheads), a

feature not accounted for in the initial classification, but which

could potentially reflect the changing angle of the prosencephalic

neck. The mean saliency maps confirmed these conclusions

Fig. 3. Comparison of DCNN prediction against biological ground truth. (A) Example brightfield image of an HH10 embryo classified as 10 (early) by the

highest scoring brain DCNN classifier in Table 1 (87.1% accuracy). (A′-A‴) HCR in situ hybridisation of the same embryo for the hypothalamic markers SHH

(A″) and BMP7 (A‴). Note these images are of whole embryos, rather than isolated brains as shown in Fig. 2. In the forming hypothalamus, SHH and BMP7

are co-expressed. This co-expression forms the biological ground truth for the 10 (early) sub-stage to compare against predictions made by the DCNN

classifier or experimentalists. (B) Example brightfield image of an HH10 embryo classified as 10 (late) by the DCNN classifier. (B′-B‴) HCR in situ of the

same embryo for SHH (B″) and BMP7 (B‴). In this embryo, SHH extends lateral and anterior to BMP7 in the forming hypothalamus and this forms the

biological ground truth for the 10 (late) sub-stage. (C) Classification accuracy of brightfield images by the DCNN and two independent experts, evaluated

against the biological ground truth determined by HCR in situ. Classification accuracy is similar between the DCNN and each experimentalist (Exp A, Exp B).

Insets show boxed regions. Scale bars: 250 μm.
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(Fig. 4F,G). Taken together, these results show that the DCNN has

learned new as well as previously characterised biologically

relevant class-defining features.

We hypothesised that the saliency maps of the misclassified

brains may reveal features that are distracting to the DCNN, but

examination of these maps did not highlight erroneous features.

Instead, regions that were highlighted were similar to those

highlighted in accurately classified brains, but, in general, the

saliency maps showed low activation. Potentially, these embryos

were on a ‘decision boundary’.

We next generated saliency maps from the wing classifier

(Fig. 5A-H), in order to determine whether classification was by

attention to obvious features, such as SHH expression/limb size,

or by another means. As with the brain saliency analysis, we

again filtered high levels of activation (Fig. 5A′-H′) and scored

the saliency maps with reference to morphological landmarks

(Fig. 5A′-H′, arrowheads). The saliency maps did not focus

attention on any individual feature. The most consistent regions

of high activation were the anterior margin of the wing, where

69% of the maps showed a focus (Fig. 5B′,C′,E′,G′,H′, magenta

arrowheads), and the distal edge of the wing, where 50% of

the maps showed a focus (Fig. 5B′,C′,E′,F′,H′, blue arrowheads).

There were three more morphological features with obvious

activation: the posterior margin (the focus of attention in 33% of

the saliency maps) (Fig. 5C′,G′, red arrowheads), the ‘shoulder’

region where the anterior edge of the wing meets the trunk (24%)

(Fig. 5B′,D′,F′,G′, green arrowheads), and the proximal edge,

spanning the anterior-posterior axis (12%) (Fig. 5B′,F′, wing width

anterior-posterior). Surprisingly, the classifier did not consistently pay

attention to the presence of SHH expression (Fig. 5F′, orange

arrowhead: only 17%of images show such focus), despite the fact that

SHH is generally reduced after treatment with the growth inhibitor

(Towers et al., 2008). We confirmed this by re-training the brain

classifier on the limb dataset, which had been preprocessed to remove

SHH expression via the cutout augmentation. This resulted in a

maximum test accuracy of 74.4% and an average across all folds of

69.5%, i.e. very similar to the randomised cutout regime (Table 1,

1 (flipped)+5 versus 1 (flipped)+SHH cutout). Overall, the saliency

analyses reveal how classification can be made through learning of

features by the DCNN that are not immediately obvious to the

experimentalist.

In general, DCNNs are not directly interpretable and are often

considered ‘black box’ solutions, and it remains an open challenge

when training DCNNs as to how best to interpret their output. Taken

together, these results show how saliency analysis helps our

interpretation of how the classifiers make decisions, including

highlighting unforeseen morphological changes. Our findings

illustrate how rigorous examination of classifier attention can

provide insight into data processing and augmentation efficacy and

into the features of the embryo that most determine the classification.

DISCUSSION

Classifying embryos into discrete stages is challenging owing to the

continuous nature of development. Advances in high-resolution

Fig. 4. Saliency maps of HH10 (early) and HH10 (late) sub-stages highlight defining morphological features. (A-E) Saliency maps of HH10 (early)

embryos (A-C) and HH10 (late) embryos (D,E) generated by the highest performing (87.1% test accuracy) bespoke classifier (Table 1, brain dataset, model

10). None of the images was used in training/validation of the DCNN. (A′-E′) As in A-E but with low level saliency pixels filtered out. (A″-E″) Corresponding

test input images converted to greyscale and with brightness/contrast normalised. Coloured arrowheads point to regions of high attention. (F,G) Average

saliency maps computed across every test image per class, overlaid to the embryo with which the images were aligned. The entire test dataset is scored with

key morphological regions counted. Prosencephalic neck: 71%; midbrain/hindbrain edge 71%; anterior edge of the prosencephalon: 50%; anterior

hypothalamic floor plate: 33%. Note that the same regions of pixels can be relevant to both classes in a DCNN. For example, if the angle of the

prosencephalic neck is crucial for distinguishing between the 10 (early) class and 10 (late) sub-stages, then the network could focus on that region embryo

shown in C. This could reflect that the embryo shown in C has features of both stages and may represent a transitional point. Scale bars: 100 μm. Note, there

is an alternative version of this figure (Fig. S4) with the saliency maps on the same embryos plotted using the ‘viridis’ colour map.
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methods, including imaging and single-cell RNA sequencing

(Cutrale et al., 2019) suggest the need to stage embryos more

accurately than is possible through traditional staging guides. Here,

we demonstrated the biological imperative of sub-classifying the

HH10 chick brain, and then investigated whether this could be

achieved through machine-learning methods. Neither unsupervised

nor traditional supervised computational methods were able to

classify brains accurately in a manner that reflected their

developmental stage. By contrast, our trained DCNN classifier

was able to classify the HH10 brain accurately, through a focus on

subtle morphological changes that reflect and extend beyond human

expertise.

A consensus in the field of deep learning is that for small datasets,

transfer learning using open-source models (e.g. InceptionV3 and

ResNet50, both trained on huge general datasets) can be used

effectively. For instance, ResNet50 has been used successfully in

other biomedical fields (Baltruschat et al., 2019). We found in our

case that training using InceptionV3 was not effective. By contrast,

ResNet50 performed surprisingly well (up to 75.9% accuracy when

retraining all layers; up to 80.6% when freezing the first 10 layers

and retraining the rest) when re-trained on our data. However, this

performance leaves room for improvement so we examined whether

a bespoke network trained from scratch (randomly initialised, rather

than pretrained) would achieve even higher classification

accuracies.

For training a model from scratch on a small dataset, a main

consideration is avoiding overfitting. Previous deep-learning efforts

to classify microscopy images in developmental biology have

focused on hyperparameter optimisation (Pond et al., 2021) and

rotational augmentations (Ishaq et al., 2017). By contrast, here we

performed a thorough and systematic exploration of a wide variety

of data processing and augmentation regimes. Importantly, our data

Fig. 5. Saliency maps identify important morphological features in the classification of developing chick wings. (A-H) Saliency maps of control

(A,C,E,G) and trichostatin A growth-inhibited (B,D,F,H) wings paired according to approximate wing size generated by the 86% test accuracy bespoke model

(Table 1, wing dataset, model 4) on an independent (not using DCNN training/validation) test dataset. (A′-H′) As in A-H but with the low-level saliency pixels

filtered out. Input images were converted to greyscale with histogram normalisation applied. The saliency maps in the entire test dataset are scored according

to morphological features: shoulder (green arrowheads), proximal and distal edges of the wing (yellow and blue arrowheads, respectively), and anterior and

posterior wing margins (magenta and red arrowheads, respectively). Scale bars: 500 μm. Note, there is an alternative version of this figure (Fig. S5) with the

saliency maps plotted using the ‘viridis’ colourmap.
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augmentations help remove biases towards irrelevant features, such

as illumination, orientation, focus, size and colour, which may vary

between images. Moreover, these augmentations could be assisting

the network to focus on true sub-stage characteristic(s), rather than

features arising from biological inter-sample variation. We found

that model performance depended strongly on data augmentation,

with a combination of individually successful augmentations

proving most effective. Overall, our bespoke network achieved

high classification accuracy of the chick brain (87.1%). To extend

the application of our classifier, we applied similar augmentation

regimes and fine-tuned our brain classifier on a wing dataset,

achieving similarly high classification accuracies.

We used saliency maps to identify the image regions to which our

classifier was sensitive. In the case of the brain dataset, the classifier

was most sensitive to the prosencephalic neck, the developing

midbrain/hindbrain and the ventral prosencephalic flexure –

precisely those regions used by the human experts to initially

classify the data. This indicates that classification by the DNN is

made on the basis of biologically relevant features, boosting

confidence in the efficacy of our augmentations, and the classifiers’

performance generally. The brain classifier identified one further

region – the anterior prosencephalic edge – that had not featured in

the initial classification. Retrospective analyses of the images reveal

that, indeed, the slope of the anterior prosencephalon alters through

HH10, as the optic vesicles lengthen. Therefore, the DCNN can

provide insight into novel classifying features.

Overall, saliency maps can be thought of as hypothesis

generators, as they provide a highly intuitive way to understand

trends in image datasets when evaluated against a well-trained and

accurate classifier. However, any conclusions drawn based on these

must be validated experimentally as saliency maps are limited by the

training data of the classifier, a statistically driven approach that

carries inherent limitations. For example, the saliency maps

highlight the prosencephalic neck as a crucial region important in

distinguishing between sub-stage 10 (early) and 10 (late). This is a

consistent description of the image data, and might reflect that this

zone is morphologically dynamic – for instance, undergoing

directed tissue growth or cell movements – but functional studies

are required to confirm this.

In the case of the wing classifier, we initially hypothesised that

the DCNN would primarily rely on ‘simple’ features such as overall

size or the expression profile of SHH to categorise control and

treated wings. Surprisingly, saliency analysis revealed that the

DCNN paid little attention to these metrics and instead focused on

other morphological characteristics. The simplicity of the wing

bud’s structure, combined with the classifier’s emphasis on specific

edges and regions, suggests that the images contain important

information regarding subtle morphological differences between

control and treated embryos. This illustrates how post-hoc classifier

analysis can motivate new biological hypotheses. For example,

the drug trichostatin A is thought to inhibit growth through cell

cycle arrest and apoptosis (Bouyahya et al., 2022), which suggests

that local shape changes more specific than overall growth/size

may be integral to correct shaping of the limb, warranting further

investigation.

Overall, our results illustrate the utility of saliency analysis in

interpreting image classifiers for developmental biology, similar to

other biomedical fields (Baltruschat et al., 2019; Panwar et al.,

2020), an idea that appears to be gaining traction in developmental

biology (Barry et al., 2023 preprint). The use of saliency methods

will encourage confidence in non-specialists to use DCNN-based

classifiers. Further work could expand the dimensions of the images

used. We used 2D morphological profiles to train our classifiers.

Extending this with 3D fluorescent images, which are increasingly

used in developmental biology, could provide a richer amount of

information to the model and result in a more robust, accurate

classifier. Additionally, including gene expression data in the actual

training process for the brain classification could couple our sub-

stages to biological mechanism(s). Importantly, our freely available

pipeline extends naturally to developmental datasets with different

problems or classes. Our chosen strategy will therefore allow image

classifiers to be trained for other biological systems with limited

microscopy data. Our DCNN provides a tool to stage embryos at

greater temporal resolution than conventional staging systems,

offers the potential to compare embryos of different species, and

could assist experienced researchers studying unconventional or

emerging experimental organisms in developing staging systems for

these organisms.

MATERIALS AND METHODS

Chicks

Fertilised Bovan Brown eggs (Henry Stewart & Co., Norfolk, UK) were

used for all studies, which were performed according to relevant regulatory

standards (University of Sheffield). All experiments used to generate the

data were carried out according to the UK Animals (Scientific Procedures)

Act 1986. Named Animal Care and Welfare Officers (NACWOs) had

oversight of all incubated eggs.

Neural tube isolation, explant dissection and culture

HH10 neural tubes were isolated from surrounding tissue by dispase

treatment, as previously described (Ohyama et al., 2005). The

hypothalamus was dissected using tungsten needles, defined through its

characteristic neuroepithelial folded appearance in the prosencephalic

ventral midline (Chinnaiya et al., 2023). Explants were then processed for

in situ HCR as below.

HCR

Embryos, neural tubes or explants were fixed in 4% paraformaldehyde,

dehydrated in a methanol series and stored at −20°C. HCR v3.0 was

performed using reagents and protocol from Molecular Instruments Inc.

Samples were preincubated with a hybridization buffer for 30 min and the

probe pairs were added and incubated at 37°C overnight. The next day,

samples were washed four times in the probe wash buffer, twice in 5×SSC

buffer, and preincubated in amplification buffer for 5 min. Even and odd

hairpins for each gene were snap-cooled by heating at 95°C for 90 s and

cooling to room temperature (RT) for 30 min. The hairpins were added to

the samples in amplification buffer and incubated overnight at RT in

the dark. Samples were then washed in 5×SSC and counterstained with

DAPI. Details of reagents used were as follows: chicken SHH custom-

designed probe set, HCR v3.0 (Molecular Instruments, Inc; identifier

NM_204821.1); chicken BMP7 custom-designed probe set, HCR v3.0

(Molecular Instruments, Inc; identifier XM_417496.6); chicken SIX6

custom-designed probe set, HCR v3.0 (Molecular Instruments, Inc;

identifier NM_204994.1); chicken PAX2 custom designed probe set,

HCR v3.0 (Molecular Instruments, Inc; identifier NM_204793.1).

Fate mapping

Fate-mapping studies were a retrospective analysis of previous work (Fu

et al., 2017; Chinnaiya et al., 2023).

Live imaging

Eggs were windowed and embryos in Fig. 1A were imaged in ovo at

intervals of 0, 3, 7 and 12 h using a Leica MZ16F microscope at 10×

magnification.

Fluorescent image acquisition

Fluorescent images were taken on a Zeiss Apotome 2 microscope with

Axiovision software (Zeiss) or LeicaMZ16Fmicroscope or Olympus BX60
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with Spot RT software v3.2 or Nikon W1 Spinning Disk Confocal with

Nikon software. Images were processed using ImageJ (Fiji; Schindelin et al.,

2012) and Adobe Photoshop 2021, and (for multiplex HCR) digitally

aligned using the Fiji plugin ‘Align slice’ (https://github.com/landinig/IJ-

Align_Slice), where the xy positions of the channels were adjusted such that

the anterior neuropore was in the same position per embryo for all channels.

Data acquisition

Ground truth data used for training and validating classifiers comprised

brightfield and phase-contrast microscopy images of HH10 (9-12 somite)

chick embryos (brain data) and HH18-24 (wing data), including published

and unpublished data. Images were acquired using an Olympus BX60

microscope, a Zeiss AxioImager.Z1 microscope, and a Leica MZ16F

dissecting microscope at 4× or 10× magnification. The brain dataset

comprised 152 images (70 ‘early’ and 82 ‘late’) and was acquired as

outlined by Fu et al. (2017) and Chinnaiya et al. (2023). Brain training data

were labelled into two sub-stages, ‘early’ and ‘late’, assigned according to

the overall shape of the prosencephalon, the angle of the posterior

prosencephalon relative to the prosencephalic neck, the optic vesicle and

rhombencephalon shape. The wing dataset contained 269 images (150

‘control’, and 119 ‘trichostatin A treated’), and were acquired as outlined by

Towers et al. (2008). The images of both datasets were JPEG format, and

varied in resolution from 188×188 to 1000×1000 pixels.

Clustering analysis

The dimensionality of the raw images was reduced via principal component

(PC) analysis (Partridge and Calvo, 1998). The appropriate number of PCs

was determined to be two by iteratively increasing this number from one

until we found diminishing returns in the proportion of variance explained

(Fig. S1). k-means clustering was performed on the dimensionally reduced

dataset (Ranjan et al., 2017), determining the appropriate number for k to be

three by iteratively increasing this number from one until we found

diminishing returns in the reduction in within-cluster sum of squares

(Bholowalia and Kumar, 2014). Haralick image texture features were

computed as a feature extraction method (Haralick et al., 1973), prior to

clustering analysis as above (Fig. S2).

Data preprocessing

Preprocessing steps were applied to encourage the trained model to be

invariant to image features that are not classifying (e.g. scale, colour)

(Table 1, Table S2, Fig. S3). Images were converted to greyscale, resizing to

200×200 pixels. This resolution is sufficiently small to be easily processed,

but sufficient spatial resolution to distinguish morphology is retained.

Histograms of each image were normalised to brighten images that were too

dark and vice versa.

Data augmentation

The following augmentations were applied in various combinations: Rotation

(each image rotated by 36 multiples of 10°), Crop (parameters), Shear

(parameters), (Gaussian) blur (parameters), Cutout (which aims to reduce the

classifier’s reliance on those masked features; DeVries and Taylor, 2017

preprint),Möbius transformations (bijective conformalmappings that preserve

angles and which may be effective in accounting for user error in microscopy

image acquisition, e.g. sample damage during preparation; Zhou et al., 2021).

Our rotation method enlarged the images on rotation without cutting off any

part. This meant that in addition to rotational and colour invariance, scale

invariance would be included into the baseline datasets. For the wing

classification, we also incorporated flipped images as part of the baseline.

Traditional classifiers

For each of our RFC, SVM and KNN classifiers, we fitted ten separate

models, generating a new training and validation split for each model. Our

splitting followed an 80:20 ratio (120 training, 32 validation images).

Cross-validation

We used a nested cross-validation scheme, whereby at the outset 20% of

the dataset was set aside as a stratified test set, i.e. the ratio of labels in the test

set reflecting the ratios of the entire datasets [in the brain, a ratio of

0.45:0.54; 10 (early):10 (late), and in the wing – 0.54:0.44; control:treated].

On the remaining data, we employed k-fold cross-validation to

compare augmentation/preprocessing performance and avoid overfitting.

Briefly, we partitioned the dataset into ten non-overlapping folds. We then

trained the network on folds 2-10 and validated on fold 1. Following this,

the network was trained with folds 1 and 3-10, with the second fold used

for validation. This proceeded until all folds were used. In this way,

we validated the performance of our neural network across the entire

dataset. Finally, the DCNNs were evaluated on an independent

(unaugmented) test set, and the highest accuracy DCNNs used for the

respective saliency analyses.

InceptionV3 and ResNet50

For retraining the InceptionV3 (Szegedy et al., 2015) and ResNet50 (He

et al., 2016) networks, we used the publicly available ImageNet weights (i.e.

the weights of the network which had achieved high performance on

ImageNet), then trained between 1 and 500 epochs, halting training if ten

epochs had passed without increasing validation accuracy >0.01%. The

number of epochs to pass, and the early stopping threshold, were selected

empirically based on the speed at whichmodels that were allowed to train for

500 epochs converged. When this was triggered, we restored the highest

scoring weights in training before saving the model. Following Goodfellow

et al. (2016), we inserted a softmax classification layer as the last layer in the

model. The softmax activation performs the actual classification by

mapping the input to between 0 and 1, and outputting two values which

sum to 1, which effectively defines probabilities of the input belonging to

each sub-stage. This was necessary as both InceptionV3 and ResNet50 were

designed around the ImageNet dataset (1000 classes). We used the

optimiser Adam with a learning rate of 10−5 (Zhang and Mitliagkas, 2019;

Margapuri et al., 2020 preprint).

Neural network architecture

The bespoke DNN was based on the visual geometry group (VGG-16)

model architecture (Simonyan and Zisserman, 2014 preprint) (Fig. S3D).

This architecture involves repeated functional units or VGG ‘blocks’, each

comprising a convolutional layer with resolution preservation followed by a

max-pooling layer that performs 2× spatial down-sampling. In contrast to

VGG-16, we included a single convolutional layer between each max

pooling layer. However, we retained the small filter sizes (3×3), which

help to capture local features, an important step in fine-grained image

classification. Between the convolutional and max-pooling layers there is a

rectified linear unit (ReLU) activation function (Agarap, 2018 preprint). As

the actual spatial resolution of the data decreases, the number of filters

doubles. Thus, the first layer that receives the 200×200 image input has 16

functional units, which is repeated six more times resulting in a final

convolutional layer with dimensions 4×4, with 1024 functional units. This

follows a similar pattern to VGG-16; however, the largest convolutional

layer in VGG-16 is 512 wide, whereas we extended to 1024. Following

these blocks, we included three fully connected layers (of 1024, 2048, 2048

units), followed by a softmax classification layer; in contrast, VGG-16 uses

three wider (4096 units) fully connected layers.

Training regime

Optimal hyperparameters for our baseline are summarised in Table S4. We

regularised our network with L2 regularisation (weight decay), which

penalises large weights in a neural network (Goodfellow et al., 2016). The

key parameter, λ, is a fraction of the sum of the squared weights of the

network. As λ increases, the loss function value increases. Because a neural

network is optimised by minimising the loss function, L2 regularisation

encourages smaller weights and thus less complex models. Our optimal

value of 10−4 for λ was determined by Bayesian optimisation and has been

found to be effective in other training image classifiers (Gabas et al., 2016).

We also used dropout, which randomly turns off neurons in a layer at a given

rate (Srivastava, 2013). This discourages individual neurons from becoming

dominant, encouraging a classifier with better generalisability. We added a

20% dropout layer between each convolutional and max pooling layer, and a
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50% dropout layer before the final classification; these percentages were

also determined through Bayesian optimisation. We used the optimiser

Adam, with a learning rate of 10−5, determined through Bayesian

optimisation. We set our range of trialled learning rates to test during

optimisation (10−1-10−6) according to our InceptionV3 / ResNet50 learning

rate of 10−5.

Saliency analysis

In the saliency maps, image pixels were generated using the SmoothGrad

method and coloured based on whether they contributed more (hot colours)

or less (cold colours) towards the output prediction (Smilkov et al., 2017

preprint). This produced a map of the input features that the network deemed

most and least important towards a classification. Saliency maps used test

images not involved in model training or validation. To generate mean

saliency maps for each sub-stage, images were aligned using the anterior

neuropore as a reference point.

Software

Image greyscale conversion, resizing and histogram normalisation were

implemented using OpenCV (3.4.2.17) and pillow (8.3.1) (Bradski, 2000;

https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf). All

augmentations were implemented with imgaug 4.0 and augmentation

parameters were randomly selected from ranges given in the provided codes

(https://github.com/aleju/imgaug). Clustering was implemented in Python

3.7.12 using scikit-learn 0.24.1 (Pedregosa et al., 2011). Figs S1 and S2

were generated using seaborn 0.11.2 (Waskom et al., 2021) and matplotlib

3.2.2 (Hunter, 2007). Hyperparameter fine-tuning was implemented using

keras-tuner 1.1.3 (https://github.com/keras-team/keras-tuner). All neural

networks were built with Keras 2.10.0 (https://keras.io) and trained using

TensorFlow 2.10.0 (https://www.tensorflow.org/). Neural networks were

built and trained using Python 3.6. The models were trained on a mixture of

a NVIDIA Tesla V100 GPU, using the HPC system provided by the Joint

Academic Data Science Endeavour (JADE) II, and a NVIDIA RTX 4070.

Saliency maps were generated using tf-keras-vis 0.8.0 (https://github.com/

keisen/tf-keras-vis). A full software dependency list is provided at: https://

github.com/ianbgroves/chick_embryo_DCNN_classifier.
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