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Disorder-tunable entanglement at infinite temperature
Hang Dong1†, Jean-Yves Desaules2†, Yu Gao1†, Ning Wang1, Zexian Guo1, Jiachen Chen1,
Yiren Zou1, Feitong Jin1, Xuhao Zhu1, Pengfei Zhang1, Hekang Li1, Zhen Wang1*, Qiujiang Guo1,
Junxiang Zhang1, Lei Ying1*, Zlatko Papić2*

Emerging quantum technologies hold the promise of unravelling difficult problems ranging from condensed
matter to high-energy physics while, at the same time, motivating the search for unprecedented phenomena
in their setting. Here, we use a custom-built superconducting qubit ladder to realize non-thermalizing states
with rich entanglement structures in the middle of the energy spectrum. Despite effectively forming an
“infinite” temperature ensemble, these states robustly encode quantum information far from equilibrium, as
we demonstrate bymeasuring the fidelity and entanglement entropy in the quench dynamics of the ladder. Our
approach harnesses the recently proposed type of non-ergodic behavior known as “rainbow scar,”which allows
us to obtain analytically exact eigenfunctions whose ergodicity-breaking properties can be conveniently con-
trolled by randomizing the couplings of the model without affecting their energy. The on-demand tunability of
quantum correlations via disorder allows for in situ control over ergodicity breaking, and it provides a knob for
designing exotic many-body states that defy thermalization.
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INTRODUCTION
The abundance of entanglement and other types of correlations in
many-body systems make them an attractive resource for quantum
information processing. Quantum coherence, however, is typically
fragile, even in systems that can be considered well isolated from the
environment: Coherence rapidly deteriorates in the presence of a
finite density of quasiparticle excitations above the systems’
ground state. This is a consequence of thermalization—the ultimate
fate of generic systems comprising many interacting degrees of
freedom (1–3). If thermalization breaks down, new types of dynam-
ical behavior and phases of matter can emerge. For example, finely
tuned one-dimensional systems (4) can evade thermalization due to
their rich symmetry structure known as quantum integrability (5).
On the other hand, in real materials, disorder is ubiquitous and, if
strong enough, it can strongly suppress thermalization by turning
the system into an Anderson insulator (6) or its interacting
cousin, the many-body localized (MBL) phase (7, 8).

The ability to suppress thermalization while retaining a high
degree of control over entanglement is key to robust technological
applications based on many-body quantum systems. Integrable
systems do not meet this requirement as they are restricted to one
spatial dimension and require fine tuning of the parameters. In
MBL systems, bulk excitations are localized, regardless of their
energy density, which indeed can effectively protect the information
stored in the degrees of freedom at the system’s boundary (9, 10).
Nevertheless, entanglement in MBL states is typically bounded by
“area-law” scaling (11). This limits their applications in quantum-
enhanced metrology, which often rely on large multipartite entan-
glement (12). The latter entanglement structures have recently been
identified (13, 14) in a class of systems known as quantum many-

body scars (QMBS) (15–17). When QMBS systems are prepared in
special initial states, their dynamics become trapped in a subspace
that does not mix with the thermalizing bulk of the spectrum,
leading to the coherent time evolution of local observables (18–
23). The observation of QMBS has triggered a flurry of theoretical
efforts to understand and classify the general mechanisms of weak
ergodicity breaking in isolated quantum systems (24–33).

In this work, inspired by our state-of-the-art superconducting
qubit processor in which the qubit-qubit coupling can be broadly
tuned to encompass opposite coupling signs, we demonstrate the
existence of entanglement structures that persist far from equilibri-
um and can be deterministically tuned by disorder. The approach is
inspired by the rainbow scar construction (34, 35), which creates
Bell pairs between qubits belonging to two halves of the system.
We show that our model hosts several distinct families of QMBS
states and entanglement structures. While the first family is a
direct realization of the rainbow construction, the second family
emerges from a hitherto unexplored mechanism: It is obtained by
acting on the first family with the Hamiltonian of a single subsys-
tem. By making the couplings spatially inhomogeneous, we can
then turn these states into disordered QMBS states whose exact
wave functions and entanglement structure can still be written
down in analytic form. Unlike their energies, the structure of
these exact eigenstates can be explicitly modulated via the disorder
profile, allowing the tuning of their properties. We experimentally
observe the two types of entanglement via their characteristic ergo-
dicity-breaking signatures in quantum dynamics at late times.

RESULTS
The model and its symmetries
Our superconducting quantum processor contains N = 2M qubits
arranged in a ladder configuration, depicted in Fig. 1A, with two
horizontal rungs containing M qubits each. The coupling strength
between a pair of nearest-neighbor transmon qubits can be capac-
itively tuned by a coupler, enabling broad ranges of [−8,8] and [−8,
−2]MHz for the parallel and vertical couplings, respectively (see the
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Supplementary Materials for further characteristics of the device).
We denote the states of each qubit by ∣�〉 and ∣•〉. The qubits belong-
ing to the top row are described by ûα Pauli matrices (with α = x, y,
z), while d̂

α
are Pauli matrices acting on the bottom-row qubits. The

Hamiltonian can be written as

Ĥ ¼ Ĥu � 1þ 1� Ĥd þ Ĥint ð1Þ

where the top/bottom row and inter-row Hamiltonians, respective-
ly, are given by

Ĥσ¼u;d=2π ¼
XM� 1

k¼1
+
Je;k
2
ðσ̂xkσ̂

x
kþ1 þ σ̂ykσ̂

y
kþ1Þ þ

XM

k¼1
ωkσ̂zk;

Ĥint=2π ¼
XM

k¼1

Ja
2
ðûxkd̂

x
k þ û

y
kd̂
y
kÞ ð2Þ

Here, the intralayer coupling amplitude Je,k and the frequency ωk
can be site dependent, allowing for the possibility of disorder,
while the inter-row coupling Ja is required to be uniform (see the
Supplementary Materials). The rainbow construction mandates
that the bottom row of qubits must have intra-row coupling ampli-
tudes of opposite sign. One can easily verify that the two Hamilto-
nians are related by the mirror transformation Ĥd ¼ � MĤw

u M
y,

where ℳ simply maps ∣�〉u,k↔ ∣•〉d,k, and ∣•〉u,k ↔ ∣�〉d,k (see the Sup-
plementary Materials). Crucially, the mirror transformation forces
the spectra of Ĥu and Ĥd to be identical but of opposite signs.

The model in Eq. 1 has a U(1) symmetry corresponding to the
conservation of total magnetization along the z direction, and
below, unless specified otherwise, we will restrict to its largest
sector with zero magnetization or half-filling. The exchange rules
of the Hamiltonian give rise to an additional, more subtle,

symmetry. Our Hamiltonian can exchange neighboring triplet
states, T ; ð�†þ

†
� Þ=

ffiffiffi
2
p

, and singlet states, S ; ð�†�
†
� Þ=

ffiffiffi
2
p

. Alterna-
tively, it can create a domain with a doublonD ; ð††Þ or holonH ;

ð��Þ on each side in which the T and S are exchanged. Thus, Ĥ con-
serves the difference between the number of triplets and singlets,
multiplied by a phase factor that counts the number of doublons
and holons to the left of a given site (see Materials and Methods
for a formal definition of Q̂ ). The Q̂ symmetry further splits the
half-filling sector of the Hilbert space into M + 1 disconnected
sectors with quantum numbers −M, −M + 2, …, M − 2, M.
Working in the largest Q sector (at zero magnetization), we
checked the statistics of the energy level spacings of Ĥ using exact
diagonalization, finding excellent agreement with the Wigner-
Dyson ensemble and very small fluctuations between different dis-
order realizations (see Materials and Methods), thus indicating that
the model is quantum chaotic.

Two families of rainbow scar entanglements
The rainbow state ∣I〉 = ∣TT…T〉 is an eigenstate of our model in Eq.
1. Two different families of scars can be built from it using operators
that commute with the half-system Hamiltonian Ĥu. To construct
the first family, we use the operator Ẑ ¼

PM
k¼1û

z
k,which clearly

commutes with Ĥu as the latter conserves z magnetization. The
powers of Ẑ are linearly independent up to Ẑ

M
; thus, we can

apply Ẑ up to M times. The Ẑ operator simply converts triplets
into singlets and vice versa. The resulting states ∣M − n, n〉 will be
symmetric superpositions of all states with a fixed number n of trip-
lets andM − n singlets. The scarred states of the first family are pre-
cisely these states, up to normalization

jEni ¼
M
n

� �� 1=2

jM � n; ni/ P̂Q2n� MẐjEnþ1i ð3Þ

where n ranges between 0 and M − 1 and ∣EM〉 ≡ ∣I〉. The second
equality illustrates that we can build En recursively from En+1 by
making use of the projector P̂Qq on the sector of Q̂ with eigenvalue

q. The projector P̂Qq is introduced for convenience as it simplifies
the recursion since acting with Ẑ on ∣En〉 creates a superposition
of ∣En−1〉 and ∣En+1〉. It can be verified that the state ∣En〉 is an eigen-
state of Ĥ with energy En = Ja(2n − M ) (see the Supplementary
Materials).

While symmetry generators come to mind when we look for op-
erators Ô that commute with Ĥu, we can build a different family of
scarred states by using Ĥu itself as the generator. This gives us the
second family of scars

jE0ni/ P̂QM� 2n Ĥu �
X

k

ωk
M

 !

Ẑ

( )

jEnþ1i ð4Þ

with n = 1,2, …, M − 1. The second term in the square bracket au-
tomatically orthogonalizes the states jE0ni with respect to the first
family of scars. The projectors P̂Qq once again isolate jE0n� 1i from
jE0nþ1i. Similar to the first type of scar, the second type of scarred
states are also equidistant in energy, occurring at the same energies
En = Ja(2n − M) (see the Supplementary Materials).

Fig. 1. The device and entanglement structures. (A) Micrograph of the super-
conducting quantum processor in a ladder configuration. The tunable couplings,
Ja and Je, between nearest-neighbor qubits, belonging to the same or opposite
rows, are indicated. Blue and red curves illustrate the disordered coupling
strengths ±Je,k, carrying opposite signs in the two rows. (B to D) Schematic repre-
sentation of entanglement structure for a thermalizing state, the first family, and
second family of scars, respectively. The shaded blue region in (B) indicates large
entanglement between all qubits in the thermalizing case. In (C) and (D), dark
curves depict the Bell pair entanglement of neighboring qubits, with dimers
locally forming ∣T〉 states. The tetramer configurations denote doublon-holon en-
tanglement ðjDHi þ jHDiÞ=

ffiffiffi
2
p

, characteristic of the second scar family.
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It is instructive to contrast the two families of scars, Eqs. 3 and 4.
While both families occur at the same, regularly spaced energies
throughout the spectrum, the total number of states in the second
family is smaller by two than in the first family. Furthermore, there
are stark differences in entanglement structures. The states belong-
ing to the second family explicitly depend on disorder through their
dependence on Je,k and ωk, unlike the first family. The states in the
first family contain only singlets or triplets, with no doublons or
holons (Fig. 1C). By contrast, the second family has overlap with
states involving a symmetric superposition on a single doublon-
holon pair ∣…DH…〉 + ∣…HD…〉 with weight Je,k/2 on top of a back-
ground ofM − n − 1 singlets and n − 1 triplets (Fig. 1D). They also
have overlap with all states with M − n singlets and n triplets, with
prefactors depending on the ωk and on the location of the triplets.
The dependence of jE0ni states on ωk and Je,k allows us to tune their
properties, such as entanglement entropy or overlap with special
initial states.

The two families of scars are further identified by their entangle-
ment entropy, SA = −trρA log ρA, where ρA is the reduced density
matrix of the subsystem A. The reduced density matrix ρA ¼ trAρ is
obtained from the full density matrix ρ by tracing out the degrees of
freedom belonging to the complement A of the subsystem A. The
rainbow entanglement manifests as a notable difference in entropy
depending on the type of bipartition that defines the subsystem A,
and we will consider two types illustrated in Fig. 2A. For the parallel
cut between the two rows of the ladder, i.e., when A comprises
qubits {u1, u2, …, uM}, the entanglement is large, as the bipartition
cuts through an extensive number of Bell pairs. By contrast, for
the bipartition perpendicular to the ladder, i.e., when A = {u1, d1,
…, uM/2, dM/2} ≡ {k = 1,2, ⋯,M/2}, the entanglement is much lower.
As seen in Fig. 2 (B and C), this distinction is particularly notable
for E0 and EM states, which have nearly maximal entropy (i.e.,
scaling with the number of qubits) in the case of parallel bipartition
but low entanglement (i.e., bounded by a constant) in the case of a
perpendicular bipartition. Furthermore, for the first type of scarred
eigenstate in the middle of the spectrum (E = 0), it can be analyti-
cally shown that the maximum bipartite entanglement is
SM!1
1;? ¼ ½1þ lnðπM=8Þ�=2, while for the second type of scarred ei-

genstates, we numerically established that the disorder allows us to
tune the entanglement in the range (S1,⊥, S1,⊥ + ln 4) (see the Sup-
plementary Materials).

Entanglement dynamics
To observe rainbow entanglements, we use an established diagnos-
tics of QMBS (18): the evolution of local observable expectation
values in the quench dynamics of the circuit, consisting of two con-
tiguous rows with up to eight qubits each. The structure of the first
family of scarred eigenstates implies that they have high overlap
with the product state jIIi ¼ j†� †

� . . .†� i. Figure 3A shows the dynam-
ics of population imbalance, IðtÞ ¼ ð1=NÞ

PM
k¼1
P

σ¼u;dhσ̂zkð0Þi�
hσ̂zkðtÞi: The population imbalance in the ∣Π〉 state exhibits remark-
able oscillations that persist up to timescales ⁓1 μs. This is in con-
trast with a typical thermalizing state j††��††��†� i, for which the
population imbalance rapidly decays to zero by ⁓50 ns. A salient
feature of the first family of scars is their insensitivity to the disorder
in theHamiltonian couplings. Thus, we expect the coherent dynam-
ics from the ∣Π〉 state to be unchanged when inhomogeneity is

introduced in Je,k couplings. This signature is clearly confirmed
by experimental observations in Fig. 3A.

Furthermore, we used the quantum tomography technique and
obtained the reduced density matrix of the subsystem consisting of
qubits A = {k = 1, 2}, which gives us additional information about
the dynamics beyond local observables. The subsystem fidelity,
ffiffiffiffiffiffi
FA
p

¼ tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρAðtÞ
p

ρAð0Þ
ffiffiffiffiffiffiffiffiffiffiffi
ρAðtÞ

pq

, and entanglement entropy,
Sk=1,2, are shown in Fig. 3 (B and C). For the initial state ∣Π〉, the
subsystem fidelity dynamics undergoes persistent revivals, implying
that the initial information is restored many times, with a period of
about 80 ns. Meanwhile, for generic initial product states, Fk=1,2
quickly decays toward a value close to the inverse of the subsystem
Hilbert space dimension, as shown in Fig. 3B. The growth of entan-
glement entropy also shows a stark contrast between initial states.
Compared to the thermal states, the ∣Π〉 state exhibits a slow
linear growth with superposed oscillations. The small oscillations
are in correspondence with the peaks and valleys observed in the
fidelity dynamics, with roughly half the period of the latter, as
shown as the Fourier spectrum of the fidelity and entropy dynamics
in Fig. 3D. Furthermore, we show the entropy dynamics with differ-
ent subsystems {u1, u2} and {u1, d1} in the inset of Fig. 3C, confirm-
ing the rainbow entanglement structure previously sketched
in Fig. 1C.

We note that the ∣Π〉 initial state can be proven to exhibit perfect
revivals and constant-in-time entanglement entropy for our model
in Eq. 1 (see the Supplementary Materials). In contrast, Fig. 3 shows
a weak population and fidelity decay, along with a slow growth of
entanglement. Detailed characterization of the experimental device
revealed two extraneous terms not present in the theoretical model,
which correspond to diagonal XY couplings and to three-photon
occupation not being fully suppressed (see the Supplementary Ma-
terials). Numerical simulations, shown by lines in Fig. 3, confirm
that these perturbations capture the main sources of decay of
local observables and entanglement growth (see Materials and
Methods). The effect of these perturbations, however, is sufficiently
weak such that clear signatures of the two families of scars can be
observed and sharply distinguished, as shown next.

To probe the second scar family, we require a more complicated
initial state with an entangled doublon-holon pair:
jϕLi ¼ 1ffiffi

2
p ðj††

�
�i þ j

�
�
†
†iÞ � j

�
†. . .�†i, which has predominant overlap

with the second family of scarred eigenstates (see the Supplementa-
ry Materials). In contrast with the ∣Π〉 state, the state ∣ϕL〉 also has a
small overlap on the non-scarred subspace; thus, we expect slowly
decaying revivals in the latter case, even in the absence of any per-
turbations.We emphasize that the state ∣ϕL〉 is orthogonal to the first
family of scars, as the latter do not contain any doublons or holons.
To prepare the state ∣ϕL〉, we use the circuit scheme in Fig. 4A, which
is composed of a few single-qubit and two-qubit gates. By using
high-precision tomography measurements, we then obtain the
reduced density matrix of the subsystems {k = 1,2} or {k = 2,3}.
The former one at t = 0 is visualized in Fig. 4B, demonstrating
that the entangled state ∣ϕL〉 is successfully prepared.

To reveal the difference between the first and second family of
scars, we focus on the subsystem A0 ≡ {k = 2,3}, whose fidelity
Fk=2,3(t) and entanglement entropy Sk=2,3(t), are plotted in Fig. 4
(C andD). The subsystem fidelity partially reveals the scarred eigen-
states, and the Fourier transformation of Fk=2,3 for the state ∣Π〉 has
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an additional peak compared to the state ∣ϕL〉. This difference is
related to the fact that the first family of scarred eigenstates contains
two more members compared to the second family in Fig. 2B. Since
only four qubits {k = 2,3} are observed and the coherent information
of the rest of the system is traced out, the dynamics of Fk=2,3(t) ap-
proximately reflects the subsystem itself. Thus, the Fourier spec-
trum of Fk=2,3(t) involves two peaks and one peak for state ∣Π〉
and ∣ϕL〉 due to only two and one dimers, respectively (see the Sup-
plementary Materials). Furthermore, the choice of the subsystem is
motivated by the fact that it leads to entropy ln2 for the ∣ϕL〉 initial
state, while the entropy is still trivially zero for the ∣Π〉 state. This
distinction is verified in our experiment, as shown in Fig. 4D.

Tunable revivals of the second scar family
The revivals associated with the second scar family can be conve-
niently tuned by modulating individual couplings Je,k, even in the
presence of experimental imperfections. The underlying mecha-
nism behind the revival tunability can be understood by consider-
ing the projection of ∣ϕL〉 state on the set of scarred eigenstates jE0ni,
which can be shown to be (see the Supplementary Materials)

XM� 1

n¼1
jhϕLjE0nij

2
¼

J2e;1
XM� 1

k¼1
J2e;k þ 2

XM

k¼1
ω2
k

ð5Þ

with ωk ; ωk �
P

jωj=M. Thus, within the model (Eq. 1), we
recover perfect revivals in the limit Je,1 → ∞. To illustrate the Je,1
tunability, in Fig. 5 we measure the fidelity dynamics as Je,1 is

Fig. 2. Rainbow entanglement. (A) Schematic of the ladder with dashed lines
indicating two types of bipartitions. The parallel bipartition splits all entangled
pairs in the rainbow state, while the perpendicular bipartition does not split any
pair. (B and C) Bipartite entropy of eigenstates in different Q-symmetry sectors for
the two cuts shown in (A). The two families of scarred states are highlighted by red
circles (first family) and blue diamonds (second family). Their rainbow nature is re-
vealed by the fact that theymove betweenminimal andmaximal entropy, depend-
ing on the cut. The upper bounds of bipartite entropy in (B) and (C) are given by
the Page entropy (2M ln 2 − 1)/2 (48) and the maximum subsystem entropyM ln 2,
respectively. Colored cross sections represent different sectors labeled by the
values on the Q axis. Data are obtained by exact diagonalization with N = 18
qubits, Ja = 4, and Je,k ∈ [4, 4.5], ωk ∈ [0.5, 1.5] drawn from a uniform distribution.

Fig. 3. Experimental observation of the dynamical signatures of the first scar
family. The ladder with N = 10 qubits is initialized in the state ∣Π〉, and the cou-
plings are set to values Je,k = Je = Ja/3 =−2 MHz. The plots show themeasurements
of (A) population imbalance, (B) the four-qubit fidelity, and (C) the four-qubit en-
tanglement entropy, specified in the main text. The inset in (C) shows the entropy
of a subsystem consisting of two qubits, sketched on the left. Purple dots with error
bars stand for the average and standard deviation over eight disorder realizations
of Je,k, randomly selected from an interval∈[1,3] MHz. For reference, we also showa
typical initial state that thermalizes (see the main text for details). The lines are the
results of numerical simulations for the same parameters, including the additional
cross couplings Jx ≈ 0.3 MHz and nonlinearity of qubits η ≈ −175 MHz, present in
the physical device (see Materials and Methods). The subscripts k = 1,2 on the
fidelity and entanglement denote the measured subsystem. (D) Fourier spectrum
of fidelity and entropy dynamics in (B) and (C), respectively.
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modulated by an amount Δ1 ∈ [0,8] MHz. Within the accessible
range of Δ1, the model remains chaotic, yet we observe an increase
in fidelity of about 0.3, consistent with the theoretical prediction.
This demonstrates that the tunability of the revivals for the
second scar family can be achieved with the experimentally relevant
values of the parameters.

DISCUSSION
We have realized multiple families of non-thermalizing states with
distinct rainbow entanglement structures throughout the energy
spectrum. Our construction allows us to write down exact wave
functions for these states, even in the presence of disorder. The ex-
istence and stability of scar states in disorderedmodels have recently
attracted much attention in theoretical studies (36–40). A unique
aspect of our model is that it allows us to tailor the entanglement
of scarred states, while the explicit eigenstate dependence on the dis-
order profile controls the extent of ergodicity breaking. Signatures
of rainbow entanglements were observed by performing quantum
state tomography of a many-body state of the ladder following the
quench from special initial states, confirming the expected

hallmarks of QMBS behavior, such as robust revivals in the fidelity
dynamics and slow growth of entanglement far from equilibrium.

While the disorder strength was assumed to be sufficiently weak
in this work such that the system overall remains chaotic, the ver-
satility of our setup allows direct access to strong ergodicity-break-
ing regimes, where many-body localization was recently proposed
to give rise to “inverted scarring” phenomena (41–43). More gener-
ally, our work bridges the gap between theoretical studies of QMBS,
which place the emphasis on exact constructions of scarred eigen-
states (16, 17), and experimental realizations, e.g., in Rydberg atom
arrays (18, 19) or optical lattices (21), in which the scarred states are
not known exactly [apart from a few exceptions (44)]. In contrast,
our model (Eq. 1) hosts exact scars, while its experimental imple-
mentation contains additional perturbations. While these perturba-
tions were shown to be sufficiently weak in our device to allow
unambiguous observation of scar signatures even in classical simu-
lations, it would be interesting to study in detail their effects on the
stability of QMBS states in larger circuits or higher-dimensional ge-
ometries that would rapidly exceed the capability of classical
computers.

The flexibility of our construction stems from the fact that the
scarred states are not generated by conventional symmetry action
but by the Hamiltonian describing one of the rungs of the ladder.
For simplicity, we assumed that the latter describes an integrable XY
model (although the system overall is non-integrable). This was not
essential, however, and our construction can be straightforwardly
generalized to cases where the subsystem Hamiltonian is non-inte-
grable (see the Supplementary Materials). The key to implementing
the construction was the broad tunability of the experimental device
that allowed us to vary the coupling sign, in contrast with traditional
multi-qubit superconducting systems (45). This tunability offers an
additional physical freedom that can be used for designing exotic

Fig. 4. Experimental distinction between the first and second family of scars.
(A) Circuit diagram for generating the entangled initial state ∣ϕL〉 used to probe the
dynamics of the second scar family. Symbols “+,” “H,” and “X” stand for CNOT, Ha-
damard, and Pauli-X gates, respectively. (B) Absolute values of the reduced density
matrix elements ρk=1,2 at t = 0, with the color bar denoting their phase. (C and D)
Fidelity and entanglement entropy dynamics of a four-qubit subsystem for initial
states ∣Π〉 and ∣ϕL〉, which overlap with the first and second family of scars, respec-
tively. Insets of (C) show the Fourier spectra of the fidelity, which distinguish the
second family (only one peak) from the first family (two peaks). The superconduct-
ing ladder contains N = 16 qubits with the same parameters as Fig. 3.

Fig. 5. Disorder-tunable scar of the second family. (A) Fidelity Fk=2,3 for a tun-
ability of Δ1 = 0 (blue square) or Δ1 = 8 MHz (red circle) over the first inter-dimer
coupling Je,1 = Je + Δ1. The experimental data (markers) are for N = 8 qubits, Ja = 3.0
MHz, and Je,k ∈ [2.0,3.0] MHz, drawn from a uniform distribution, while the curves
are from the numerical simulations based on the experimental model. (B) The
fidelity difference ΔFk=2,3 between the two cases in (A), illustrating the revival en-
hancement by Δ1. Regions with negative ΔFk=2,3 are due to a slight shift of the
revival peaks.
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many-body states that defy quantum thermalization and informa-
tion scrambling, particularly the creation of multipartite-entangled
states without the need for larger spins or complicated interac-
tions (14).

MATERIALS AND METHODS
Symmetries of the model and statistics of energy levels
Our model, defined in Eq. 1, conserves the following quantity Q̂

Q̂ ¼
XM

k¼1
ðT̂k � ŜkÞ

Yk� 1

l¼1
ð� 1ÞĤlþD̂l ð6Þ

where T̂k, Ŝk, D̂k, and Ĥk are projectors on the respective dimer state
at the given site k. Here, we outline the proof of this statement and
provide physical intuition behind the conservation of Q̂. We start by
considering the action of the Hamiltonian on the dimer basis intro-
duced in "The model and its symmetries." The relevant dynamical
terms are summarized in Fig. 6A. Consider a simple configuration
like TSSSTS. The Hamiltonian rules dictate that we can only ex-
change TS or ST into HD or DH. Therefore, a natural guess for
the conserved quantity would be the difference between the total
number of triplets and the number of singlets:

P
kðT̂k � ŜkÞ. This

works perfectly until we start having configurations with neighbor-
ing dimers like SH. In that case, we can turn it into HT and thus
change

P
kðT̂k � ŜkÞ. However, for that to happen, it means that

we first created HD and that the dimer that was switched between
S and T must be surrounded by H and D. Effectively, the Hamilto-
nian creates domains inside which all T and S are “exchanged.”
Thus, we can keep track of how many times such exchanges have
occurred for a given dimer by counting the number of doublons
or holons to its left. Figure 6B shows an example of this process.

While we focused on the half-filling sector in the main text, we
note that Q̂ is a symmetry at any filling (see the Supplementary Ma-
terials for a detailed discussion). The interplay of Q̂ and filling leads
to a large number of disconnected sectors. Some of them are of

small dimension and similar to the ones studied in (46). Nonethe-
less, for large sectors, we find good agreement with the eigenstate
thermalization hypothesis predictions, as shown in Fig. 7.

Last, beyond the symmetry Q̂, at half-filling the Hamiltonian
anticommutes with

Ĉ ¼ P̂d$u
YM

k¼1
ûxkd̂

x
kd̂
z
k ð7Þ

where P̂d$u is an operator exchanging the top and bottom rows. Ĉ
is related to a particle-hole transformation along with a swap
between the top and bottom row and an additional phase. In the
dimer picture, Ĉ simply switches T and S as well as D and H,
with a (−1) phase for every D present. Note that, as we are at
half-filling, there is always the same number of D and H, so Ĉ ¼
Ĉ
y
and Ĉ

2
¼ 1. As it also anti-commutes with Q̂, Ĉ exchanges the

sectors with Q = q and Q = −q. ForM-even, we have a sector with q
= 0; in that sector, the spectrum is symmetric around E = 0 because
of Ĉ; however, this is not the case in other sectors.

Experimental protocols
In the main text, we used a quench protocol to observe the many-
body scar on the superconducting quantum processor. This in-
cludes three main steps: state preparation, interaction, andmeasure-
ment. In the experimental sequence, we first initialize all the qubits,
Qi, in their ground state at their idle frequency ωj, the vertical cou-
plers at around their sweet spots, and the horizontal couplers at
around the frequency where the coupling strength between two
nearest qubits are zero. The initial states are prepared by alternating
the single-qubit gates and the two-qubit controlled-π (CZ) gates.
The preparation of the first family of scarred state ∣Π〉, which is a
product state, is realized by applying single-qubit XY rotations to
every qubit. The preparation of the second family of scarred state
∣ϕL〉 differs from the first family, as it is a “cat” state. We alternate
single- and three two-qubit gates on the former four qubits and
apply XY rotations on the other qubits (as illustrated in Fig. 4),

Fig. 6. Hamiltonian action and conservation laws. (A) Schematic of the Hamil-
tonian action on neighboring dimers. (B) Example of a sequence of states obtained
using only allowed processes. The color of the singlet and triplet states indicates if
they have been “exchanged” an even (blue) or odd (red) number of times. This
exactly corresponds to the parity of the sum of the number of holons and dou-
blons to their left. If one gets +1 for all blue triplets and red singlets, and −1 for
all blue singles and red triplets, then for all states in the sequence, the sum is the
same and gives Q = −2, illustrating the conservation of this charge.

Fig. 7. Level statistics. Distribution of energy level spacings s ≡ En+1 − En for the
model in Eq. 1 with N = 20 qubits. Data are for half-filling and Q = 0, with 25 dis-
order realizations. The level statistics displays excellent agreement with the
Wigner-Dyson ensemble. The inset shows the average consecutive spacing ratio
〈r〉 for each realization, which is very close to the expected value of 0.53 for a
chaotic system. Data are for Ja = 3 and Je,k ∈ [2,2.5], ωk ∈ [0.5,1.5] drawn from a
uniform distribution.
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with each coupler dynamically switched between nearly off and on
to realize the CZ gate. CNOT gates in the experiment circuits are
realized by CZ gate with Hadamard gates operated on the target
qubit before and after.

In the interaction step, we bias all qubits on resonance at the in-
teraction frequency ωi. Meanwhile, the couplers are also tuned to
turn on the net couplings between neighboring qubits. After
waiting for an interaction time t, we finally tune all qubit frequen-
cies away from the interacting regime to measure the relevant quan-
tities at their readout frequencies. Repeating this process with
varying t allows us to obtain the dynamics of the system. In addition,
using the quantum state tomography technique, we obtain the
reduced density matrix of the subsystem A.

In the experiment, tuning the coupling strengths of all couplers
and tuning all qubits on resonance are two very important steps, for
which we have conducted careful calibration following the proce-
dure below:

1. Coarse-tune coupling strengths: The coupling strength
between each pair of neighboring qubits is coarsely calibrated as a
function of the amplitude of the coupler Z pulse, as shown in Fig. 8.
In this process, we excite one of the qubits and then place them at ωi
for 200 ns, during which other qubits are placed 50 MHz above ωi,
and other couplers are placed at around their maximum frequency.
The coupling strength can be estimated by fitting the swapping dy-
namics. Following this process, we obtain the functions of all
couplers.

2. Fine-tune coupling strengths: Keeping the frequencies of
other qubits as above, we apply the corresponding Z pulse on
other couplers according to the above results to roughly achieve
the designed coupling strength. Then, we slightly change the
coupler Z pulse to fine-tune the coupling strength, validated by

the swapping dynamics. This process is conducted for each pair
of neighboring qubits.

3. Fine-tune frequencies of qubits: The frequencies of qubits may
be affected by some factors such as Z pulse distortion, so we adopt
the following strategies to minimize this uncertainty, during which
all couplers are placed at their desired frequencies. We first apply π/
2 pulse on one qubit, then place other qubits at a frequency above ωi
and tune this qubit to ωi for a fixed delay, and finally measure its
accumulated phase ϕ+ = Δω+ × t by tomographic operations. We
also measure its accumulated phase ϕ− = Δω− × t when other
qubits are placed 50 MHz below ωi. We then slightly change the
qubit frequency to make ϕ+ + ϕ−~0. This process is implemented
for every qubit.

Stability against perturbations
The Hamiltonian describing our experimental device can bewritten
as

Ĥexp ¼ Ĥ þ Ĥx þ V̂;

Ĥx=2π ¼ Jx
XM� 1

K¼1
ðûþk d̂

�

kþ1 þ d̂
þ

k û
�
kþ1 þ h:c:Þ

V̂=2π ¼ η
2

XM

k¼1
ðûþk û

þ
k û
�
k û
�
k þ d̂

þ

k d̂
þ

k d̂
�

k d̂
�

k Þ

ð8Þ

Here, Ĥ denotes the Hamiltonian of Eq. 1 in the main text, which
has been reformulated in terms of bosons, where the standard
raising and lowering operators are given by û+ ¼ ðûx + iûyÞ=2
(and, similarly, for d̂

+
). We consider a maximum of two photons

per site. The last two terms represent the experimental imperfec-
tions due to the cross coupling Jx between the diagonal qubits
and nonlinearity η of the transmon qubit (22). The precise values
of the Jx couplings as measured in our device are listed in the Sup-
plementary Materials. The terms in Eq. 8 have been included in the
numerical simulations presented in Figs. 3 and 4.

The existence of Ĥx and V̂ terms weakens the amplitude of
revival dynamics of both families of scar states. However, the per-
turbed model Ĥexp still supports the two scar families and allows us
to clearly distinguish between them. In Fig. 9, we demonstrate the
stability of our results with respect to these experimental perturba-
tions in large systems N ≤ 40 using matrix-product state methods
and time-dependent variational principle, as implemented in TenPy
libraries (47). The accuracy of this calculation is controlled by the
bond dimension of the matrix product states, and the convergence
was ensured by requiring that the relative error in Fk=2,3(t) and in
Sk=2,3(t) observables are always below 10−3 when comparing the two
largest bond dimensions used. Global quantities, such as many-
body fidelity and bipartite entanglement entropy, were also moni-
tored and showed good agreement between different bond dimen-
sions. The strength of the cross couplings Jx beyond the 16 first
qubits have been randomly drawn from a uniform distribution in
[0.05,0.45] MHz and are then kept identical across all system
sizes. Consistent with the results in Fig. 4, the fidelity dynamics of
subsystem A = {k = 2,3} involves two frequencies for the first family
of scar, one more than in the second family. The initial entangle-
ment entropy is ln2 for the second family of scar, further distin-
guishing it from the first scar family, which has zero initial value
for the entropy. The data in Fig. 9 reveal a remarkably fast

Fig. 8. Effective tunable couplings in the experimental device. Swapping dy-
namics as tuned by the coupler for (A) the two adjacent horizontal qubits (u4 − u5)
and (B) the longitudinal qubits (u4 − u4). The absolute effective coupling strengths
as a function of the coupler Z pulse amplitude [in arbitrary units (a.u.)] are obtained
by fitting the oscillations. The horizontal coupling strength (C) can be adjusted
from positive to negative values, while the longitudinal coupling strength (D)
can only be tuned in the negative range.
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convergence in system size.While the smallest systemN = 8 deviates
slightly from larger sizes, we can see that F2,3(t) and S2,3(t) are
already fully converged across the experimentally accessible time in-
terval of 500 ns for system sizes N ≥ 16.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S12
Tables S1 and S2
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