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The concept of “deep thermalization” has recently been introduced to characterize moments of an ensemble
of pure states, resulting from projective measurements on a subsystem, which lie beyond the purview of
conventional eigenstate thermalization hypothesis (ETH). In this paper, we study deep thermalization in systems
with kinetic constraints, such as the quantum East and the PXP models, which have been known to weakly
break ETH by slow dynamics and high sensitivity to the initial conditions. We demonstrate a sharp contrast
in deep thermalization between the first and higher moments in these models by studying quench dynamics
from initial product states in the computational basis: While the first moment shows good agreement with ETH,
higher moments deviate from the uniform Haar ensemble at infinite temperature. We show that such behavior is
caused by an interplay of time-reversal symmetry and an operator that anticommutes with the Hamiltonian. We
formulate sufficient conditions for violating deep thermalization, even for systems that are otherwise “thermal”
in the ETH sense. By appropriately breaking these properties, we illustrate how the PXP model fully deep
thermalizes for all initial product states in the thermodynamic limit. Our results highlight the sensitivity of deep
thermalization as a probe of physics beyond ETH in kinetically-constrained systems.
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I. INTRODUCTION

Thermal equilibrium is the eventual fate of an isolated
chaotic quantum system in the absence of special mechanisms
such as integrability [1] or localization [2,3]. This behavior
is encapsulated by the eigenstate thermalization hypothesis
(ETH) [4,5], which explains thermalization at the level of sub-
systems: Under unitary dynamics, a subsystem entangles with
its complement such that its reduced density matrix increas-
ingly resembles a thermal Gibbs state. The complementary
subsystem, whose states are traced over, assumes the role of
thermal bath during the unitary dynamics. This scenario has
been extensively tested numerically [6] and in experimental
setups of quantum simulators with cold atoms, trapped ions
and other engineered quantum systems [7–9].

The conventional picture of ETH, however, is blind to the
microscopic details of the bath. Recent progress in the control
and manipulation of individual degrees of freedom in quantum
simulators [10–13] has brought in a refinement of this picture:
states of the bath can be explicitly measured and the state of
the subsystem can be studied conditional to a measurement
outcome on the bath [14,15]. Repeating such projective mea-
surements in a fixed, local basis gives rise to an ensemble
of pure states on the subsystem, which, along with their cor-
responding Born probabilities, form the so-called “projected
ensemble” [16,17]. Through quench dynamics experiments on
Rydberg atom arrays [14], numerical simulations of Hamil-
tonian models [15,18] and Floquet circuits [19,20], universal
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behavior has been found in the dynamics of the projected en-
semble: under chaotic time evolution at infinite temperature,
the statistical properties of the projected ensemble become in-
distinguishable from a uniform ensemble on the Hilbert space,
i.e., the maximally entropic Haar ensemble [21]. Remarkably,
all moments of the projected ensemble were argued to become
indistinguishable from those of the Haar ensemble. In the lan-
guage of quantum information theory, the moments then fur-
nish (approximate) quantum state designs [22,23]. The picture
summarized above, dubbed “deep thermalization” [14,15],
illuminates a distinct role of measurements compared to a sim-
ple hindrance to thermalization. Accordingly, ETH is general-
ized to the statistical distribution of wave functions, instead of
just expectation values of physical observables. This is part of
a broader push to probe physics beyond ETH, complementing
other approaches such as free probability [24,25], which make
predictions about higher-order correlation functions.

The practical appeal of deep thermalization in chaotic
systems lies in its universality: Haar random ensembles can
be generated under unitary dynamics starting from a sim-
ple initial state [14]. An intriguing question therefore arises
how this phenomenology changes in chaotic systems whose
thermalization dynamics is strongly dependent on the initial
state, such as systems displaying Hilbert space fragmentation,
quantum many-body scars and other types of “weak” ergodic-
ity breaking [26–28]. The paradigmatic examples include the
experimental systems of Rydberg atoms [29,30] and ultracold
bosons in a tilted optical lattice [31], which feature persistent
quantum revivals when quenched from a special initial state,
while they quickly thermalize for typical initial conditions.
Such systems are described by an effective spin model called
the “PXP model” [32,33], which imposes a kinetic constraint
on simultaneous flips of neighboring spins. Similar types
of constraints can give rise to slow glassy dynamics in the
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quantum East model [34,35]. In this paper we explore the
nature of deep thermalization and its sensitivity to initial con-
ditions for such constrained systems.

In both the PXP and quantum East models studied below,
we find deep thermalization to be absent, even at infinite
temperature, while the first moment of the projected ensemble
agrees well with ETH. We demonstrate this for a large class
of time-evolved initial states as well as the eigenstates of
the models. We elucidate the origin of this surprising be-
havior, finding that it does not stem from the constraints but
rather from spectral properties and the existence of special
operators that anticommute with the Hamiltonian. Once these
are properly taken care of, we observe a restoration of deep
thermalization in the thermodynamic limit. This is true even
in the PXP model, where clear signs of ergodicity breaking
are found in all accessible finite sizes. Our results illustrate
that deep thermalization is not only a hallmark of “maximally
chaotic” models but more broadly present in models that also
display weak ergodicity breaking. The results furthermore
highlight the sensitivity of deep thermalization framework
compared to standard ETH, as the former requires more care
beyond resolving the usual global symmetries of the model.

This paper is organized as follows: In Sec. II, we review the
construction of the projected ensemble and how we quantify
its distance from the Haar ensemble. We also discuss the cru-
cial role of symmetries, which are illustrated for the Sachdev-
Ye-Kitaev (SYK) model in Sec. III. This maximally-chaotic
model will be used as a benchmark for the rest of the paper.
In Sec. IV, we show how time-reversal symmetry can prevent
deep thermalization of eigenstates, and we illustrate this using
the Ising model in mixed transverse and longitudinal fields. As
our first kinetically constrained model, we consider the quan-
tum East model in its thermalizing phase in Sec. V. In Sec. VI,
we show how the interplay of time-reversal invariance and
“antisymmetries” can generally prevent deep thermalization
for time-evolved states. Finally, in Sec. VII, we study deep
thermalization in the constrained PXP model describing one-
dimensional Rydberg atom arrays. Here we focus in particular
on different types of initial states that have been known to give
rise to anomalous dynamical behavior associated with quan-
tum many-body scars [29,36]. Our conclusions are presented
in Sec. VIII, while Appendices contain further details of the
analysis and effect of perturbations to the PXP model.

II. THE PROJECTED ENSEMBLE

Consider a quantum spin system in a pure state |�〉. The
state can be prepared, e.g., via unitary time evolution from
some product state, as sketched in Fig. 1(a). The system
is bipartitioned into two contiguous regions: a subsystem A
and its complement B, consisting of NA and NB spins, re-
spectively. For simplicity, we assume the total Hilbert space
is given by the tensor product HA ⊗ HB, although, as ex-
plained in Sec. II B, this assumption can be relaxed in certain
cases. We consider performing projective measurements on
the subsystem B in the local computational basis |z〉. Each
such measurement outputs a classical string zB of length NB.
According to the Born rule, such a measurement leaves the
subsystem A in a pure state, which is conditional to measur-
ing the string zB in the complementary subsystem B, with a

FIG. 1. [(a), (b)] The projected ensemble. A typical setup con-
sists of a spin system, prepared in a product state. The system then
evolves under unitary dynamics generated by some Hamiltonian H,
which keeps it in a pure state |ψ〉. After time t , projective mea-
surements are performed on each spin in the subsystem B. The
output of this measurement |zB〉 indexes the resulting pure state on
subsystem A, labeled by |ψA

zB
〉. For all the models studied in this

paper, we pick the subsystem A as the first NA spins, and subsystem
B as the remaining N − NA spins. (b) The evolution of states in the
projected ensemble for a single qubit. With time, the states uniformly
occupy the Bloch sphere, becoming indistinguishable from the Haar
ensemble. [(c), (d)] The constrained models considered in this paper
are defined in terms of Pauli X operators flipping a spin, subject to the
state of its neighbor(s). In the quantum East model (c), the spin flip is
allowed (green arrow) if the left neighbor is in the ↓ state, regardless
of the state of right neighbor. In the PXP model (d), both neighbors
must be in the ↓ state for a flip to occur. From these rules, it is clear
that if the spin in B, adjacent to the bipartition, is in ↑ state, the state
of A cannot be fully random. This must be taken into account with
an appropriate postselection rule, as discussed in Sec. II B.

probability pzB given by

pzB = 〈�|(1A ⊗ |zB〉〈zB|)|�〉, (1)

∣∣ψA
zB

〉 = 1√
pzB

(1A ⊗ 〈zB|)|�〉. (2)

Note that each pure state on A is indexed by a measurement
outcome zB on B. With the states |ψA

zB
〉 and probabilities pzB ,

the projected ensemble is defined as the set

E = {
pzB ,

∣∣ψA
zB

〉}
. (3)

Since the measurement basis {|zB〉} is orthonormal, the
probabilities {pzB} sum to unity. The projected ensemble then
forms a probability distribution on HA, whose kth moment is
given by

ρ
(k)
E = Eψ∼E [(|ψ〉〈ψ |)⊗k] =

∑
i

pi(|ψi〉〈ψi|)⊗k, (4)

where the sum runs over all states in the projected ensemble E
and ρ

(k)
E acts as a density operator on the Hilbert space H⊗k

A ,
corresponding to k replicas of HA.
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The first moment of the distribution in Eq. (4) is exactly
the reduced density matrix on HA,

ρ
(1)
E =

∑
i

pi|ψi〉〈ψi| = TrB(|�〉〈�|), (5)

which is the central object of study in ETH. However, higher
moments of the projected ensemble (k>1) are in general not
equal to k-fold tensor products of the reduced density matrix.
As such, the projected ensemble strictly encodes more infor-
mation than the reduced density matrix on HA.

A. Haar ensemble

Consider the time evolution of an isolated quantum system
initialized in a far-from-equilibrium state. ETH tells us that
for ergodic systems in the absence of conservation laws, the
reduced density matrix ρA(t ) of a subsystem A (much smaller
than the rest of the system) relaxes to a thermal Gibbs state
at late times, i.e., at times much larger than the inverse of
the system’s microscopic energy scales. This can be formally
expressed as limt→∞ ρA(t ) = exp(−βĤ )/Z , where β is the
inverse temperature, set by the energy of the initial state, and
Z is a normalizing factor. At finite times and finite system
sizes, the equality is only exact up to fluctuations that typically
subside exponentially with system size. During the dynamics,
the microscopic details of the initial state are progressively
lost and the system increasingly resembles a featureless ther-
mal state.

Since the first moment of the projected ensemble is exactly
the reduced density matrix, it is natural to ask whether this
evolution to a featureless thermal state holds for all moments
of the projected ensemble. We note that the evolution to a
thermal Gibbs state is guided by the principle of maximization
of entropy, i.e., the second law of thermodynamics. However,
since we are dealing with a probability distribution, it is
natural to consider maximizing the entropy of this distribu-
tion. This is accomplished by conjecturing that the projected
ensemble dynamically evolves to the maximally entropic uni-
form distribution of pure states on a Hilbert space. For initial
states with energies in the middle of the spectrum, i.e., states
at infinite temperature, this maximally entropic ensemble is
the Haar ensemble [21]. One can then quantify the “depth” of
thermalization by testing to what extent the moments of the
projected ensemble agree with those of the Haar ensemble,
see Fig. 1(b).

For pure states |ψ〉 in a Hilbert space, kth moments of the
Haar ensemble can be constructed as

ρ
(k)
Haar =

∫
dψ (|ψ〉〈ψ |)⊗k, (6)

where the integral runs over the entire Hilbert space H. The
kth moment admits an analytical expression [15,37]

ρ
(k)
Haar = �k(d+k−1

k

) , (7)

where �k is the subspace of H⊗k invariant under all permuta-
tions of the k copies and d is the dimension of H.

As a consistency check of the conjecture, we highlight that
the first moment (mean) of the Haar ensemble is the identity
operator Î/d , which is exactly equal to the Gibbs ensemble at

infinite temperature. At finite temperatures, the existence of a
universal random ensemble has been hinted at, but its exact
form remains unknown [15]. Here on, we restrict our focus to
infinite temperature initial states.

To quantify the degree to which a system deep thermalizes,
the trace distance between the kth moments has been used in
the literature [14,15],

�(k) = 1
2

∥∥ρ
(k)
E − ρ

(k)
Haar

∥∥
1, (8)

where ‖.‖1 denotes the trace norm. Note that �(k) follows
a monotonicity relation such that �(k′ ) < �(k) ∀k′ < k. This
is closely linked to the concept of quantum k designs, an
important resource in quantum information theory. We say
an ensemble E forms a k design if �(k) = 0, which implies
that �(k′ ) = 0, ∀k′ < k. Then, a system deep thermalizes for
a given k if it forms a k design in the thermodynamic limit.
The way this limit is taken is by fixing the subsystem A and
then increasing the size of the “reservoir” subsystem B. Since
we are limited to finite-sized systems in this study, we study
the scaling of �(k) as NB is increased. As shown in Ref. [15],
for a chaotic system �(k) is expected to decrease exponentially
in NB for all k. The rate of the exponential decay, however, can
be different for different k values and, typically, larger k are
more strongly impacted by finite size effects.

B. Effect of symmetries and constraints

Until this point, we have considered the simple case where
energy is the only conserved quantity. When additional con-
servation laws are present, generic states instead thermalize
to a generalized Gibbs ensemble [38]. This ensemble now
features Lagrange multipliers enforcing the conservation of all
charges. As a consequence, the projected ensemble no longer
approaches the Haar ensemble, but a similar generalized Haar
ensemble can be introduced using the same principle [18].
This construction depends on the specifics of the model and
its conserved charges, meaning that it generally has a much
more complicated structure than the Haar ensemble. In order
to simplify the study of deep thermalization with conservation
laws, one can restrict to a single charge sector. However,
this is usually not sufficient to recover thermalization to the
Haar ensemble, as the conserved charge can introduce corre-
lations between the measured string zB and the projected state
|ψA

zB
〉. To recover the Haar ensemble, one then needs to use

postselection on the measured strings zB [15]. We present an
example of this procedure in the following section.

The need for postselection also arises in a conceptually
different case when dynamical constraints are present. The
models we focus on in this paper (Secs. V and VII) are
defined in terms of Pauli X matrices, which allow each spin
to flip its state. However, the spin-flip operators are dressed
with projectors, which encode dynamical constraints: A spin
can only flip its state if its immediate neighbors to the left
or right are in the ↓ state, see Figs. 1(c) and 1(d). While
such a constraint cannot be expressed as a local operator that
commutes with the Hamiltonian, it similarly places strong
restrictions on the dynamics. For example, if the boundary
spin in B subsystem (i.e., the one closest to the A subsystem)
is in the ↑ state, this will impact the state of the spin in A
closest to the bipartition. This will be true at all evolution
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times, hence the state of A will never reach the Haar ensemble.
Nevertheless, since the constraints considered in this paper are
all local and affect only the nearest-neighbor spin pairs, it is
easy to take care of them via postselection by keeping only the
measurement outcomes in which the boundary spin in B is in
the ↓ state. This will, a priori, not exclude any configurations
in A, hence deep thermalization becomes possible, as we show
in Secs. V–VII below. For a constrained system such as the
PXP model in Fig. 1(d), the total Hilbert space does not have
a tensor product structure, which can be seen from the fact
that the total Hilbert space dimension grows as a Fibonacci
number [39]. Thus, with the help of postselection, we can lift
the assumption that the total Hilbert space must be written in
the form HA ⊗ HB.

III. MAXIMALLY CHAOTIC SYK MODEL

A natural toy model for illustrating the concept of deep
thermalization is the Sachdev-Ye-Kitaev model [40–42]. This
model serves as a paradigm of quantum many-body chaos
[43], thus we expect it to yield good agreement between the
projected and Haar ensembles. The model is formulated in
terms of 2N Majorana fermions with all-to-all interactions,

ĤSYK =
∑

i< j<k<l

Ji jkl χ̂iχ̂ jχ̂kχ̂l , (9)

where χ̂ denote the Majorana operators and the summation
indices take values between 1 and 2N . The couplings Ji jkl

are randomly drawn from a normal distribution with mean 0
and variance 6/(2N )3. One of the many interesting features of
the SYK model is that its random-matrix theory (RMT) class
changes with system size [44]. Indeed, for N = 4n the model
exhibits spectral statistics of the Gaussian orthogonal ensem-
ble (GOE), N = 4n + 1 and N = 4n + 3 correspond instead
to the Gaussian unitary ensemble (GUE), and for N = 4n + 2
to the Gaussian symplectic ensemble (GSE) [45].

For the numerical study, it is more convenient to work with
spin-1/2 operators. We use the Jordan-Wigner transformation,

√
2χ̂i =

{(∏
j<k σ̂ z

j

)
σ̂ x

k i even(∏
j<k σ̂ z

j

)
σ̂

y
k i odd

(10)

to convert Eq. (9) to a model defined in terms of N spin-1/2
degrees of freedom. The resulting Hamiltonian has a rather
complicated structure due to the Jordan-Wigner strings, hence
we do not write it down explicitly. Nonetheless, we note that
the various terms in the model can be either purely diagonal,
flip two spins, or flip four spins. This depends on how many
of the Majorana fermions correspond to the same spin site.
As a consequence, the spin model conserves the parity of the
number of ↓ spins,

ẐP =
N∏

j=1

σ̂ z
j . (11)

To probe deep thermalization in the SYK model, similar
to Refs. [14,15], we study a global quench by preparing the
system in different kinds of initial states. One natural choice
is to use initial states belonging to the computational basis,
which is also the measurement basis. As a second choice,

NB
10−2

10−1

Δ
(k

)

k = 1

(a) Typ.
GUE
GOE
GSE

NB

k = 2
NB

k = 3

5 7 9 11
NB

10−2

10−1

Δ
(k

)

(b)

5 7 9 11
NB

5 7 9 11
NB

FIG. 2. Late-time average of �(k) in the SYK model with NA = 4
and various system sizes when starting from (a) state in Eq. (12) with
random angles, and (b) a computational basis state. For each system
size, the data is for a single random realization as there is no visible
variation between them.

we use product states where each spin j points in a random
direction on the Bloch sphere,

|θ, φ〉 ≡
⊗

j

(cos(θ j/2)|↑ j〉 + eiφ j sin(θ j/2)|↓ j〉), (12)

where θ j and φ j are randomly drawn from the intervals [0, π ]
and [0, 2π ], respectively. Below we show that these two
classes of initial states lead to stark differences in the deep
thermalization. Once we prepare the initial states, we evolve
them using the SYK Hamiltonian and compute �(k) at various
time steps.

Figure 2 shows the averaged late-time value of �(k) for
both types of initial states and NA = 4. To obtain a benchmark
for �(k) in a maximally chaotic state in the given Hilbert
space, we also compute this value for “typical” states, which
are simply complex random vectors where both the real and
imaginary part of the wave function amplitude are drawn ran-
domly from a normal distribution with mean 0 and variance
unity. These are then pure states at infinite temperature. This
benchmark value is also shown in Fig. 2, where we see it
agrees closely with the results of quenches from states in
Eq. (12) with angles sampled randomly. By contrast, for com-
putational basis states the exponential decay with NB quickly
reaches a plateau and completely stops, suggesting that the
projected ensemble never reaches the Haar ensemble.

The origin of this difference between initial states is the
symmetry ẐP. The computational basis states are eigenstates
of this operator with eigenvalues α = ±1, and so are the time-
evolved states obtained from them. Furthermore, ẐP can be
decomposed as

ẐP = ẐP,A⊗ẐP,B, ẐP,A =
NA∏
j=1

σ̂ z
j , ẐP,B =

N∏
j=NA+1

σ̂ z
j . (13)

As ẐP,B is diagonal in the measurement basis, the measured
string zB has a definite value of αB = ±1 under ẐP,B. Conse-
quently, the corresponding state |ψA

zB
〉 must be an eigenstate
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NB,eff

10−1
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Δ
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)

k = 1
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GUE
GOE
GSE

NB,eff

k = 2
NB,eff

k = 3

3 5 7 9 11
NB,eff

10−1

100

Δ
(k

)

(b)

3 5 7 9 11
NB,eff
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NB,eff

FIG. 3. Late-time average of �(k) in the SYK model with NA = 4,
ẐP = (−1)N and postselection for (a) a computational basis state and
(b) a product state (12) with random angles.

of ẐP,A with eigenvalue αA = α/αB. This additional constraint
on the |ψA

zB
〉 prevents them from uniformly exploring HA and

reproducing the Haar ensemble. In contrast, states built from
random angles are generically not eigenstates of ẐP and have
expectation values of this operator close to 0. Thus, there
is no individual constraint on the |ψA

zB
〉 and we obtain good

agreement with the Haar ensemble.
In order to recover deep thermalization for all initial states,

a simple solution is to restrict to the symmetry sector with
an even number of ↑ spins, or alternatively ZP = (−1)N . As
discussed above, this introduces correlations between the
measured string zB and the possible states in A. We thus post-
select the zB strings to only keep those with ZP,B = (−1)NB .
This implies that all |ψA

zB
〉 will obey ZP,A = (−1)NA , effectively

reducing the relevant Hilbert space of subsystem A. We now
recover good agreement with the Haar ensemble, see Fig. 3.
Note that this reduces the dimension of the subsystem B
that acts as a reservoir for the states we are interested in. As
such, we follow Ref. [15] and instead of NB we keep track
of its effective counterpart NB,eff = log2(DB), where DB is
the number of postselected states in B [i.e., states with with
ZP,B = (−1)NB in the symmetry sector ZP = (−1)N ]. For the
rest of this paper, we will keep using the notation NB,eff for
consistency even when no postselection is done.

Interestingly, for the time-evolved state we see no influence
of the RMT class on deep thermalization, as different particle
numbers in Fig. 3 all behave identically. The computed �(k)

for SYK eigenstates also shows no such dependence, Fig. 4.
Furthermore, one can also see that, for all k investigated,
the eigenstates at infinite temperature and time-evolved states
show very close agreement, matching also the prediction for
typical states. These results thus set our benchmark for deep
thermalization in a fully chaotic system, which we will use for
interpreting the results in the less generic models below.

IV. TIME REVERSAL

The SYK model in the previous section illustrated the
effect of conventional symmetries on deep thermalization, as
well as the apparent robustness of this phenomenon to the

FIG. 4. �(k) for eigenstates of the SYK model for NA = 4 and
N = 14, 15, and 16, with restriction to a single symmetry sector of ẐP

and postselection. The red markers indicate the long-time average for
the time-evolved states shown in Fig. 3. In all cases, there is excellent
agreement between typical states, time-evolved states and eigenstates
near energy E = 0. This is despite the level statistics being respec-
tively GSE (N = 14), GUE (N = 15), and GOE (N = 16).

RMT class of the Hamiltonian studied. In this section, we
show that for systems that have time-reversal symmetry (and
so are in the GOE class), deep thermalization for eigenstates
can be prevented and we formulate sufficient conditions for
this to happen.

As before, we consider a quantum model defined on a
system with N sites that can be divided in two subsystems with
NA and NB sites, respectively. We will consider the case where
the total Hilbert space is a tensor product H = HA ⊗ HB, as
this is where we expect to see deep thermalization without any
additional postselection procedure. Let us consider a Hamilto-
nian that is real in the measurement basis. Its eigenstates will
also be real in this basis and they can be expressed as

|E〉 =
∑

zB

√
pzB

∣∣ψA
zB

〉 ⊗ |zB〉, (14)

with all |ψA
zB

〉 real. This implies that even if the |ψA
zB

〉 are
maximally random, they will never be able to approximate
the Haar ensemble, but will instead mimic the ensemble of
states invariant under the application of orthogonal (instead of
unitary) matrices. While this is trivial so far, we will show that
the same effect can be obtained with Hamiltonians that are not
real in the measurement basis.

Consider performing a basis change to the Hamiltonian
while keeping the measurement basis the same. In particular,
let us focus on the case where the change-of-basis matrix V̂
obeys:
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(1) V̂ can be decomposed into subsystems A and B as
V̂ = V̂A ⊗ V̂B, with V̂A and V̂B unitary;

(2) V̂B is diagonal in the measurement basis.
The corresponding projected ensemble is obtained as

V̂ |E〉 =
∑

zB

√
pzB eiv(zB )

(
V̂A

∣∣ψA
zB

〉) ⊗ |zB〉, (15)

where the term eiv(zB ) collects the phase change induced on
each bitstring zB and adds an irrelevant overall phase term
to each state in the projected ensemble. As V̂A is a unitary
rotation on the subsystem A, it cannot change the agreement
between the projected ensemble and the Haar ensemble. In-
deed, when comparing the two state ensembles, applying the
same unitary rotation to both of them will not modify the
result. So we can keep the same projected ensemble and apply
V̂ †

A to the Haar ensemble instead. But this ensemble is by
definition invariant under any unitary rotation. Thus, in the
end the basis change V̂ will have no influence on �(k) for the
eigenstates.

To construct an example where �(k) is not the same after
a basis transformation, take a change-of-basis V̂ that instead
obeys:

(1) V̂ is unitary;
(2) V̂ can be decomposed into subsystems A and B as

V̂ = ∑
j V̂ j

A ⊗ V̂ j
B ;

(3) All V̂ j
B are diagonal in the measurement basis.

In this case, we still have a departure from the Haar en-
semble. Let us denote by K̂ the antiunitary corresponding to
complex conjugation. It is straightforward to see that K̂ =
K̂A ⊗ K̂B. As V̂ |E〉 is real, it follows that K̂ (V̂ |E〉) = V̂ |E〉.
We can recast both sides of this equation using Eq. (14) to
obtain

V̂ |E〉 =
∑

j

∑
zB

√
pzB

(
V̂ j

A

∣∣ψA
zB

〉) ⊗ (
V̂ j

B |zB〉)

=
∑

zB

√
pzB

⎛
⎝∑

j

g j (zB)V̂ j
A

∣∣ψA
zB

〉⎞⎠ ⊗ |zB〉,

K̂ (V̂ |E〉) =
∑

zB

√
pzB

⎛
⎝K̂A

∑
j

g j (zB)V̂ j
A

∣∣ψA
zB

〉⎞⎠ ⊗ |zB〉,

(16)

where g j (zB) are the eigenvalues of |zB〉 under V̂ j
B . As the ro-

tation applied to {|ψA
zB

〉} can now depend on zB, this no longer
corresponds to a global rotation of the basis in the subsystem
A. As a consequence, �(k) is generically not the same for |E〉
and V̂ |E〉. Nonetheless, as all the |zB〉 are orthogonal, the only
way to satisfy the equality between the second and last lines
in Eq. (16) is if for all |ψA

zB
〉,∑

j

g j (zB)V̂ j
A

∣∣ψA
zB

〉 = K̂A

∑
j

g j (zB)V̂ j
A

∣∣ψA
zB

〉
(17)

holds. This puts a constraint on the individual |ψA
zB

〉, with each
possible value of zB restricting the corresponding states in A
to a hyperplane in the Hilbert space. In specific cases, these
hyperplanes can be identical or the dependence on zB can even
vanish, leading to the same �(k) as for real states. Appendix A

FIG. 5. �(k) for eigenstates of the quantum Ising model (18) for
NA = 3 and N = 16 after various unitary transformations generated
by matrices V̂ . The dashed black (dash-dotted red) line indicates
the average value for complex (real) typical states. The insets show
zooms of the main panels. Only V̂XY leads to good agreement with
typical complex states.

illustrates several different possibilities, one of which will be
used in Sec. VI below.

A. Ising model

The impact of basis changes can be showcased using the
Ising model with both transverse and longitudinal fields,

ĤIsing =
N−1∑
j=1

σ̂ z
j σ̂

z
j+1 + h

N∑
j=1

σ̂ z
j + g

N∑
j=1

σ̂ x
j , (18)

where we use the parameters h = (1 + √
5)/4 and g = (

√
5 +

5)/8 that were found in Ref. [46] to lead to strongly chaotic
dynamics. In order to explore the different cases, we define
various Hamiltonians obtained through the change of basis
Ĥ ′ = V̂ ĤIsingV̂ †. We consider three different change-of-basis
matrices V̂ ,

V̂S = exp

⎛
⎝− iπ

8

∑
j

σ̂ z
j

⎞
⎠, (19)

V̂P = exp

⎛
⎝− iπ

8

∏
j

σ̂ z
j

⎞
⎠, (20)

V̂XY = exp

⎛
⎝ iπ

4

∑
j

σ̂
y
j

⎞
⎠ exp

⎛
⎝ iπ

4

∑
j

σ̂ z
j

⎞
⎠. (21)

A few remarks are in order. While it is clear that both V̂S

and V̂XY can be decomposed as V̂A ⊗ V̂B, V̂B is only diagonal
for V̂S . V̂P cannot be decomposed in the same way, but it
can be rewritten as V̂P = cos(π/8)1 − i sin(π/8)

∏
j σ̂

z
j . This

means it corresponds to the case V̂ = ∑
j V̂ j

A ⊗ V̂ j
B with all V̂ j

B
diagonal. Finally, we note that performing the transformation
V̂XYĤIsingV̂

†
XY leads to the same Ising Hamiltonian considered

in Ref. [15], for which the eigenstates at infinite temperature
display good agreement with the Haar ensemble.

The values of �(k) with k = 1 to 3 for different bases are
shown in Fig. 5. For k = 1, the eigenstates of the Hamiltoni-
ans generated by I, V̂S and V̂XY show the exact same values
of �(k). However, this is no longer the case for k > 1, where
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I and V̂S are still identical but greatly differ from V̂XY due to
the states in the projected ensemble being real. This illustrates
the difference between the physical case of k = 1, which is
directly linked to the expectation values of observables in
subsystem A and thus to ETH, and k > 1. Meanwhile, for
V̂P we see that �(k) is different from the other cases, but
the constraint on the states in the projected ensemble still
prevents deep thermalization even at infinite temperature. In
Appendix A, the dependence of deep thermalization on the
angle used in V̂P is also explored. While these results on
deep thermalization of eigenstates are not directly relevant
for experiments since preparing high-energy eigenstates is a
difficult task, we will show in Sec. VI that the same kind
of mechanism can also prevent a time-evolved state from
thermalizing.

V. QUANTUM EAST MODEL

Now that we have understood deep thermalization in the
SYK model and the pitfalls associated with time reversal and
basis transformations, we move on to our first kinetically-
constrained model: the quantum East model [34,35]. The
model is inspired by classical structural glasses and features
two different phases: one that has slow thermalization and
localized eigenstates, and the other where local observables
appear to thermalize from the point of view of ETH [47].
We focus on the latter phase to see if deep thermalization can
detect any hidden nonergodicity in this regime.

The quantum East model is defined on a 1D lattice with
spin-1/2 degrees of freedom and the Hamiltonian

ĤqEast = σ̂ x
1 +

N∑
j=2

P̂j−1σ̂
x
j , (22)

where P̂j = (1 − σ̂ z
j )/2 is a local projector on the spin-down

state at site j. The projector enforces the following constraint:
a spin can only flip if its left neighbor is in the ↓ state,
previously illustrated in Fig. 1(b). We will first consider open
boundary conditions (OBCs) in order to get rid of lattice
momentum as a conserved quantity. In this case, the first site
does not have a neighbor to the left, thus the Hamiltonian
term is only σ̂ x

1 , as indicated in Eq. (22). Note that ĤqEast

commutes with the local operator σ̂ x
N . However, as the latter

is fully off-diagonal in the measurement basis, it should not
introduce any correlation between subsystems A and B. As
such we do not limit our study to a single sector of it. In
addition, ĤqEast is real and anticommutes with Ẑ = ∏N

j=1 σ̂ z
j .

Since this is not a conserved quantity, we take no additional
step in the computation of �(k) because of it.

However, when performing quenches from random basis
states and states built from random angles (12), we see a stark
difference between the two for k > 1, Fig. 6(a). For the initial
states (12), here we set the φ angle of the last site to π/2
to always be equally split between the two symmetry sectors
of σ̂ x

N . While the random-angle initial states deep thermalize
as expected, Fig. 6(a) shows that random basis states display
the same value of �(k) as real typical states. The source of
this difference is not found in symmetries this time, but rather
in the anticommuting operator Ẑ . Indeed, all the basis states
considered are eigenstates of Ẑ with eigenvalue α = ±1. As

x
−1

0
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y
−1 0 1

z

−1

0

1
(b)

x
−1

0
1

y
−1 0 1

z

−1

0

1
(c)
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t

10−1

100

Δ
(k

)

k = 1(a)

100 102 104

t

k = 2
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t

k = 3

Basis

Ang.

FIG. 6. Deep thermalization in the quantum East model for
N = 12. (a) �(k) with NA = 3 for two different types of initial states
at infinite temperature. The dashed black lines (dash-dotted red lines)
indicate the average �(k) for (real) states. [(b), (c)] For NA = 1, we
plot 50 states from the projected ensemble of a time-evolved (b) basis
state and (c) a state with random angles at t = 10 000. For the former,
all vectors are in the Y Z plane while for the latter they explore all
sectors of the Bloch sphere.

they are also real, they are eigenstates of K̂Ẑ , where K̂ is the
complex conjugation operator. Finally, as the Hamiltonian is
real, this allows to write

K̂Ẑe−iĤt |ψ〉 = K̂eiĤt Ẑ|ψ〉 = e−iĤt K̂ Ẑ|ψ〉 = α|ψ (t )〉, (23)

implying that the time-evolved states are eigenstates of K̂Ẑ .
The |zB〉 states are eigenstates of K̂B with eigenvalues 1 and
eigenstates of Ẑ with eigenvalue αzB = ±1. This allows us to
rewrite, using Eq. (23),

α|ψ (t )〉 = α
∑

zB

√
pzB

∣∣ψA
zB

〉 ⊗ |zB〉

= K̂Ẑ|ψ (t )〉 = K̂Ẑ
∑

zB

√
pzB

∣∣ψA
zB

〉 ⊗ |zB〉. (24)

Since Ẑ can be rewritten as Ẑ = ẐA ⊗ ẐB, and the same is
trivially true for K̂ , we have

α|ψ (t )〉 =
∑

zB

√
pzB

(
K̂AẐA

∣∣ψA
zB

〉) ⊗ (
K̂BẐB|zB〉)

=
∑

zB

√
pzBαzB

(
K̂AẐA

∣∣ψA
zB

〉) ⊗ |zB〉. (25)

As all |zB〉 are orthogonal, it must hold that

K̂AẐA

∣∣ψA
zB

〉 = α

αzB

∣∣ψA
zB

〉
, ∀ zB. (26)

As in the case of real eigenstates, this puts a constraint on the
individual |ψA

zB
〉.

To see the consequences of the constraint (26), let us con-
sider the case of a single qubit in the projected ensemble with
α = 1 and NA = 1, leading to ẐA = σ̂ z

1 . If we parametrize the
states in the projected ensemble as |θ, φ〉 = cos(θ/2)|↓〉 +
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FIG. 7. Long-time average of �(k) in the quantum East model
with NA = 3 and various system sizes for (a) OBCs and (b) PBCs.
Both types of boundary conditions show very similar results. The
effect of the anticommuting operator Ẑ is clearly visible when com-
paring initial states.

eiφ sin(θ/2)|↑〉, we get

K̂1σ̂
z
1 |θ, φ〉 = − cos(θ/2)|↓〉 + e−iφ sin(θ/2)|↑〉. (27)

We end up with θ free, but φ = ±π/2. If we plot the |ψA
zB

〉 on
the Bloch sphere, they will thus only lie in the Y Z plane where
φ = ±π/2. This is confirmed in the numerical simulation in
Fig. 6(b). Confining the projected states to a hyperplane is
enough to reproduce the mean (first moment) of the Haar en-
semble, but it is inadequate to reproduce the higher moments,
which lies at the root of the disparity between k = 1 and
k > 1. If, instead, the initial state is not an eigenstate of Ẑ , then
Eq. (24) does not put an individual constraint on each state in
the projected ensemble. As such, states in the projected en-
semble are unconstrained (see Fig. 6) and we can expect deep
thermalization for all k. To test this, we compare the late-time
average of �(k) of basis states with α = 1, α = −1, as well as
symmetric superpositions (|α = +1〉 + |α = −1〉)/

√
2. This

is shown in Fig. 7(a), which reveals clear signatures of deep
thermalization only for the latter states.

In order to verify that the observed deviation from deep
thermalization is not due to the conserved charge σ̂ x

N , we
can compare our results with the same model with periodic
boundary conditions (PBCs). The Hamiltonian is the same as
in Eq. (22), except for the first term that becomes P̂N σ̂ x

1 . Now,
σ̂ x

N no longer commutes with the Hamiltonian, however, we
have a conservation of the lattice momentum. Note that with
PBCs the state |↑↑ · · · ↑〉 is also disconnected from the rest
of the Hilbert space, and we explicitly discard it. The results
in Fig. 7(b) show that OBCs and PBCs give extremely similar
results for �(k) at late times. As they are also essentially iden-
tical to those of typical states, this shows that neither σ̂ x

N nor
lattice momentum affect deep thermalization. However, this is
no longer true for eigenstates, as seen in Fig. 8. Momentum-
resolved eigenstates are no longer real, except in the K = 0
and K = π sectors. Thus, we can see a clear difference be-
tween these sectors and and the rest. Interestingly, we also see
a much narrower distribution of �(k), even in real sectors.

In summary, we find that the quantum East model shows
clear signatures of deep thermalization for both eigenstates
and time-evolved states, once the relevant symmetries and an-
ticommuting operators are properly accounted for. We address

FIG. 8. �(k) for the eigenstates in the quantum East model with
NA = 3 and N = 14 with (a) OBCs and (b) PBCs. The effect of the
eigenstates being real is clearly visible for all |E〉 with OBCs, and
for momenta K = 0 and K = π for PBCs.

the role of the anticommuting operators and the conditions for
deep thermalization more generally in the subsequent section.

VI. ANTICOMMUTING OPERATORS
AND TIME REVERSAL

While the Hamiltonian having time-reversal symmetry can
change the ensemble to which the eigenstates deep-thermalize
to, this is generally not the case for time-evolved state. Indeed,
even if the initial state and Hamiltonian are real in the mea-
surement basis, this will not be the case of the time-evolved
state. However, for a Hamiltonian that is real in the canonical
basis, we can recover the same constraints for the projected
ensemble if there exists an observable Ẑ that

(1) anticommutes with the Hamiltonian, {Ẑ, Ĥ} = 0;
(2) Can be decomposed into subsystems A and B as

Ẑ = ẐA ⊗ ẐB with ẐA and ẐB Hermitian;
(3) ẐB is diagonal in the measurement basis;
(4) Ẑ only has eigenvalues +1 and −1 and squares to the

identity.
Note that these conditions imply that ẐA and ẐB both have

eigenvalues ±1 and square to the identity.
Let us assume that our initial state |ψ〉 is real (up to a global

phase) in the measurement basis and an eigenstate of Ẑ with
eigenvalue α = ±1. Then one can perform a change of basis
using

V̂ = exp

[
i
π

4
(Ẑ − α1)

]
= 1 − αi

2
(1 + iẐ ). (28)

The resulting time-evolved state will then be

V̂ |ψ (t )〉 = 1 − iα

2
(1 + iẐ )e−iĤt |ψ〉

= 1 − iα

2
(e−iĤt |ψ〉 + ieiĤt Ẑ|ψ〉)

=
(

1 − iα

2
e−iĤt + 1 + iα

2
eiĤt

)
|ψ〉. (29)
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The expression in the last line is clearly real, and as such
cannot lead to thermalization to the Haar ensemble.

Now we can recognize that, if Ẑ = ẐA ⊗ ẐB, then V̂ cannot
be decomposed in the same way unless ẐB acts as the identity
on B. However, due to the specific form of V̂ , we can show
that we still get convergence towards an ensemble similar to
that of real states. Let us denote by R̂ the real state such that
|ψ (t )〉 = V̂ †|R〉. We can then write

|ψ (t )〉 = exp

(
−i

π

4
(Ẑ − α1)

)
|R〉

= 1 + αi

2

∑
zB

√
pzB

(
1 − iαzB ẐA

)∣∣ψ̃A
zB

〉 ⊗ |zB〉

= 1 + αi√
2

∑
zB

√
pzB exp

(
−iαzB

π

4
ẐA

)∣∣ψ̃A
zB

〉 ⊗ |zB〉,

(30)

where the |ψ̃A
zB

〉 denote the states in the projected ensemble
of |R〉. These states all live in the real hyperplane of the
Hilbert space of A. The action of exp(−iαzB

π
4 ẐA) rotates this

hyperplane along the axis specified by ẐA. As the angle of
rotation is π/4 and the eigenvalues of ẐA are ±1, having
αzB equal to plus or minus one ends up in the same hyper-
plane (see Appendix A for an example). This means that the
|ψA

zB
〉 also live in a hyperplane of the same dimensionality as

the one of real states. As a consequence, �(k) will have the
same lower bound as for real states. Still, we emphasize here
that as the direction of the rotation depends on αzB , the �(k)

for the ensemble {|ψ̃A
zB

〉} (corresponding to |R〉) and {|ψA
zB

〉}
[corresponding to |ψ (t )〉] will not be identical but will only
approach the same value as NB → ∞.

Some of the stated conditions can actually be relaxed.
Indeed, the requirement that both the initial state and Hamil-
tonian are real can be changed by requiring that there exists a
change of basis Û that satisfies Û = ÛA ⊗ ÛB with ÛB diago-
nal in the measurement basis and such that Û ĤÛ † and Û |ψ〉
are real (up to a global phase). One can then use ÛV̂ to turn
|ψ (t )〉 into a real vector.

VII. PXP MODEL

Finally, now that we have understood the different condi-
tions that can prevent deep thermalization due to symmetries
and anticommuting operators, we consider a model in which
the constraint is stronger than in the East model and actually
splits the Hilbert space into exponentially many, dynamically
disconnected sectors. The model we study is the PXP model,
which describes a 1D chain of Rydberg atoms [29,32,33],

ĤPXP = σ̂ x
1 P̂2 + P̂N−1σ̂

x
N +

N−1∑
j=2

P̂j−1σ̂
x
j P̂j+1. (31)

Recall that P̂j = (1 − σ̂ z
j )/2 is a projector on the ↓ spin state

on site j. In this model, the projectors physically originate
from van der Waals interactions between Rydberg atoms,
preventing the creation or destruction of neighboring ↑ spins,
which is also known as the Rydberg blockade regime [48].
In our study, we restrict to the largest connected sector,

the one without any configurations that contain neighboring
· · · ↑↑ · · · . In Eq. (31) we have assumed OBCs and separated
out the boundary terms where the projectors falling outside
the boundaries of the chain have been replaced by identity
operators.

The PXP model is chaotic but it hosts nonthermal eigen-
states known as quantum many-body scars (QMBSs) [29,49].
Signatures of QMBSs are visible in global quenches from
initial states that have high-overlap with these nonthermal-
izing QMBS eigenstates. Such quenches have been shown
to lead to anomalous dynamics with long-lived coherent
oscillations and slow thermalization, despite the model over-
all displaying chaotic level statistics [36]. In particular, the
states |Z2〉 = |↑↓↑↓ · · · ↑↓〉 and |Z3〉 = |↑↓↓↑↓↓ · · · ↑↓↓〉
show persistent quantum revivals. The origin of these revivals
has been understood within a semiclassical approximation
[50–52], which established a parallel between this many-
body phenomenon and quantum scars of a single particle
inside a stadium billiard [53]. On the other hand, states
|Z4〉 = |↑↓↓↓↑↓↓↓ · · · ↑↓↓↓〉 and |Z0〉 = |↓↓ · · · ↓↓〉 show
fast thermalization, consistent with a generic chaotic model.
Note that, since the PXP Hamiltonian (31) is purely off-
diagonal in the computational basis, all these initial states
are effectively at infinite temperature. Therefore, according
to strong ETH [9], they are expected to give rise to similar
dynamics. This type of ETH violation therefore represents a
form of “weak” ergodicity breaking [26].

We now probe deep thermalization in the PXP model. Due
to the Rydberg blockade, as explained in Sec. II B, we per-
form postselection on the zB and only keep the strings where
the first spin in B (the one next to subsystem A) is ↓. The
same postselection was used in Ref. [14], which studied the
full Rydberg model where the blockade is imperfect, i.e., it
is enforced as a finite energetic penalty rather than as hard
constraint like in our Eq. (31). Moreover, in light of Sec. VI,
we must keep in mind that the PXP model in Eq. (31) anti-
commutes with Ẑ = ∏N

j=1 σ̂ z
j , similar to the East model. This

operator has also been referred to as “particle-hole transfor-
mation” in this context and it was shown to give rise to a large
subspace of exact zero-energy states [49,54,55].

From our discussion above, we expect a strong dependence
of �(k) on the initial state and not just on its energy. However,
all the special states |Zn〉 are eigenstates of Ẑ with α = ±1,
hence we know they will never exhibit deep thermalization.
We can remedy this by adding a small chemical potential in
the form of

Ĥ = ĤPXP + Ĥμ = ĤPXP + μ

N∑
j=1

n̂ j, (32)

where n̂ j = 1 − P̂j takes the value 1 if jth spin points ↑ (and
0 otherwise). As Ẑ anticommutes with ĤPXP but commutes
with Ĥμ, it neither commutes nor anticommutes with Ĥ as
long as μ�=0. We thus set μ = 0.05, which causes all states to
deep-thermalize but otherwise does not drastically affect the
dynamics, as shown on Fig. 9. In particular, the initial states
considered remain close to infinite temperature and QMBS
revivals are present when quenching from |Z2〉 and |Z3〉 states.
Figure 9 shows that even a small μ value is sufficient to make
a generic state (even those with α = ±1) deep thermalize at
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FIG. 9. Late-time average of �(k) in the PXP model with NA = 3
and various system sizes with (a) μ = 0 and (b) μ = 0.05. While for
k = 1 there is very little difference between the two, the contrast is
strong for k>1 in large systems.

late times. It also shows that while the agreement with typical
states is not as good as for the models considered previously,
we recover an exponential decay with NB.

We can now use the value of μ = 0.05 to study the dy-
namics from special initial states in Fig. 10. While for a given
system size the initial states display large variations in the late-
time value of �(k), for all of them we recover a clear decay
of that value with NB. This suggests that, in the thermody-
namic limit, all states eventually deep-thermalize, regardless
of scarring. Nonetheless, even for randomly sampled states,
it is apparent that the time needed to deep thermalize is re-
markably long: the time is on the order of 103, despite the
microscopic energy scale of the Hamiltonian being O(1). We
note, however, that this thermalization time scale is highly
sensitive to the type of perturbation added to the PXP model to
break the anticommutation with Ẑ . As shown in Appendix B,
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FIG. 10. �(k) for time-evolved states in the PXP model with
NA = 3 and μ = 0.05. We contrast the states |Z2〉 and |Z3〉, which
give rise to QMBS dynamics, with |Z0〉 and |Z4〉 that do not exhibit
scarring revivals. We also consider the “010” state, which contains a
single ↑ spin in the middle of |Z0〉. (a) Time series data for N = 22.
(b) Late-time average for several system sizes. The strong influence
on initial states is clearly visible, but all states still show a decrease
of �(k) with NB. However, even generic states and thermalizing states
like |010〉 show a very slow decay of �(k), with the plateau only
reached at times of order 103.

FIG. 11. �(k) for the eigenstates of the PXP model with NA = 3
and N = 22 with (a) μ = 0 and (b) μ = 0.05. The late-time averages
of time-evolved states are also shown. The effect of eigenstates being
real is clearly visible for all |E〉, while μ has no strong influence
for the eigenstates. Near E = 0, the range of values of �(k) is much
larger than for the other models considered in this paper.

another perturbation with a similar strength leads to the a
much shorter timescale for thermalization, in line with that
in the East model.

The behavior of �(k) for the eigenstates of the PXP model,
shown in Fig. 11, also reveals some nonthermalizing features.
We find a very broad distribution of values even at infinite
temperature. This is similar to what is seen in the entan-
glement entropy of eigenstates in this model [36,56], due
to the presence of many nonthermal eigenstates beyond the
“obvious” QMBS outliers with low entanglement entropy. In
this sense, the signs of ergodicity breaking in higher moments
(k > 1) do not appear to provide additional information com-
pared to the k = 1 case, accessible in ETH.

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we have studied deep thermalization for
several models ranging from the maximally chaotic SYK to
the heavily constrained PXP. Our results shed light on how,
beyond usual symmetries, the invariance under time rever-
sal and the existence of operators that anticommute with
the Hamiltonian can hinder deep thermalization in otherwise
chaotic models. As these properties do not influence the first
k = 1 moment of the projected ensemble, they have no ef-
fect on conventional ETH and thermalization of expectation
values of local observables. This highlights the sensitivity of
deep thermalization to special properties of the model beyond
global symmetries. However, once the symmetries and anti-
commuting operators are properly accounted for, we find an
exponential decay of �(k) at late times for all studied models
and initial states in the numerically-accessible system sizes.
Nonetheless, the rate of convergence to the Haar ensemble can
vary greatly between different models or even between initial
states in the same model, see Fig. 12 for a brief summary and
comparison. We find that for the SYK model, the decay of
�(k) with time is well fitted by a power law for all k, as found
in the Ising model in Ref. [15]. However, we find a decay as
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FIG. 12. A comparison of �(k) for (a) the SYK model with
N = 16, (b) the East model with N = 16, and (c) the PXP model with
N = 22. Panel (a) also shows a power-law fit for the SYK model of
the form �(k) ∼ tλ. For the latter two models, the initial state is a
superposition of two states with α = ±1, respectively. The difference
in timescale as well as the variability between initial states is clearly
visible between the three models.

t−2.9 for k = 1 against t−1.2 in the Ising case, showcasing the
faster thermalization in SYK. For the East and PXP models,
while the decay also resembles a power law, the variability
between initial states implies that using a single exponent for
all initial states is not meaningful. Overall, we find values
similar to those of the Ising case for the East model, while
for PXP the exponent is approximately halved.

The dependence of the exponent on the initial state is
the most salient in the PXP model, where we also find that
the time needed to reach the plateau is at least an order of
magnitude larger than in other models considered. We note
that this convergence rate has also been recently shown to
sensitively depend on the boundary conditions [57]. While
the convergence to the Haar ensemble in the PXP model
can be enhanced via weak perturbations, its slowness reveals
the presence of anomalous dynamics, which affects a large
part of the Hilbert space (and not just a few specific initial
states) and persists up to surprisingly long times. It would be
interesting to see if these results could explain the anomalous
energy transport in the PXP model at infinite temperature [58],
where superdiffusion has been observed on time scales ∼102

accessible to large-scale tensor network simulations. The on-
set of deep thermalization at even later times ∼103 found here
suggests that the observed superdiffusion may be transient
before it gives way to diffusion. Nevertheless, this would
still leave open the question of what physically sets such a
long timescale for deep thermalization. The understanding
of deep thermalization for initial conditions corresponding to
a finite-temperature density matrix and the possible gener-
alization of the projected ensemble to such cases [59] may
shed light on this question. Furthermore, a more systematic
investigation of models with variable constraints, proposed
in Refs. [60,61], might yield more quantitative insights
on the interplay between deep thermalization and dynami-
cal connectivity of the Hilbert space, influenced by kinetic
constraints.
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FIG. 13. Bloch sphere representations of states in the projected ensemble for the rotated Ising model with N = 12 and NA = 1. The
rotation angles are (a) 0, (b) −π/8, (c) −π/4, and (d) −π/2. The states in red are linked to zB with αzB = +1, while the blue ones are linked
to αzB = −1. The opposite rotation direction between the two is clear in panel (b).
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FIG. 14. �(k) for time-evolved states in the PXP model with the PXPZ perturbation in Eq. (B1) and perturbation strength h = 0.024. As the
perturbation does not break the “antisymmetry”, we still see a strong difference between states with α = ±1 and their superposition. However,
even for the latter, we find strong variations between initial states, already visible at k = 1.
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APPENDIX A: HYPERPLANES IN HILBERT SPACE

In this Appendix, we illustrate the effects of change of basis
matrices V̂ that cannot simply be written as V̂ = V̂A ⊗ V̂B but
instead as V̂ = ∑

j V̂ j
A ⊗ V̂ j

B . For this purpose, we focus on an
eigenstate at the middle of the spectrum of the Ising model as
defined in Eq. (18), with change of basis generated by

V̂φ = exp

⎛
⎝iφ

∏
j

σ̂ z
j

⎞
⎠, (A1)

with various values of φ. Let us denote by |E0〉 the real
eigenstate we study when V̂ = 1. Then, for any V̂φ , the same
eigenstate becomes |Eφ〉 = V̂φ|E〉, as V̂φ is unitary. We note
that it can be rewritten as V̂φ = cos(φ)1 + i sin(φ)

∏
j σ̂

z
j .

This allows us to rewrite |Eφ〉 using the same steps as in
Eq. (30). We also set NA = 1 to finally get

|Eφ〉 =
∑

zB

√
pzB exp

[
iφαzB σ̂

z
1

]∣∣ψA
zB

〉 ⊗ |zB〉. (A2)

As discussed in the main text, the rotation applied to the
states in the projected ensembles are now dependent on the
eigenvalue αzB = ±1 of the |zB〉 under

∏N
j=2 σ̂ z

j . In Fig. 13,
we plot a few important cases to consider.

If φ = 0, there is no rotation and the all |ψA
zB

〉 lie in the
XZ plane as they are real (up to an overall phase). If φ is real
and not a multiple of π/4, then the |ψA

zB
〉 with αzB = ±1 lie in

different planes as they get rotated in opposite directions. If
φ = ±π/2, states for both values of αzB = ±1 get rotated by
a half circle. Because of this the sign of αzB is irrelevant and
the dependence on zB is lost. This means that the projected
ensemble is affected by an overall rotation, leading the exact
same �k as for φ = 0. This is also true for all multiple of π/2.
Finally, we consider the case φ = ±π/4. This is the most
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FIG. 15. �(k) for time-evolved states in the PXP model with the PXPXP perturbation in Eq. (B2) and perturbation strength λ = 0.05. Even
such a weak perturbation is sufficient to significantly lower the �(k) plateau for all state while also shortening the time it takes to reach it.

important case as it corresponds to the angle for time-evolved
states in the presence of time reversal and an “antisymmetry”.
For this angle, both values of αzB also end up on the same
plane (the Y Z plane here). However, in this case the value of
αzB still matters and thus this transformation is not equivalent
to a global rotation. Indeed, let us consider a vector pointing
in the +Y direction. In the case of φ = −π/4, for αzB = +1 it
will end up pointing in the −Y direction, while for αzB = −1
it would be in the +Y direction. As a consequence, the �(k)

value will not be identical after this rotation. However, as the
projected ensemble is still contained in a single hyperplane,
�(k) should fluctuate around the same lower limit as for φ = 0
for large enough NB.

APPENDIX B: PERTURBATIONS OF THE PXP MODEL

Instead of chemical potential, used in the main text, ther-
malization properties of the PXP model can be tuned by
applying other types of perturbations, two of which are con-
sidered in this Appendix. The first perturbation we use is

Ĥ = ĤPXP − hĤint, Ĥint =
∑

j

P̂j−1σ̂
x
j P̂j+1

(
σ̂ z

j−2 + σ̂ z
j+2

)
.

(B1)

This perturbation has been shown to enhance the scarring
dynamics from the |Z2〉 state at h ≈ 0.05 [62]. For h ≈ 0.024,
it instead pushes the level statistics of the model closer to the
Poisson ensemble [56]. While both effects are most prominent
for PBCs, we still see the same qualitative behavior with
OBCs. Here we will focus on the latter value h ≈ 0.024, as
it affects the entire spectrum. The results of �(k) for time-
evolved states with this perturbation are shown in Fig. 14. The
special states |Z2〉 and |Z3〉 show a larger value for their �(k).
Meanwhile, as expected, we also see worse thermalization
for all states, with a very high variability between them. This
effect is prominent for all k.

The second perturbation has an opposite effect, making the
entire spectrum more thermalizing. The perturbation was first
discussed in Ref. [36] and is defined as

Ĥ = ĤPXP + λĤtherm, Ĥtherm =
∑

j

P̂j−2σ̂
x
j−1P̂j σ̂

x
j+1P̂j+2.

(B2)

We show its effect in Fig. 15 for λ = 0.05. Even such a
small perturbation strength is enough to suppress variations of
�(k) between initial states. However, we still see a somewhat
higher �(k) for the |Z2〉 and |Z3〉 states and thus a stronger
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perturbation is still needed to completely destroy scarring.
Another, very clear, effect of this perturbation is the reduction
of the timescale needed to reach the plateau of �(k), which

goes from t ≈ 103 down to t ≈ 102 upon the addition of this
perturbation. The latter timescale is similar to that observed in
the East model in Sec. V.
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