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 Tide level forecasting plays an important role in environmental management 

and development. Current tide level forecasting methods are usually 

implemented for solving single task problems, that is, a model built based on 

the tide level data at an individual location is only used to forecast tide level 

of the same location but is not used for tide forecasting at another location. 

This study proposes a new method for tide level prediction at multiple 

locations simultaneously. The method combines nonlinear autoregressive 
moving average with exogenous inputs (NARMAX) model and recurrent 

neural networks (RNNs), and incorporates them into a multi-task learning 

(MTL) framework. Experiments are designed and performed to compare 

single task learning (STL) and MTL with and without using non-linear 

autoregressive models. Three different RNN variants, namely, long short-

term memory (LSTM), gated recurrent unit (GRU) and bidirectional LSTM 

(BiLSTM) are employed together with non-linear autoregressive models. A 

case study on tide level forecasting at many different geographical locations 

(5 to 11 locations) is conducted. Experimental results demonstrate that the 

proposed architectures outperform the classical single-task prediction 

methods. 
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1. INTRODUCTION  

Tide level could have significant impact on human life, and the study of ocean phenomena is an 

essential part of coastal engineering, coastal ecosystem, and human activity. In the field of coastal 

engineering, tide level data are valuable for the construction of ports, offshores and cross-sea bridges [1]–[4]. 

For coastal ecosystems, tide level data can be crucial for sediment movements and pollutant tracing and 

monitoring [1], [5]. In the domain of human activity, tide level data can be used as important information in 

fishing, doing recreational activities [6], and potentially developing tidal energy [7], [8]. Therefore, it is 

important to effectively model and forecast tide levels. In doing so, tide level data are usually observed and 

recorded as time series. A classical way to make tide level forecasting is by implementing harmonic analysis 

method. Such a traditional way of forecasting can be ineffective if the data are incomplete (e.g., with some 

data being missing) [9]. Harmonic analysis methods usually also demand a substantial amount of parameters 

because such a method needs to use not only astronomical but also non-astronomical features [2], [10]. To 

overcome these drawbacks, an alternative forecasting method is required. 

Various algorithms and models have been proposed and explored to improve the accuracy of time 

series forecasting results. One of the most popular approaches for forecasting is using neural networks. 

Forecasting using artificial neural networks (ANNs), combined with other models, has attracted extensive 

https://creativecommons.org/licenses/by-sa/4.0/
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attention. Specifically, nonlinear autoregressive with exogenous input model (NARX) and nonlinear 

autoregressive moving average with exogenous input model (NARMAX) have been widely applied to 

complex system identification, modelling and time series forecasting [11]. For example, Aguirre et al. [12] 

employed both nonlinear autoregressive (NAR) and multi-layer perceptron models to investigate two 

fundamental issues which underlie periodic time series forecasting tasks (e.g., daily load forecasting): pattern 

mapping and dynamical prediction; the results are interesting and useful for designing more effective 

predictive approaches for short-term periodic time series forecasting. Wu et al. [13] proposed a combination 

of genetic algorithm, backpropagation and NARX for tide level prediction. Muñoz and Acuña [14] developed 

NARX and NARMAX models combined with shallow and deep neural networks (DNNs) to forecast daily 

demand data and air quality conditions. The performance of NARMAX and radial basis function (RBF) 

neural networks was examined by Omri et al. [15] for water flow depth forecasting. Gu et al. [16] proposed a 

neural network enhanced NARMAX model to predict the disturbance storm time (Dst) index and the model 

showed better performance than either NARX model and a typical neural network model alone. A novel 

cloud-NARX model is presented by Gu et al. [17] for the auroral electrojet (AE) index forecasting and 

prediction uncertainty analysis.  

The aforementioned methods, combining ANNs and other models, demonstrate promising results 

for time series prediction. However, most of these methods are designed for single task learning (STL), 

where a model trained using a set of time series data can only be used to make prediction of the same time 

series process, but cannot be used for other time series predictions, and therefore cannot benefit from sharing 

knowledge among related tasks [18], [19]. In many real scenarios, two or more different events or processes 

may be closely associated with each other; therefore, it is desirable to design a new framework that can be 

used to deal with more than one different but similar datasets simultaneously. 

To extend STL models to multi-task learning (MTL) cases, this paper proposes a new MTL 

framework by combining nonlinear aggressive models and recurrent neural network (RNN). The proposed 

MTL framework performs multiple tasks simultaneously, allowing for sharing information between related 

tasks. For RNN, an MTL scheme can be implemented by sharing information of the structures of the network 

models (e.g., numbers of layers and numbers of nodes in each layer) and their training process. Sharing 

information between multiple related tasks can boost learning efficiency and improve the generalization 

ability of the resulting models. These performance improvements are achieved through knowledge sharing 

between different tasks [19]–[21].  

Several MTL RNN models have been proposed for forecasting purposes in the literature. In study 

[22], MTL and long short-term memory (LSTM) RNN models were combined for wind power forecasting; 

the prediction accuracy was increased by more than 23.13% in comparison with the existing STL 

forecasting models. In study [23], MTL and RNN were used to forecast urban traffic flow; the forecasting 

accuracy was improved around 10% to 15% over baseline models. In study [18], another RNN variant, 

gated recurrent unit (GRU), was combined with MTL for traffic flow and speed forecasting; the model 

does not only improve the forecasting accuracy but also solve the problems caused by enlarging the 

dataset. In study [24], the performance of MTL with LSTM (MTL+LSTM) was compared with that of 

MTL+GRU for health assessment and remaining useful life forecasting; it shows interesting results where 

LSTM gives smaller loss and simpler model while GRU can perform well with less training time. MTL 

based on bidirectional LSTM (BiLSTM) was proposed to forecast cooling, heating, and electric load [25]; 

the MTL+BiLSTM model is able to increase the accuracy significantly and improve the time efficiency for 

training the model. 

Over the past years, NARX and NARMAX models have been applied to STL, and RNN has been 

introduced to solve multi task learning problems, but relatively few works have been done to combine 

nonlinear model autoregressive models and RNNs, and applied them to MTL. This study aims to develop 

new models for tide level forecasting. The proposed approach is as follows. It first combines three RNN 

variants (LSTM, GRU, and BiLSTM) with NARX and NARMAX, respectively. Then, it compares the 

performance of all the resulting models. Finally, it determines the best models for tide level forecasting by 

evaluating the accuracy of these models, with and without using the proposed MTL scheme. 

The study conducts comprehensive comparisons between three types of recurrent neural networks 

(LSTM, GRU, and BiLSTM), paired with NARX and NARMAX models, and analyze their performances 

for forecasting tide level at different locations. The main contributions of the work are summarized as 

follow: 

a. The proposal of NARMAX and NARX modelling framework, combined with an MTL scheme, for 

forecasting tide levels at many different locations simultaneously. 

b. A comparison studies of NARMAX and NARX, paired with three RNN model structures with MTL 

schemes, to improve tide level prediction performances. 
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2. METHOD  

2.1. Multi-task learning 

MTL is a transfer learning method where multiple related tasks are solved in parallel by sharing 

information between them. The task relatedness is defined based on the recognition of how each task is 

related, based on which MTL models are designed, trained and implemented. The classic methods to perform 

MTL can be categorized into soft parameter sharing and hard parameter sharing.  

MTL with hard parameter sharing concept is by using the hidden layer together for entire tasks but 

the output layers will be allocated separately for different tasks. Hard parameter technique shows the 

possibility of lower chance of overfitting and smaller loss or error because the MTL is able to hold all the 

knowledge and information, sharing all the parameters and training all tasks jointly [26]–[28]. In soft 

parameter sharing, each task has it is own specific hidden layer with independent parameters. The distance 

between the model parameters of different tasks is then regularized to make the parameter to be similar. 

Although every task has it is own model with its own setting, the distance between the model parameters of 

every dissimilar task is added to unite the objective functions [26], [27]. Several approaches have been 

proposed to explore the sharing mechanism in MTL, for example, supervised learning, unsupervised 

learning, semi-supervised learning, reinforcement learning, active learning, online learning, parallel and 

distributed learning, and multi-view learning [29]. 

 

2.2.  NARX and NARMAX models 

NARX and NARMAX are models that not only utilize exogenous (external) input variables, but 

also the lagged versions of the system’s own output that enters the model structure through output delays 
[11]. Both models introduce nonlinear functions to learn the system input-output relationships but the 

NARMAX model also includes prediction errors to improve the modelling performance [17]. The 

introduction of “error variable” or “residual variable” makes NARMAX more powerful for nonlinear system 
identification [30]. The most commonly used basis functions in NARX and NARMAX modelling are 

polynomials, which usually lead to transparent, interpretable and parsimonious models [11], [31], [32]. 

Another widely used nonlinear representation to apply with NARX and NARMAX is neural networks, which 

usually result in black box models. A modelling framework combining NARX or NARMAX and neural 

networks may be called grey box model identification [11], [33]. For single input, STL systems, NARX 

model can be formulated as (1): 

 𝑦(𝑡) =  𝑓 (𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 𝑑), … , 𝑢(𝑡 − 𝑑 − 𝑛𝑢)) + 𝑒(𝑡) (1) 

 

where 𝑦(𝑡), 𝑢(𝑡) and 𝑒(𝑡) are the system output, input, and noise, respectively; 𝑛𝑦, 𝑛𝑢, 𝑛𝑒 are the maximum 

lags in the output, input and noise; 𝑓(. ) is a nonlinear function, and d is a time delay which is typically set to 

be d=0 or d=1. For multi task leaning systems, NARX can be formulated as (2): 

 𝑦𝑖 (𝑡) =   𝑓𝑖  (𝑦1(𝑡 − 1), … , 𝑦1(𝑡 − 𝑛𝑦), … , 𝑦𝑚(𝑡 − 1), 𝑦𝑚(𝑡 − 𝑛𝑦), 𝑢1(𝑡 − 1), … , 𝑢1(𝑡 − 𝑛𝑢),… , 𝑢𝑟(𝑡 − 1), … , 𝑢𝑟(𝑡 − 𝑛𝑢) ) (2) 

 

where 𝑖 = 1, 2 … , 𝑚, with m being the number of outputs; r is the number of inputs. Correspondingly, for 

STL and MTL systems, NARMAX models can be respectively formulated as (3): 

 𝑦 (𝑡) =  𝑓 (𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 𝑑), … , 𝑢(𝑡 − 𝑛𝑢), 𝑒(𝑡 − 1), 𝑒(𝑡 − 2) … , 𝑒(𝑡 −𝑛𝑒)) + 𝑒(𝑡) (3) 

 

and 
 𝑦𝑖 (𝑡) =  𝑓𝑖(𝑦1(𝑡 − 1), … , 𝑦1(𝑡 − 𝑛𝑦), … , 𝑦𝑚(𝑡 − 1), … , 𝑦𝑚(𝑡 − 𝑛𝑦), 𝑢1(𝑡 − 1), … , 𝑢1(𝑡 − 𝑛𝑢),… , 𝑢𝑟(𝑡 − 1), … , 𝑢𝑟(𝑡 − 𝑛𝑢), 𝑒1(𝑡 − 1), … , 𝑒1(𝑡 − 𝑛𝑒), … , 𝑒𝑚(𝑡 − 1), … , 𝑒𝑚(𝑡 − 𝑛𝑒) ) (4) 

 

In this work, three variants of RNN, that is, LSTM, Bi-LSTM and GRU, are used to implement the 

nonlinear functions f and fi (i =1, 2, …, m) and adopt the hard parameter sharing MTL framework. 
 
2.3.  The NARX-RNN-MTL frameworks 

The structure of the proposed NARX-RNN-MTL framework is presented in Figure 1, 

where �̂�𝑖  (𝑡) (𝑖 = 1,2, … , 𝑚) are the predicted values of the output, n and r are the number of samples and 
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number of locations, respectively. The proposed model has an input layer that accepts the sequence data of 

tide level measured at 𝑟 locations; the next layer is built using RNN. The RNN layer can be GRU, LSTM or 

BiLSTM, and the last layer, which is a fully connected dense layer with the output, provides predicted values 

of the tide levels. 
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Figure 1. NARX RNN architecture 

 

 

2.4.  The NARMAX-RNN-MTL frameworks 

Similar to the NARX-RNN-MTL model, the NARMAX-RNN-MTL model is also implemented by 

using GRU, LSTM or BiLSTM and the forecasting results are produced by the dense layer. The difference 

between these two models is that the NARMAX architecture includes ‘noise’ as an input. Note that noise 
cannot be measured but can be estimated using model prediction error. The architecture of the  

NARMAX-RNN-MTL model is presented in Figure 2. 

To identify an NARMAX model, we use the prediction error from NARX-RNN-MTL as additional 

inputs. To differentiate between noise and prediction error, we use 𝑒(𝑡) and 𝜀(𝑡) to represent noise and 

model prediction error, respectively. The model prediction error of the NARX-RNN-MTL model is: 
 𝜀𝑖(𝑡) = 𝑦𝑖(𝑡) −  �̂�𝑖  (𝑡) (5) 
 

where �̂�𝑖  (𝑡) is the one-step ahead prediction calculated from NARX-RNN-MTL model and 𝑦𝑖(𝑡) is the 

corresponding actual signal. For an MTL system with r inputs and m outputs, the ith output of the NARMAX-

RNN-MTL model calculated based on the associated NARX-RNN-MTL model is: 

 𝑦𝑖 (𝑡) =  𝑓𝑖(𝑦1(𝑡 − 1), … , 𝑦1(𝑡 − 𝑛𝑦), … , 𝑦𝑚(𝑡 − 1), … , 𝑦𝑚(𝑡 − 𝑛𝑦), 𝑢1(𝑡 − 1), … , 𝑢1(𝑡 −𝑛𝑢), … , 𝑢𝑟(𝑡 − 1), … , 𝑢𝑟(𝑡 − 𝑛𝑢), 𝜀1(𝑡 − 1), … , 𝜀1(𝑡 − 𝑛𝑒), … , 𝜀𝑖(𝑡 − 1), … , 𝜀𝑖(𝑡 − 𝑛𝑒) ) 𝑖 =1, … , 𝑚 (6) 
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Figure 2. NARMAX RNN architecture 

 

 

3. EXPERIMENTS 

3.1. The task 

This study is concerned with a multi-task problem, that is, to forecast tide level in five stations  

(5 tasks) at the same time, namely, Harwich, Lerwick, Millport, Portrush and Weymouth, using the proposed 

NARX-RNN-MTL and NARMAX-RNN-MTL models. The MTL model is designed for one-step ahead 

prediction of tide level; here one-step is equal to 15 minutes. The datasets measured for the five stations, 

from January 1, 2022 to May 31, 2022, with a sampling period of 15 minutes, are used for model building. In 

doing so, the data were split into three parts: 60% for training, 20% for validation and 20% for testing.  

Experiment on different numbers of more tasks will be further performed. Specifically, the proposed 

models are used to forecast six more stations, namely, Aberdeen, Devonport, Fishguard, Holyhead, St Mary 

and Stornoway, to further assess the model’s generalization performances for solving many tasks, ranging 
from 6 to 11. The datasets for these six stations were measured in the same period and with the same 

sampling period of 15 minutes. These datasets were extracted from the website of the British Oceanographic 

Data Centre (BODC) [34]. 
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3.2.  Experimental settings and metrics performance  

To achieve good model performances, the network hyper-parameters were determined through 

simulations by testing a set of parameters shown in Table 1. For a single task, for example, the prediction of a 

single individual time series 𝑦𝑖(𝑡) (i =1,2,…, m), without using shared information from any other signals, 

the loss function can be defined as (7): 

 𝐿𝑖 = √1𝑛 ∑ (�̂�𝑖(𝑡) − 𝑦𝑖(𝑡))2𝑛𝑡=1  (7) 

 

where �̂�𝑖 is the predicted value, 𝑦𝑖  is actual value and n is the number of observations. 

Note that this study is concerned with dealing with multiple tasks simultaneously; the loss function 

for model training should accommodate the losses of all the tasks. Keeping this in mind, we use the averaged 

root mean square error (aRMSE) as a joint loss that is defined as (8): 

 𝐿 = 1𝑚 ∑ 𝐿𝑖𝑚𝑖=1  (8) 

 

 

Table 1. The parameter setting 
Parameter Values 

Number of hidden layer 1 

Number of nodes 25,50, 100, 150,200,250,300,350 

Optimizer Adam, SGDM 

Number of iterations 300 

Maximum lags for NARX 𝑛𝑦  = 1,2,3,4  𝑛𝑢 = 1,2,3,4 

Maximum lags for NARMAX 𝑛𝑦  = 1,2,3,4 𝑛𝑢 = 1,2,3,4  𝑛𝑒 = 1 

 

 

3.3.  Experimental results 

3.3.1. NARX and NARMAX combine with GRU, LSTM, and BiLSTM 

We compare NARX and NARMAX using three different RNN models, with a variety of time lags. 

Two optimizers, namely stochastic gradient descent with a momentum (SGDM) and adaptive moment 

estimation (ADAM), are used to optimize the associated models. Joint loss value or average value of root 

mean square error (RMSE), based on the combinations of the candidate parameters presented in Table 1, was 

simultaneously carried out on the datasets for the five stations (i.e., Harwich, Lerwick, Millport, Portrush and 

Weymouth) for finding the optimal network model parameters and determined the best model structure. The 

performance of the NARX-RNN-MTL and NARMAX-RNN-MTL models were then compared based on the 

values of the RMSE of five tasks. Three RNN structures, namely, LSTM, BiLSTM and GRU were used for 

building the NARX-RNN-MTL and NARMAX-RNN-MTL models.  

We compare the performance of the three NARX-RNN-MTL models, with 16 specific lags and 

trained with SGDM and ADAM, for the five tasks. The comparison is based on joint loss or average RMSE 

value which indicates the performance of each model. The details of these experimental settings are shown in 

Table 2. From the comparison we have the following findings:  

a. The two lowest average RMSE values are 0.10598 and 0.15848, which are produced by the model of 

NARX GRU using SGDM and ADAM, respectively.  

b. The distribution of average RMSE for NARX GRU and NARX LSTM using SGDM are relatively small 

compared to NARX GRU and NARX LSTM using ADAM. From Table 2, it can be seen that the 

minimum and maximum average values of RMSE for NARX GRU and LSTM GRU using SGDM are 

0.10598, 0.15848, 0.15774 and 0.21189 respectively, while for NARX LSTM and NARX LSTM using 

ADAM, the values are 0.15848, 0.25016, 0.17758 and 0.35830, respectively. 

c. NARX GRU using SGDM outperforms the following models for all the settings of time lags (ranging 

from 1 to 4): i) GRU using ADAM, ii) LSTM using SGDM and ADAM, and iii) BiLSTM using SGDM 

and ADAM. 

d. For NARX BiLSTM, the relatively lower RMSE distribution is gained by using the ADAM optimizer. 

Table 3 shows details of the 16 resulting models using three NARMAX-RNN-MTL models, with 16 

specific lags and trained with the two optimizers, SGDM and ADAM, for the five tasks. Similar to the 

NARX-RNN-MTL results, the RMSE range distribution of the NARMAX-GRU and NARMAX LSTM 

models using SGDM is smaller than using ADAM, but the range becomes significantly wider for BiLSTM 

implemented with SGDM. Furthermore, NARMAX GRU trained with SGDM outperforms other models. From 

Table 3, we have the following observations: SGDM works better than ADAM for both NARMAX-GRU and 

NARMAX-LSMT models, whereas ADAM outperforms SGDM for the NARMAX-BiLSMT model. 
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Table 2. Performances of identified 16 NARX-RNN-MTL models 
No Lag delay Joint loss (Average RMSE) 

SGDM ADAM 

GRU LSTM BiLSTM GRU LSTM BiLSTM 

1 (𝑛𝑦 = 1 , 𝑛𝑢 = 1) 0.10598 0.17322 0.28982 0.16231 0.19635 0.18830 

2 (𝑛𝑦 = 1 , 𝑛𝑢 = 2) 0.10649 0.18470 0.28459 0.21822 0.17758 0.28459 

3 (𝑛𝑦 = 1 , 𝑛𝑢 = 3) 0.14729 0.16285 0.30918 0.22208 0.27188 0.19872 

4 (𝑛𝑦 = 1 , 𝑛𝑢 = 4) 0.12999 0.16768 0.30962 0.23365 0.27584 0.17331 

5 (𝑛𝑦 = 2 , 𝑛𝑢 = 1) 0.11040 0.15774 0.34582 0.19442 0.21047 0.15283 

6 (𝑛𝑦 = 2 , 𝑛𝑢 = 2) 0.11865 0.15775 0.31986 0.19442 0.24187 0.20332 

7 (𝑛𝑦 = 2 , 𝑛𝑢 = 3) 0.13333 0.17340 0.29100 0.22796 0.26231 0.17221 

8 (𝑛𝑦 = 2 , 𝑛𝑢 = 4) 0.13932 0.19142 0.28496 0.24223 0.34013 0.20563 

9 (𝑛𝑦 = 3 , 𝑛𝑢 = 1) 0.12164 0.16396 0.28633 0.18606 0.29282 0.17917 

10 (𝑛𝑦 = 3 , 𝑛𝑢 = 2) 0.13305 0.18853 0.28329 0.23771 0.25633 0.22868 

11 (𝑛𝑦 = 3 , 𝑛𝑢 = 3) 0.11662 0.17910 0.30352 0.21835 0.24891 0.25139 

12 (𝑛𝑦 = 3 , 𝑛𝑢 = 4) 0.15127 0.19995 0.31023 0.25016 0.24891 0.20282 

13 (𝑛𝑦 = 4 , 𝑛𝑢 = 1) 0.14329 0.18544 0.30231 0.21711 0.28983 0.20301 

14 (𝑛𝑦 = 4 , 𝑛𝑢 = 2) 0.13971 0.18291 0.32236 0.15848 0.35830 0.23086 

15 (𝑛𝑦 = 4 , 𝑛𝑢 = 3) 0.15848 0.16859 0.30973 0.22282 0.20589 0.21365 

16 (𝑛𝑦 = 4 , 𝑛𝑢 = 4) 0.14329 0.21189 0.28626 0.21075 0.35164 0.25752 

 

 

Table 3. Performance of 16 identified NARMAX-RNN-MTL models 
No Lag delay Joint loss (Average RMSE) 

SGDM ADAM 

GRU LSTM BiLSTM GRU LSTM BiLSTM 

1 (𝑛𝑦 = 1 , 𝑛𝑢 = 1, 𝑛𝑒 = 1) 0.10191 0.18091 0.28408 0.15780 0.20377 0.17585 

2 (𝑛𝑦 = 1 , 𝑛𝑢 = 2, 𝑛𝑒 = 1) 0.09961 0.17588 0.30377 0.16879 0.20888 0.19176 

3 (𝑛𝑦 = 1 , 𝑛𝑢 = 3, 𝑛𝑒 = 1) 0.13875 0.15918 0.29990 0.18699 0.22137 0.18809 

4 (𝑛𝑦 = 1 , 𝑛𝑢 = 4, 𝑛𝑒 = 1) 0.12616 0.16064 0.32019 0.20136 0.29417 0.22080 

5 (𝑛𝑦 = 2 , 𝑛𝑢 = 1, 𝑛𝑒 = 1) 0.10972 0.16576 0.29414 0.19492 0.22167 0.20305 

6 (𝑛𝑦 = 2 , 𝑛𝑢 = 2, 𝑛𝑒 = 1) 0.10980 0.16958 0.29454 0.19750 0.24746 0.16862 

7 (𝑛𝑦 = 2 , 𝑛𝑢 = 3, 𝑛𝑒 = 1) 0.12900 0.16516 0.29947 0.21943 0.31842 0.20583 

8 (𝑛𝑦 = 2 , 𝑛𝑢 = 4, 𝑛𝑒 = 1) 0.13144 0.20250 0.26188 0.24519 0.33824 0.20687 

9 (𝑛𝑦 = 3 , 𝑛𝑢 = 1, 𝑛𝑒 = 1) 0.12864 0.15395 0.32849 0.20649 0.30592 0.22373 

10 (𝑛𝑦 = 3 , 𝑛𝑢 = 2, 𝑛𝑒 = 1) 0.12250 0.17948 0.32849 0.23217 0.30592 0.22373 

11 (𝑛𝑦 = 3 , 𝑛𝑢 = 3, 𝑛𝑒 = 1) 0.11954 0.16456 0.30606 0.23067 0.27288 0.22879 

12 (𝑛𝑦 = 3 , 𝑛𝑢 = 4, 𝑛𝑒 = 1) 0.13561 0.19274 0.28792 0.23114 0.30840 0.21352 

13 (𝑛𝑦 = 4 , 𝑛𝑢 = 1, 𝑛𝑒 = 1) 0.13431 0.21346 0.28896 0.22387 0.25997 0.19986 

14 (𝑛𝑦 = 4 , 𝑛𝑢 = 2, 𝑛𝑒 = 1) 0.14343 0.16216 0.31024 0.23185 0.29529 0.20957 

15 (𝑛𝑦 = 4 , 𝑛𝑢 = 3, 𝑛𝑒 = 1) 0.13754 0.18699 0.28547 0.23874 0.24995 0.21745 

16 (𝑛𝑦 = 4 , 𝑛𝑢 = 4, 𝑛𝑒 = 1) 0.14401 0.19065 0.28606 0.23418 0.28934 0.24220 

 

 

Table 4 illustrates the optimal settings for the NARX-RNN and NARMAX-RNN model and their 

performances. It can be observed that the NARX-GRU and NARMAX-GRU models with smaller lags, 

trained with SGDM have better performances than other models. The best NARX-RNN-MTL model reported 

in Table 2 can be written as (9): 

 �̂�𝑖 (𝑡)  =  𝑓𝑖(𝑦1(𝑡 − 1), … , 𝑦4(𝑡 − 1), 𝑢1(𝑡 − 1), … , 𝑢4(𝑡 − 1)) (9) 

 

Similarly, the best NARMAX-RNN-MTL model reported in Table 3 can be written as (10): 

 �̂�𝑖 (𝑡)  =  𝑓𝑖(𝑦1(𝑡 − 1), … , 𝑦4(𝑡 − 1), 𝑢1(𝑡 − 1), 𝑢1(𝑡 − 2), … , 𝑢4(𝑡 − 1), 𝑢4(𝑡 − 2), 𝜀1(𝑡 −1), … , 𝜀4(𝑡 − 1) ) (10) 

 

3.3.2. Baselines 

In order to validate the overall performance and effectiveness, we tested and compared the proposed 

method with the following baseline methods, including STL and MTL without using NARX or NARMAX 

model: i) MTL implemented with GRU, LSTM and BiLSTM using SGDM and ADAM optimizer and  

ii) STL implemented with GRU, LSTM, and BiLSTM using SGDM optimizer and ADAM. The comparison 

results of the individual RMSE and the lowest joint loss RMSE are tabulated in Table 5, where the lowest 

average RMSE value is for MTL using NARMAX and GRU with SGDM optimizer. Based on average 
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RMSE value this model outperforms all the baseline models. It can be noticed that this lowest average value 

does not guarantee that the individual RMSE of each task is also has smaller value. For example, for Tasks 1 

and 5, the NARMAX-GRU-MTL model shows the best performance with the lowest individual RMSE 

values, while for Tasks 2, 3 and 4, GRU-STL, GRU-MTL and NARX-GRU-MTL show the best 

performance, respectively. Table 5 shows that all the baseline models using SGDM deliver better results than 

using ADAM; the SGDM optimizer has best performance measured in either average RMSE or individual 

RMSE. Figure 3 provides a graphical illustration of joint loss, measured as the average RMSE of different 

models. The bar plots show that GRU networks display better performance than the other two RNN variants 

(LSTM and BiLSTM). To further evaluate the performances of NARMAX-GRU models for more tasks, we 

conducted experiments, where six more tasks of predicting tide levels at stations 6-11 were included and 

performed simultaneously together with the other five tasks (for stations 1-5). The joint losses of the 

NARMAX-GRU models for these six tasks are shown in Figure 4, where it can be noted that the prediction 

error increases with the increase of the number of tasks but still maintains the errors at a stable level. 

 

 

Table 4. The optimal settings of the NARX-RNN-MTL and NARMAX-RNN-MTL models and their 

performances 
Optimizer Model Lag delay Number of hidden layer Joint loss (Average RMSE) 

NARX-RNN-MTL 

SGDM GRU (𝑛𝑦 = 1 , 𝑛𝑢 = 1) 300 0.10598 

LSTM (𝑛𝑦 = 2 , 𝑛𝑢 = 1) 50 0.15774 

BiLSTM (𝑛𝑦 = 1 , 𝑛𝑢 = 2) 50 0.28459 

ADAM GRU (𝑛𝑦 = 4 , 𝑛𝑢 = 2) 25 0.15848 

LSTM (𝑛𝑦 = 1 , 𝑛𝑢 = 2) 25 0.17758 

BiLSTM (𝑛𝑦 = 2 , 𝑛𝑢 = 1) 25 0.15283 

NARMAX-RNN-MTL 

SGDM GRU (𝑛𝑦 = 1 , 𝑛𝑢 = 2, 𝑛𝑒 = 1) 100 0.09961 

LSTM (𝑛𝑦 = 3 , 𝑛𝑢 = 1, 𝑛𝑒 = 1) 25 0.15395 

BiLSTM (𝑛𝑦 = 2 , 𝑛𝑢 = 4, 𝑛𝑒 = 1) 25 0.26188 

ADAM GRU (𝑛𝑦 = 1 , 𝑛𝑢 = 1, 𝑛𝑒 = 1) 100 0.15780 

LSTM (𝑛𝑦 = 1 , 𝑛𝑢 = 1, 𝑛𝑒 = 1) 25 0.20377 

BiLSTM (𝑛𝑦 = 2 , 𝑛𝑢 = 2, 𝑛𝑒 = 1) 25 0.16862 

 

 

Table 5. Comparison of RMSE values of of different models 
Model Hidden Node Task 1 Task 2 Task 3 Task 4 Task 5 Average 

SGDM  

NARMAX-GRU-MTL 100 0.16140 0.09458 0.12771 0.05048 0.06388 0.09961 

NARMAX-LSTM-MTL 25 0.24487 0.12499 0.14582 0.10795 0.14610 0.15395 

NARMAX-BiLSTM-MTL 25 0.42726 0.18621 0.31956 0.18871 0.18764 0.26188 
        

NARX-GRU-MTL 300 0.21347 0.10470 0.10519 0.04220 0.06432 0.10598 

NARX-LSTM-MTL 50 0.29863 0.13280 0.14630 0.09633 0.11466 0.15774 

NARX-BiLSTM-MTL 25 0.48090 0.22515 0.36826 0.17236 0.17627 0.28459 
        

GRU-MTL 150 0.25929 0.15322 0.07548 0.04405 0.10889 0.12819 

LSTM-MTL 50 0.28030 0.16359 0.17418 0.10057 0.08497 0.16072 

BiLSTM-MTL 25 0.52474 0.22105 0.40890 0.21039 0.20774 0.31456 
        

GRU-STL 250 0.29145 0.07239 0.18870 0.09555 0.34522 0.19866 

LSTM-STL 250 0.24690 0.09911 0.12101 0.10604 0.20814 0.15624 

BiLSTM-STL 300 0.56596 0.28664 0.47933 0.24418 0.29645 0.37451 

ADAM  

NARMAX-GRU-MTL 100 0.19824 0.09073 0.16851 0.12965 0.20186 0.15780 

NARMAX-LSTM-MTL 25 0.32049 0.09641 0.24447 0.10655 0.25092 0.20377 

NARMAX-BiLSTM-MTL 25 0.25218 0.14970 0.17170 0.10981 0.15970 0.16862 
        

NARX-GRU-MTL 25 0.19162 0.15533 0.22263 0.11317 0.10961 0.15848 

NARX-LSTM-MTL 25 0.34495 0.09603 0.21576 0.09469 0.13649 0.17758 

NARX-BiLSTM-MTL 25 0.23515 0.10303 0.17927 0.10553 0.14120 0.15283 
        

GRU-MTL 50 0.26933 0.15941 0.19025 0.09281 0.15661 0.17368 

LSTM-MTL 25 0.49935 0.15125 0.15912 0.10630 0.19532 0.22227 

BiLSTM-MTL 50 0.30707 0.16566 0.16943 0.09655 0.15826 0.17939 
        

GRU-STL 50 0.45873 0.19463 0.15439 0.14449 0.21260 0.23297 

LSTM-STL 25 0.39998 0.17163 0.18295 0.10671 0.29542 0.23134 

BiLSTM-STL 50 0.33139 0.27435 0.34500 0.24185 0.14102 0.26672 
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Figure 3. Comparison of joint loss error of different model structures builts based on three RNNs, namely, 

GRU, LSTM, and BiLSTM 

 

 

 
 

Figure 4. Joint loss error of MTL NARMAX with many tasks 

 

 

4. DISCUSSION  

From the results and comparisons presented in section 4, it can be noticed that NARX/NARMAX 

models, paired with GRU, showed better performance than paired with LSTM and BiLSTM for all the 

experimented scenarios. Another noticeable observation is that the SGDM optimizer was proved to be more 

effective than ADAM (in terms of RMSE) for both single task and multi-tasks. The only occasion where 

SGDM showed a poor performance was when BiLSTM was applied to solve a single task problem as shown 

in Table 5. The maximum lags for both NARX and NARMAX models were limited to the range from 1 to 4. 

It appeared that models with smaller lags usually produced slightly better prediction performances. However, 

it was noted that neural network models with a relatively smaller lag usually needed more hidden nodes, 

meaning that the training of the models needed more time. It is also worth mentioning that the network 

models that include NARX or NARMAX as a sub-model have lower average RMSE values in comparison 

with models that do not include NARX or NARMAX as a sub-model. 

 

 

5. CONCLUSION  

This study proposes a new class of NARMAX-RNN models, namely, NARMAX-LSTM, -BiLSTM 

and -GRU, combined with MTL learning for multiple tide level forecasting simultaneously. Experimental 

results revealed that NARMAX-GRU trained with SGDM outperformed the other two RNN variants; the 

NARMAX-GRU model requires relatively small lags but may need a relatively larger number of hidden 

nodes. The optimal NARX-GRU structure involves 300 hidden nodes, the maximum lag for input is  𝑛𝑢 = 1, 

for output is  𝑛𝑦 = 1, and the RMSE values is 0.10598. For the NARMAX-GRU model, the best setting is as 

follows: 100 hidden nodes, the maximum lag for input is  𝑛𝑢 = 2 and for output is  𝑛𝑦 = 1, and the RMSE 

values is 0.09961. The results showed that NARMAX-GRU outperformed its counterpart NARX-GRU.  
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We also compared the model performances with and without using the MTL scheme. It turned out 

that NARMAX-GRU has the lowest joint loss values. The three RNN models without using the MTL scheme 

displayed poor performance compared to NARX and NARMAX with MTL the scheme. One limitation of 

this work is that the proposed model still needs manual fine-tuning to find the best hyper-parameters, e.g., 

time lags for each of the model variables and the number of hidden nodes, to build the best models. In future, 

we will design MTL models that can better fine-tune the training process by using transfer learning. In 

addition, the data used model for model training and forecasting are not only univariate but also multivariate 

and multidimensional. 
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