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Abstract 

Introduction 

Accurate tools to inform individual prognosis in patients with autosomal dominant polycystic 

kidney disease (ADPKD) are lacking. Here, we report an artificial intelligence (AI) generated 

method for routinely measuring total kidney volume (TKV). 

  

Methods 

An ensemble U-net algorithm was created using the nnUNet approach. The training and 

internal cross-validation cohort consisted of all 1.5T MRI data acquired using 5 different MRI 

scanners (454 kidneys, 227 scans) in the CYSTic consortium which was first manually 

segmented by a single human operator. As an independent validation cohort, we utilised 48 

sequential clinical MRI scans with reference results of manual segmentation acquired by 6 

individual analysts at a single centre. The tool was then implemented for clinical use and its 

performance analysed. 

  

Results 

The training / internal validation cohort was younger (mean age 44.0 vs 51.5 years) and the 

female-male ratio higher (1.2 v 0.94) compared to the  clinical validation cohort. The majority 

of CYSTic patients had PKD1 mutations (79%) and typical disease (Mayo Imaging Class 1, 

86%). The median DICE score on the clinical validation dataset between the algorithm and 

human analysts was 0.96 for left and right kidneys with a median TKV error of -1.8%. The time 

taken to manually segment kidneys in the CYSTic dataset was 56 (±28) min whereas manual 

corrections of the algorithm output took 8.5 (±9.2) min per scan. 

   

Conclusions 

Our AI-based algorithm demonstrates performance comparable to manual segmentation. Its 

rapidity and precision in real-world clinical cases demonstrate its suitability for clinical 

application. 
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Introduction 

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney 

disease, characterised by the progressive development and growth of kidney cysts which 

results in kidney enlargement and kidney failure in 50% of affected patients by 60 years 1. The 

clinical course of ADPKD is however highly variable between individuals even if renal 

outcomes can be stratified based on the causative gene and variant type 2. The longitudinal 

CRISP (Consortium for Radiologic Imaging Studies of PKD) studies identified that prior to the 

decline in kidney function, total kidney volume (TKV) is increased and predictive of an eGFR 

< 60ml/min/1.73m2 3. TKV has since been approved as a prognostic imaging biomarker by the 

European Medicines Agency (EMA) in 2015 and Food and Drug Administration (FDA) in 2016. 

As there is now an effective treatment to slow disease progression, Tolvaptan 4, 5 , the timely 

identification of patients at risk of rapid progression to kidney failure is vital to optimise and 

personalise patient care 6. Nonetheless, a major challenge to the use of TKV in clinical practice 

has been the difficulty of accurately segmenting the kidneys and the significant human 

operator time (45-90min per patient) required of skilled, experienced staff to measure TKV.  

 

In a previous study, we reported the development of a rapid, semi-automated, open access 

TKV tool to facilitate the wider adoption of TKV measurements into clinical practice 7. Here we 

report a new rapid, high performance, artificial intelligence (AI) segmentation tool developed 

using MRI scans acquired from 4 European centres (the CYSTic consortium) 8 (Table 1). 

Validation of the algorithm in a second non-overlapping ADPKD clinical cohort analysed by 

multiple operators confirms its suitability for routine clinical practice. Following clinical 

implementation, additional analysis demonstrates the significant time savings that could be 

achieved through adoption of the AI approach. 

 

Methods 

Patient recruitment and centre participation 

The inclusion and exclusion criteria for entry into the International Consortium to build a 

longitudinal observational cohort of patients with ADPKD (CYSTic consortium) have been 

recently reported 8. Over 450 patients were initially recruited from six expert centres across 

Europe (Belgium, France, Italy, Netherlands, Spain, and UK) with baseline clinical data 

recorded including HR-QoL (KDQoL-SFv1.3 questionnaire), abdominal MRI for TKV 

measurements and DNA for genotyping. Each study centre consented to transfer their data to 

a cloud-based web platform incorporating a study-specific electronic database (Askimed) 

(https://www.askimed.com). The study was approved by a Regional Ethics Committee 

(18/EE/0247) and by the study sponsor, Sheffield Teaching Hospitals NHS Foundation Trust. 

Ethics approval was also obtained by each participating centre within their own country. 
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Technical development 

The general approach taken is summarised in Figure 1. The training and internal validation 

set consisted of all 1.5T MRI scans (n=227, 454 kidneys) from the CYSTic consortium 8 

excluding cases where the kidney was not completely included in the field of view, as identified 

through visual analysis, or where scan quality was affected by artefacts to such an extent that 

manual segmentations could not be confidently drawn (3.4%, n=8). Each kidney was manually 

segmented according to a standard operating procedure by a single operator (RT) with over 

6 years of performing TKV measurements, using MIM Maestro software (v6.9.3) and a Huion 

pen display tablet. 

 

Clinical MRI cases used as an independent validation dataset (n=48) were collected from the 

imaging archives at Sheffield Teaching Hospitals, excluding Sheffield CYSTic patients. All 

scans were manually segmented, again using MIM software, but with a standard mouse. 

Clinical cases are routinely processed by multiple different trained operators working in the 

3DLab and there were six different individuals that had performed the TKV measurements. 

These operators had a range of experience levels (processing between 9 and 53 clinical cases 

each). Patient and acquisition details for the different datasets are summarised in Table 1. 

 

The nnUnet algorithm 9 was selected for training an automated segmentation tool. This 

approach is well-established, showing high performance in multiple, varied segmentation 

applications 10. In addition, nnUnet has been successfully applied in other studies where a 

mixed training cohort from separate scanners has been used 11. 

 

All images and kidney contours were first converted from dicom to nifti format using the python 

package medio (v0.4.0). Algorithm performance was improved when using one kidney label 

category rather than two (i.e. left and right kidneys labelled with the same value). The label 

map images were therefore binary. 

 

Image data was bias-corrected using the SimpleITK N4 bias field correction algorithm 12. The 

internal validation images were used for 5-fold cross-validation, with each fold stratified to 

control for biases between centres (80% of the data from each centre was allocated to within-

fold algorithm training and 20% for testing). Data was shuffled between folds such that each 

individual case was used for testing only once across the 5 folds. Cross-validation was 

repeated using the Sheffield CYSTIc cases only. Further details of the methodology can be 

found in the Supplementary material. 

 

Jo
ur

na
l P

re
-p

ro
of



 5 

Finally, the ensemble of algorithms trained during cross validation were applied to the clinical 

validation dataset. 

 

Clinical implementation 

The AI tool was implemented clinically as a remote DICOM service in the 3D laboratory at 

Sheffield in August 2022, setup to trigger automatically whenever a new MRI image was 

acquired. The tool generates a segmentation mask for each image, which is then viewed 

and edited as required by a trained operator in MIM software. The time taken to manually 

load, edit and finalise the kidney segmentation mask is automatically registered in a 

database along with TKV values for both the unedited and edited segmentations. 

  

All available records (n=33) were extracted from the database in May 2023 for analysis. 

Recorded times for AI segmentation editing were compared to processing time figures for 

the original manual processing technique obtained for the Sheffield CYSTic patients (n=64). 

 

Comparison with other software 

Algorithm performance was compared against another recently reported deep learning 

method, ADPKD-net 13. This software package was downloaded from Docker Hub 

(https://hub.docker.com/repository/docker/piotrekwoznicki/adpkd-net) and the cases from the 

clinical validation dataset were processed through the software, one at a time, using the 

default parameters. TKV results were collated and compared to those achieved through 

manual segmentation and with our new algorithm. 

 

Results 

The average time taken to manually segment each case in the internal validation dataset (both 

kidneys) was 54 minutes (SD of 31 minutes). Intra-operator variability for manual 

segmentation was low, with a mean difference in TKV measurements between repeat manual 

segmentations of 2.1% ± 2.7% (left kidney) and 1.6% ±1.7% (right kidney). The internal 

validation data contained a range of different appearances, with 22 cases having a right 

kidney-liver border that was visually classed as being difficult to differentiate. 

 

The internal cross-validation showed high DICE scores with low percentage volume 

differences between the new AI-derived TKV data and manual results (Table S1). Separating 

the results from different centres (Figure 2), there was a small bias in improved performance 

towards the Sheffield and Groningen datasets, possibly due to the use of similar MRI scanners 

and acquisition sequences. However, the Mayo classification categories which is based on 
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height-adjusted TKV, had no impact on TKV accuracy (Figure 3), indicating good performance 

across a range of kidney volumes and shapes. 

 

Application of the full automated algorithm to the clinical validation dataset showed similar 

close agreement between the results for automated segmentation and manually segmented 

TKV despite being analysed by 6 different operators (Table S2, Figure 4). Some examples of 

automated segmentation from the clinical validation dataset are shown in Figure S1. The 

performance of the algorithm on the clinical validation dataset was largely unchanged when 

trained with Sheffield CYSTic data only (Table S3). 

 

Analysis of outliers (5.7%) with discordance between the automated and manually measured 

TKV (DICE<0.92) showed that cysts in close proximity to the liver border (either originating in 

the liver or kidney) were the most common visual feature associated with reduced 

performance (Table 2, Figure 5). 

 

Next, we tested the performance of the tool for routine TKV analysis after implementation in a 

hospital laboratory setting by analysts experienced in manual kidney segmentation (Table 3). 

Compared to historical data from the Sheffield CYSTic patients, the time taken for manual 

correction of the AI segmentations was 8.5 (±9.2) min v 56 (±28) min for fully manual 

processing. Mean volume differences between AI-TKV and after manual editing were -2.0 

(±4.0) % and -1.3 (±3.5) % for the RK and LK respectively. 

 

Finally, processing the clinical validation dataset through the recently reported ADPKD-net 

algorithm (Figure 6) showed a general overestimate of TKV, with greater overestimates seen 

for larger kidneys. Visual analysis of ADPKD-net outputs suggests that the overestimate is 

largely due to the inclusion of the renal pelvis in segmentations (which is routinely excluded at 

Sheffield) and by other published methods 14. 

 

Discussion 

We have created a new automated segmentation algorithm derived from a large European 

dataset of MRI images of ADPKD kidneys to accurately and rapidly measure TKV. It performed 

accurately on a wide range of kidney volumes (0.1L to 4.4L) and anatomical shapes (Mayo 

Class 1 and 2) 15. Measured TKV errors for the algorithm were of similar magnitude to intra-

operator variability results and to inter-operator results reported previously 7 implying that the 

algorithm has reached human levels of performance.  
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Internal cross-validation results were consistently high across different centres despite the 

lack of any specific domain adaptation steps employed. Comparison of the performance on 

the clinical validation cohort between the algorithm trained on the full CYSTic cohort, and that 

trained with Sheffield CYSTic patients only (Tables S2-3, figure 4) showed that the inclusion 

of patient data from different scanners and different populations was not detrimental to 

performance. This suggests that the algorithm is not biased towards a particular sub-

population within the CYSTic training cohort.  

 

Mayo class 2 ADPKD cases are often not included in automated segmentation research. In 

this study, 32 (14%) class 2 patients were part of the internal validation / training cohort but 

cross-validation results demonstrated that they were not associated with inferior performance 

for TKV measurement. This provides reassurance that the algorithm would be robust enough 

to analyse TKV in atypical cases without pre-selection. 

 

We utilised a well-established technique to generate a segmentation algorithm based on the 

U-net 9. Other published algorithms based on similar U-net technology have also 

demonstrated high performance in the segmentation of healthy, chronic kidney disease and 

ADPKD kidney images 16-18 increasing confidence that the algorithm presented here is likely 

to be effective. Indeed, the ADPKD-net algorithm that was selected as a comparator in this 

study also used the same baseline architecture 13. Nonetheless, the results from the ADPKD-

net algorithm demonstrated a general overestimate of TKV on the clinical validation dataset 

due to the inclusion of the renal pelvis. This part of the kidney is not traditionally included in 

TKV segmentations 14 and is not included in local routine measurements. Therefore, our 

developed algorithm is likely to be more consistent with general accepted practice. 

 

It should be noted that other organs such as the liver can be affected by ADPKD, but these 

areas are excluded by our trained algorithm. Further work is being undertaken to specifically 

target polycystic livers. In addition, the algorithm is designed to work with data acquired in the 

same way as that of the CYSTic cohort (i.e. coronal Steady State Free Procession type 

sequences) 7, 8. This type of acquisition is widely adopted in other ADPKD research 14 but is 

not universally used in clinic and therefore our algorithm will not be applicable across all 

centres. 

 

Our new automated algorithm demonstrates high precision compared to manual TKV 

segmentation and performs reliably in most patients with ADPKD, with a range of kidney 

volumes, shapes and coexisting polycystic liver disease. The mean processing time for 

manual segmentation by an experienced operator was approximately 1 hour per case. Use of 
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the algorithm in clinical practice does not completely remove the need for clinical staff from 

the TKV measurement process; a trained clinical observer (such as a radiologist or 

radiographer) is always required to review AI generated results. However, the algorithm 

required minimal manual edits and changes to the generated contours, reducing the average 

processing time per case to 9 minutes. Finally, its accuracy when validated in real-world 

clinical datasets demonstrates that such AI tools can provide a reliable means of measuring 

TKV in routine practice by reducing the barriers of analyst time and experience. 
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Figure legends 

 

Figure 1 Schematic of the development of the new algorithm through testing, internal and 

clinical validation phases. 

 

Figure 2 5-fold internal cross validation results summary, separated according to study 

centre (BER = Bergamo, BRE = Brest, GRO = Groningen, SHE = Sheffield). Left and right 

kidneys were labelled separately. 

 

Figure 3 Comparison of volume results obtained from manual contouring on training data vs 

AI tool in 5-fold internal cross-validation. Results for right or left kidneys, Mayo class 1 and 2 

are displayed separately. 

 

Figure 4 Comparison of volume results obtained from manual contouring on clinical 

validation dataset vs AI tool (algorithm trained using the full internal dataset). Left and right 

kidneys were labelled separately. 

 

Figure 5 Example of a large kidney cyst (top) or liver boundary cyst (bottom) leading to under-

segmentation by the algorithm (left original image, right image with algorithm segmentation 

overlaid). 

 

Figure 6 Comparison of volume results obtained from manual contouring on clinical 

validation dataset vs the ADPKD-net algorithm. Left and right kidneys were labelled 

separately.  
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Tables 

 

Table 1 Patient characteristics and MRI acquisition details for training and internal validation 

(CYSTic) and clinical  validation datasets. Note that genotype and Mayo classification 

information were not available for all patients in the clinical validation set. 

 

 

 Training and internal validation dataset 

(CYSTic) 

Clinical 

validation 

Study centre Groningen Sheffield Bergamo Brest  

Mean age 

(SD) 

43.3 (12.8) 43.7 (14.7) 43.8 (11.2) 46.8 (13.4) 51.5 (5.6) 

Sex M=34, F=44 M=30, F=34 

 

M=19, F=22 M=20, F=24 M=17, F=16 

Genotype 

PKD1 (%) 

PKD1=44 

(78.2%) 

PKD1=50 

(78.1%) 

PKD1=27 

(65.9%) 

PKD1=43 

(97.7%) 

 

Mayo 

classification 
Class 1 = 

72, Class 2A 

= 6 

Class 1 = 51, 

Class 2A = 

10, 

Class 2B = 3 

Class 1 = 

33, Class 2A 

= 8 

Class 1 = 

39, Class 2A 

= 5 

 

Scanner Siemens 

Avanto, 

Avantofit, 

Aera 

Siemens 

Avanto 

GE Optima 

MR450W 

GE Optima 

MR450W 
Siemens Avantofit 

Selected 

sequence 

TRUFI TRUFI 3D FIESTA 3D FIESTA TRUFI 

Total scans 78 64  41 44 48# 

 

#15 patients had >1 scan 
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Table 2 Visual analysis of cases where autosegmentation performance was reduced (DICE < 

0.92) 

 

  

Internal 

Cross-

validation 

Clinical  

validation 

Image or segmentation appearance associated with 

reduced algorithm performance 

Number 

(%) 

Number  

(%) 

Autosegmentation under or over segments liver-kidney border 

cysts 5 (2.2) 2 (4.2) 

Partial autosegmentation of a single large kidney cyst 3 (1.3) 0 

Autosegmentation includes kidney tissue that is uncertain from 

visual analysis 3 (1.3) 0 

Autosegmentation includes renal pelvis 0 1 (2.1) 

Human segmentation error 1 (0.4) 0 

Autosegmentation is overly smooth between slices, does not 

follow sharply changing kidney geometry 1 (0.4) 0 
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Table 3 Clinical implementation of the AI tool for routine TKV analysis 

 

  Method 

  AI-assisted (n=33 clinical cases) 

Manual (n=64 Sheffield 
cases from CYSTIC 

cohort) 

Mean time to process 8.5 mins (SD 9.2 mins) 56 mins (SD 28 mins) 

   

 

Mean volume difference: AI TKV 
measurement minus human-edited 

AI TKV measurement  

R (ml) -5.3 (SD 8.3)  

L (ml) -2.2 (SD 15.6)  

R (%) -2.0 (SD 4.0)  

L (%) -1.3 (SD 3.5)  
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