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Abstract 

Background: Alzheimer’s disease (AD) is the most common cause of dementia, characterised by 

behavioural and cognitive impairment. Due to the lack of effectiveness of manual diagnosis by doctors, 

machine learning is now being applied to diagnose AD in many recent studies. Most research 

developing machine learning algorithms to diagnose AD use supervised learning to classify magnetic 

resonance imaging (MRI) scans. However, supervised learning requires a considerable volume of 

labelled data and MRI scans are difficult to label. 

Objective: This study applied a statistical method and unsupervised learning methods to discriminate 

between scans from cognitively normal (CN) and people with AD using a limited number of labelled 

structural MRI scans. 

Methods: We used two-sample t-tests to detect the AD-relevant regions, and then employed an 

unsupervised learning neural network to extract features from the regions. Finally, a clustering 

algorithm was implemented to discriminate between CN and AD data based on the extracted features. 

The approach was tested on baseline brain structural MRI scans from 429 individuals from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), of which 231 were CN and 198 had AD.  

 

 Corresponding author at: Information School, University of Sheffield, 211 Portobello, Sheffield, S1 4DP, UK 

  Email address: yliu369@sheffield.ac.uk 
 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and 

implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A 

complete listing of ADNI investigators can be found at: 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 

 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


Results: The abnormal regions around the lower parts of limbic system were indicated as AD-relevant 

regions based on the two-sample t-test (p<0.001), and the proposed method yielded an accuracy of 0.84 

for discriminating between CN and AD.  

Conclusion: The study combined statistical and unsupervised learning methods to identify scans of 

people with AD. This method can detect AD-relevant regions and could be used to accurately diagnose 

AD; it does not require large amounts of labelled MRI scans. Our research could help in the automatic 

diagnosis of AD and provide a basis for diagnosing stable mild cognitive impairment (stable MCI) and 

progressive mild cognitive impairment (progressive MCI). 

Keywords: Alzheimer’s disease, MRI, machine learning, deep learning, unsupervised learning 

 

1. Introduction 

Dementia is receiving increasing attention because there are now over 50 million people all living with 

dementia globally [1]. Dementia is a clinical condition leading to cognitive and behavioural impairment, 

i.e., language or memory loss, typically among people aged 65 years old and over [2]. Alzheimer’s 

disease (AD) is the most common and prevalent cause of dementia, accounting for an approximate 60% 

to 80% of dementia cases [3]. 

AD is commonly diagnosed using structural MRI scans [4], which generate a 3D image and capture 

changes in the structure of the brain through using magnetic fields and radio waves [5]. However, 

analysing MRI scans is difficult because traditional medical imaging scan analysis for AD diagnosing 

is undertaken manually by doctors. The structure of the brain is complex, and each scan contains 

millions of voxels (units in a 3D medical imaging scan) and massive amounts of information, so 

analysing it manually by doctors is a time-consuming task. Machine learning (and deep learning) 

techniques have been used for diagnosing various disease in previous research, e.g., Coronavirus 

disease 2019 (COVID-19) [6], cancer [7], AD [8], etc.. As a result, computer-aided diagnosis of AD 

based on using machine learning (including deep learning) to analyse medical imaging scans has 

emerged as an area of interest. Zhang et al. [9] employed the improved framework TResNet of residual 



network with regional attention mechanism to diagnose AD. They fed data from structural MRI scans 

of grey matter into the network and achieved an accuracy of 90%, sensitivity of 92.8%, and specificity 

of 87.5% in the classification of AD and CN. Zeng et al. [8] applied a novel deep belief network (DBN) 

based multi-task learning algorithm to MRI scans of grey matter to discriminate between CN and AD, 

and achieved an accuracy of 98.62%. Nigri et al. [10] proposed explainable CNN models to better 

interpret the results in addition to achieving high performance with an AUC (Area Under the Curve) of 

0.923. Baskar et al. [11] first extracted hippocampus and posterior cingulate cortex from the MRI scans 

and then used fuzzy c-means to eliminate suspicious samples, before employing a 4-layer 

backpropagation artificial neural network (BANN) to classify the data into CN, mild cognitive 

impairment (MCI), and AD. The performance of classification achieved an accuracy of 98.63%, 

sensitivity of 85.63%, and specificity of 79.56%.  

These studies used supervised learning models, which requires a large number of MRI scans that have 

been labelled beforehand (often manually) for training. Although crowdsourcing can solve the problem 

of labelling data, labelling medical imaging data is still difficult as it requires qualified practitioners 

with extensive experience and professional knowledge; however, recruiting these professionals is 

difficult and resource intensive.  Furthermore, learning discriminative features from labelled data also 

means that the algorithm is guided by people on what to do [12], which means that it is likely to ignore 

some hidden patterns. In contrast, unsupervised learning methods can capture hidden patterns within 

the data with the help of feature learning [13]. Therefore, methods using limited amounts of, or no 

labelled data (i.e., semi-supervised and unsupervised learning methods) have become important.  

In recent years, some studies have used unsupervised learning to undertake diagnosis of AD . Farouk 

& Rady [14] utilised k-means clustering with a combination of ROI features and the whole brain 

features to cluster data, achieving an accuracy of 76.3%. Bi et al. [15]  applied a PCANet on three slices 

from three planes of view for each brain MRI scan to extract features and then used k-means to cluster 

the data, achieving an accuracy of 89.15% in the diagnosis of AD and CN. Escudero et al. [16] applied 

k-means clustering to data features in five clinical scenarios and one of the scenarios used MRI scans.  

In their method, 73.6% of the AD scans were clustered into the pathological cluster. However, compared 



with supervised learning methods, there have been far fewer studies using unsupervised methods. 

Further work is therefore required to understand the potential of unsupervised learning methods for 

diagnosing AD, as well as their limitations.  

This paper contributes to this emerging area by proposing a novel approach that combines statistical 

methods, an unsupervised neural network, and a clustering algorithm to support clinicians in diagnosing 

AD. The statistical method locates the AD-relevant regions using a limited number of labelled MRI 

scans; the unsupervised neural network converts the AD-relevant regions (voxel level), which are low-

level features, to higher-level features. Higher-level features refer to a more complex and a more 

abstract representation of the input raw data that is learned by neural networks. However, neural 

networks are effective black boxes and higher-level features computed by neural networks are often 

difficult to perceive and interpret for humans: this is one of the disadvantages of using these methods. 

Although higher-level features can indeed be helpful for discriminating between different classes, 

defining these higher-level features, and what they represent, is not always possible. In this paper we 

seek to represent these higher-level features, not by defining them precisely, but by plotting them in 

relation to each other according to their class or group (as shown later in Figure 3 (c) and (d)). Finally, 

the clustering algorithm divides the data into two groups: AD and cognitively normal (CN). This process 

is important in that it involves only limited amounts of labelled data and does not require clinical input. 

Our proposed method therefore makes an original contribution to this field and it performed well in the 

clustering. Additionally, it could potentially be used in future work to predict the development of AD. 

 

2. Materials and Methodology 

Here we describe the data used in our study and our methodology. 

2.1 Dataset 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been 



to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). We used T1-

weighted MRI scans from 429 participants in ADNI, specifically, a baseline dataset consisting of 231 

CN and 198 AD scans (details of these participants are available from https://adni.loni.usc.edu/wp-

content/uploads/2012/08/ADNI_Enroll_Demographics.pdf). 

2.2 Data Pre-processing 

The MRI scans were pre-processed using anterior commissure-posterior commissure alignment (AC-

PC alignment), motion correction, intensity normalisation, template registration, and skull stripping. 

The AC-PC alignment was undertaken manually using Statistical Parametric Mapping (SPM) software 

and the other pre-processing steps were followed using SPM and Computational Anatomy Toolbox 

(CAT) automatically. The pre-processing workflow finally resampled all the scans to 121 × 145 ×121 

voxels, with voxel sizes of 1.5mm across all planes (sagittal, coronal, and axial).  

2.3 Abnormality Detection Between Two Groups 

This phase aims to detect regions that are visibly different in AD and CN groups at the voxel level, so- 

called the regions of interest (ROIs). The commonly-used two-sample t-test was employed to test for 

ROIs between the two groups within AD-relevant regions in MRI scans [17][18][19]. The two-sample 

t-test was applied to 60 labelled scans, of which 30 were AD and 30 were CN, to obtain ROIs between 

the two groups. The choice of the numbers of scans was based on the t-test generally being used for 

small amounts of data (e.g., often a sample size of less than 30) [20]. In addition, based on the 

experiments we conducted previously, when the number of MRI scans of each group was increased the 

distinguishing ROIs that were detected using the two-sample t-test, were almost the same. Therefore, it 

was determined that 30 labelled scans  for a two-sample t-test respectively from each group are 

sufficient to detect AD-relevant regions, and this reduced the need for labelled MRI scans. 

2.4 Feature Extraction 

https://adni.loni.usc.edu/wp-content/uploads/2012/08/ADNI_Enroll_Demographics.pdf
https://adni.loni.usc.edu/wp-content/uploads/2012/08/ADNI_Enroll_Demographics.pdf


Although, following the ROIs detection stage, in which the regions indicating the existence of AD have 

been recognised, it is still difficult to accurately cluster data using only the intensity values of the voxels 

within the regions directly, because the voxel intensity values are still low-level features. Hence, to 

obtain higher level features from unlabelled data, an unsupervised neural network, PCANet, a 

combination of Principal Component Analysis (PCA) method and Convolutional Neural Network 

(CNN) [21], was employed, as shown in Figure 1. This has three stages: the first two stages both learn 

convolution filters by PCA for feature mapping, and the final stage binarises and generates a block-

wise histogram for feature output. 

Figure 1: The structure of PCANet 

2.4.1 First Stage of a PCANet 

Given N input images {𝐼𝑖}𝑖=1𝑁  of size 𝑚 × 𝑛 and assuming the size of the patch is 𝑘1 × 𝑘2 at all stages. 

All overlapping patches within the 𝑖𝑡ℎ image are collected and there are 𝑚 × 𝑛 vectorised patches in 

each image. We then subtract the patch mean from each patch and obtain �̅�𝑖 = [�̅�𝑖,1, �̅�𝑖,2, … , �̅�𝑖,𝑚𝑛], 
where �̅�𝑖,𝑗 is a mean-removed patch. Therefore, all images are operated on in the same way and we 

obtain 𝑿 = [�̅�1, �̅�2, … , �̅�𝑁] ∈  ℝ𝑘1𝑘2×𝑁𝑚𝑛.  

Assuming that the number of filters in layer is 𝐿1, a PCA was used to learn the filter bank in this stage. 

The solution is known as the 𝐿1 principal eigenvectors of 𝑿𝑿𝑻. Therefore, the PCA filters are expressed 

as  



𝑊𝑙1 = 𝑚𝑎𝑡𝑘1,𝑘2(𝑞𝑙(𝑿𝑿𝑻)) ∈ ℝ𝑘1𝑘2 , 𝑙 = 1, 2, … , 𝐿1, 

where 𝑚𝑎𝑡𝑘1,𝑘2(𝝊) is a function that maps 𝝊 ∈ ℝ𝑘1𝑘2  to a matrix 𝑾 ∈ ℝ𝑘1×𝑘2 , and 𝑞𝑙(𝑿𝑿𝑻) denotes 

the 𝑙𝑡ℎ principal eigenvector of 𝑿𝑿𝑻. This captures the main variation across all of the mean-removed 

patches. 

 

2.4.2 Second Stage of a PCANet 

The process of the second stage is almost repeating the same process as the first stage. Let the 𝑙𝑡ℎ filter 

output of the first stage be: 𝐼𝑖𝑙 = 𝐼𝑖 ∗ 𝑾𝑙1, 𝑖 = 1, 2, … , 𝑁, 

where ∗ denotes 2D convolution and the boundary of 𝐼𝑖 is zero-padded before convolving with 𝑾𝑙1 in 

order to make the 𝐼𝑖𝑙 having the same size of 𝐼𝑖. Similar to the first stage, all the overlapping patches of 𝐼𝑖𝑙  are collected, and the patch mean is subtracted from each patch. This forms �̅�𝑖𝑙 =[�̅�𝑖,𝑙,1, �̅�𝑖,𝑙,2, … , �̅�𝑖,𝑙,𝑚𝑛] ∈ ℝ𝑘1𝑘2×𝑚𝑛 , where �̅�𝑖,𝑙,𝑗  is the 𝑗𝑡ℎ  mean-removed patch in 𝐼𝑖 . We further 

defined 𝑌𝑙 = [�̅�1𝑙 , �̅�2𝑙 , … , �̅�𝑁𝑙 ] ∈  ℝ𝑘1𝑘2×𝑁𝑚𝑛 for the matrix that collects all mean-removed patches of the 𝑙𝑡ℎ filter output and concatenate 𝑌𝑙 for the outputs of all filters: 

 𝒀 = [𝑌1, 𝑌2, … , 𝑌𝐿1] ∈ ℝ𝑘1𝑘2×𝐿1𝑁𝑚𝑛. 

The PCA filters of the second stage are obtained as: 𝑾𝑙2 = 𝑚𝑎𝑡𝑘1,𝑘2(𝑞𝑙(𝒀𝒀𝑻)) ∈ ℝ𝑘1𝑘2 , 𝑙 = 1, 2, … , 𝐿2, 

where 𝐿2 is the number of filters in the second stage. For each input 𝐼𝑖𝑙 of the second stage, there are 𝐿2 

outputs, and each convolves 𝑾𝑙2 for 𝑙 = 1, 2, … , 𝐿2: 𝒪𝑖𝑙 = {𝐼𝑖𝑙 ∗ 𝑾𝑙2}𝑙=1𝐿2 . 

The number of outputs in the second stage is 𝐿1𝐿2. 

 

2.4.3 Output Stage of a PCANet 

In this stage, a process of hashing and histogram generating is implemented. In the process of hashing, 𝐿2 outputs in 𝒪𝑖𝑙 are converted into a single integer-valued “image”: 



𝒯𝑖𝑙 = ∑ 2𝑙−1𝐻(𝐿2𝑙=1 𝒪𝑖𝑙), 

whose every pixel is an integer in the range [0, 2𝑙−1 − 1]. 𝐻(∙) is a Heaviside step function whose value 

is one for positive and zero otherwise.  

Then, for each of the 𝐿1  images 𝒯𝑖𝑙 , 𝑙 = 1, 2, … , 𝐿1 , we partition it into 𝐵 blocks. We compute the 

histogram (with 2𝐿2  bins) of the decimal values in each block. After concatenating all the 𝐵 histograms 

into one vector and denote as 𝐵ℎ𝑖𝑠𝑡(𝒯𝑖𝑙), the feature vector of the input image 𝐼𝑖 is then defined to be 

the set of block-wise histograms: 𝑓𝑖 = [𝐵ℎ𝑖𝑠𝑡(𝒯𝑖1), 𝐵ℎ𝑖𝑠𝑡(𝒯𝑖2), … , 𝐵ℎ𝑖𝑠𝑡(𝒯𝑖𝐿1)]  𝑇 ∈ ℝ(2𝐿2)𝐿1𝐵. 

In addition, the local blocks can be either overlapping or non-overlapping. 

 

2.4.4 PCANet in this study 

In this study, the number of stages was set to two because a two-stage PCANet is sufficient to achieve 

good performance [21]. The size of the patches 𝑘1 × 𝑘2 was set to 3×3 in both two stages; the number 

of filters 𝐿1 and 𝐿2 were both set to eight, respectively, which indicated that there were eight principal 

eigenvectors in each PCA process of the two stages; the block size for the histograms was set to 15×

15; the overlap ratio of the local blocks was set to zero in this study for reducing the number of features. 

After feeding into the PCNet, the original normalised voxel intensity values (zero to one) were mapping 

to higher-level features. 

2.5 Clustering 

Data are divided into two groups: AD and CN, which means that the clustering tasks need to split the 

data into two clusters. A refined version of k-means cluster analysis, the k-means++ algorithm [22], 

was used to cluster data from CN and AD patients using the features extracted by PCANet: this was 

performed for the whole sample of 429 scans, i.e., 231 scans from CN patients and 198 from AD patients. 

This method partitions a collection of data into k disjointed clusters without any labels of the data. The 

detailed k-means++ algorithm is as follows: 

(1) Select the first centroid at random;  



(2) Calculate the distance from each data point 𝑥𝑖  to the nearest, previously chosen centroid, and 

we note it as 𝑑𝑖𝑠𝑡(𝑥𝑖); 

(3) Choose the new data point from the 𝑛 data points as the next centroid with the help of the 

maximum probability: 
𝑑𝑖𝑠𝑡(𝑥𝑖)2∑ 𝑑𝑖𝑠𝑡(𝑥𝑖)2𝑛𝑖=1 ; 

(4) Repeat steps (2) – (3) until k centroids are selected; 

(5) Form k clusters by assigning each point to its closest centroid; 

(6) Re-compute the centroid of each cluster; 

(7) Repeat until centroids do not change [22][23]. 

 

The k value was set to 2 in this study, because the data needed to be divided into two groups: CN and 

AD. The Euclidean distance, 𝑑(𝑥, 𝑦), was selected in the step (3) of the algorithm, and was calculated 

by:  

𝑑(𝑥, 𝑦) = √∑(𝑥𝑘 − 𝑦𝑘)2𝑛
𝑘=1  

where n is the number of dimension and 𝑥𝑘  and 𝑦𝑘  are the kth features of the data points x and y, 

respectively. Therefore, the distance between a certain data point 𝑥𝑖 and a centroid 𝑐 in the step (2) 

above, 𝑑𝑖𝑠𝑡(𝑥𝑖), can be calculated by: 

𝑑𝑖𝑠𝑡(𝑥𝑖) = √∑(𝑥𝑖,𝑘 − 𝑐𝑘)2𝑛
𝑘=1 , 

where the 𝑛 is the number of dimensions and 𝑥𝑖,𝑘 and 𝑐𝑘 are the kth features of 𝑥𝑖 and 𝑐, respectively. 

In the k-means++ algorithm, the first centroid is selected at random, such that the algorithm may have 

different results for different first centroids: we therefore repeated the k-means++ algorithm ten times, 

and the mean value was used. Moreover, clustering algorithms do not need to train, thus cross-validation 

was not necessary in this study. 



3. Results and Discussion 

3.1 ROIs Detection 

Using 30 scans from CN patients and 30 scans from AD patients, the two-sample t-test analysis detected 

the regions pathologically related to AD (increasing the sample size for the t-test did not detect any 

further regions). Figure 2 shows a heat map of the ROIs in the sagittal, coronal, and axial view planes 

of the MRI scan. Red and orange regions indicate that the mean of the intensity value (after being 

normalised) of the voxel in AD group is greater than that in the CN group and the blue indicates where 

the mean value of the voxel in AD group is less than CN group.  

     

(a) sagittal plane                                (b) coronal plane                              (c) axial plane 

Figure 2 A heat map of the regions related to AD noted in the three view planes of the MRI scan. 

As seen in Figure 2, the most conspicuous regions were the lower parts of the limbic system, which 

includes the parahippocampal gyrus, the amygdala, and the hippocampus, in the left and right cerebra. 

There were also fragmentary regions involving small parts of the thalamus and frontal lobe (including 

some tiny parts of frontal gyrus).  

 

3.2 Clustering Results 

Since there are two main AD-relevant regions located in the left and right cerebra, we utilised one of 

them (one ROI) and both of them (two ROIs) to discriminate between AD and CN, respectively for the 

429 scans. The clustering performance was compared using five metrics: accuracy, sensitivity, 

specificity, positive predictive value (PPV), and negative predictive value (NPV), on the clustering task 

using one ROI and two ROIs (Table 2). 



Table 2 Measures of Clustering using one ROI and two ROIs using PCANet 

Measures K-means++ 

One ROI Two ROIs 

Accuracy Mean 0.773 0.842 

95% CI (0.764, 0.782) (0.833, 0.851) 

Sensitivity Mean 0.695 0.797 

95% CI (0.640, 0.750) (0.768, 0.826) 

Specificity Mean 0.840 0.881 

95% CI (0.792, 0.888) (0.853, 0.909) 

PPV Mean 0.798 0.855 

95% CI (0.764, 0.832) (0.829, 0.881) 

NPV Mean 0.767 0.836 

95% CI (0.747, 0.787) (0.819, 0.853) 

Error Rate 0.227 0.158 

 

Table 2 shows that, for all five measures, using two ROIs performed better than using one ROI: the 

accuracy for two ROIs was 6% higher than using one ROI and the sensitivity was 10% higher, indicating 

that it was better at identifying people with AD; the respective 95% CI indicate that these differences 

are statistically significant. The ROIs also indicate that there are two diseased areas within AD. The 

wider CI of sensitivity when using one ROI (0.640, 0.750) indicates a more variable performance. The 

specificities for one (84%) and two (88%) ROIs indicates that they both performed well in identifying 

non-AD cases, although the specificity for one ROI is significantly lower than that for two ROIs. 

The significantly higher PPV when using two ROIs (86%; 95% CI=83-88%) versus one ROI (80%; 95% 

CI=76-83%) indicates that we can trust that a person identified as having AD actually has the disease, 

i.e., its diagnosing AD is fairly credible. The significantly higher NPV for two ROIs, i.e., 7% greater 

than using one ROI, gives greater confidence that someone who receives a negative test result actually 

does not have the disease. Overall, using two ROIs was more reliable than using only one ROI, whether 

a person receives either a “CN” or an “AD” result. 

To further demonstrate the effectiveness of the combination of the ROIs selected using the two-sample 

t-test and the PCANet, we compared the distributions of the features in four situations:  

(1) features directly extracted from random selected slices (without PCANet);  

 


 Confidence interval 



(2) features directly extracted from the whole slices involving the ROIs (without PCANet);  

(3) features directly extracted from the ROIs (without PCANet);  

(4) features extracted from ROIs calculated by PCANet in the proposed method.  

From the distribution of the features from the randomly-selected slices of the MRI scans (Figure 3 (a)), 

we can see that the data is distributed irregularly and the two classes are completely visually inseparable 

and are hard to split. When we examine the distribution of the features from the whole slices that involve 

ROIs (Figure 3 (b)), we can see that, although the two classes are still mixed together, most AD points 

gather towards the lower right part of the graph and most CN points gather towards the upper left area 

of the graph. This means that the ROIs do indeed help the two classes of data to split.  

From the distribution of the features directly from the ROIs without PCANet (Figure 3 (c)), we can see 

that the data further tend to separate compared with Figure 3 (a) and (b). This means that the ROIs 

selected by the two-sample t-test are truly AD-relevant although there is still room for improvement. 

When examining the distribution of features calculated by the PCANet using the ROIs (Figure 3 (d)), 

it can be seen that, although the two groups are still adjacent to each other, fewer deviants are mixed in 

the wrong group, compared with the Figure 3 (c), and there is improved separation of the groups. 

Therefore, the results in Figure 3 (c) and (d) suggest basic that the ROIs detected by the two-sample t-

test are truly related to AD and that the PCANet helps the ROIs convert to high-level features that can 

be clustered more accurately. 

 



(a) (b) 

 

(c)           (d) 

Figure 3 Distributions of the features from four situations. (a) is the distribution of features from randomly selected slices; (b) 

is the distribution of features from the slices involving ROIs; (c) is the distribution of features directly from the ROIs; (d) is 

the distribution of the features computed by PCANet using the ROIs. 

In order to understand better why some cases were mistakenly discriminated into AD at baseline, when 

they were actually CN, we looked at how these patients progressed, as summarised in Table 3. We can 

observe that 15 of the participants who were CN at baseline, subsequently developed to MCI from CN 

or developed to AD from CN (excluding those who developed to MCI and returned to CN later) before 

the 36th month and 6 out of these 15 participants were clustered into the AD cluster. If we examine the 

participants who developed to AD before the 48th month, 8 out of 25 were clustered into the AD cluster; 

if we look at those who developed to AD before the 60th month, 8 out of 31 were clustered into AD; 37 

participants progressed to MCI or AD before the 72nd month and 9 of them were clustered into AD; if 

we prolong the conversion time to 108th month, 12 out of 52 participants were clustered into AD. 

Table 3 A summary of the scans that are CN but were mis-clustered into AD. The first column shows the month when the 

participants developed to MCI from CN or developed to AD from CN; the second column indicates the number of patients 

who developed to MCI or AD from CN in corresponding months; the third column is the number of participants who are CN 



at baseline but were mistakenly clustered into AD group by our proposed method; the fourth column indicates the ratio of the 

third column to the second column. 

MCI/AD detected in (months) No. of patients Mis-clustered into AD group Mis-clustered into AD group (%) 

36 15 6 40 

48 25 8 32 

60 31 8 25 

72 37 9 24 

108 52 12 23 

 

From the observations above, our conjecture is that the proposed method could potentially help 

clinicians to predict the early development and progression of the participants from being CN to having 

MCI and AD, and the reason is that the unsupervised learning method is based on the features 

themselves, instead of feedback from the human assessors. Hence, even though some participants were 

diagnosed as CN at baseline, if their brains more or less show pathological changes related to AD, 

naturally they will possibly be clustered into AD based on the change. This suggests that this method 

can potentially detect pre-clinical changes in the brain, i.e., before the patient is diagnosed. 

However, from Table 3, the performance of the prediction decreases with the time of conversion 

delaying. This is likely to be because the proposed method only used the baseline scans; however, if the 

time of the conversion is long after the baseline, the structure of the brain at the conversion time is more 

likely to have dramatic changes than that at the baseline, which means that the scan of the baseline still 

shows a healthy status even if it develops into AD in the long term. 

In addition, some participants eventually developed only MCI (rather than AD), but they were still 

clustered into AD. Regardless of the wrong clustering by the proposed methods, it is also likely to be 

that the participants developed to progressive MCI and their brain had some AD-related changes but 

still exhibited symptoms of MCI. We will use this in our future work to explore whether progressive 

MCI and stable MCI can be discriminated using CN and AD scans. This will involve clustering all MCI, 

CN, and AD scans into two groups, and if an MCI scan is clustered into AD group or CN group, we 

will determine whether it is more likely to be progressive MCI or stable MCI, respectively.  



Compared with some state-of-the-art methods that detect regions pathologically related to AD, our 

method located similar regions. In their study, Zhang et al. [9] noted the left-hand side of hippocampus 

from slice 72 to slice 74 of the brain MRI scan as the parts with obvious changes. Nigri et al. [10] 

highlighted the region within the left hippocampus and ventricles in form of a heat map using Occlusion Test 

from their proposed neural network, AlexNet 2D plus Channel, similar to the red region in Figure 2 (a). Nigri 

et al. [10] used the Swap Test, to interpret their network: the Swap Test highlighted the hippocampus in the 

coronal plane, which is also similar to the ROI in Figure 2 (b). 

In addition to the detection of pathologically AD-relevant regions, the clustering performance used in our 

study compared favourably with other state-of-the-art clustering methods (shown in Table 4). Bi et al. [15] 

used similar methods, PCANet and k-means, to cluster CN and AD data, and achieved accuracy of 89.15%. 

Although the accuracy in their study was 5% greater, accuracy alone is not sufficient to comprehensively 

evaluate the performance of a method, because it only measures its overall capability to discriminate between 

CN and AD. Other measures of accuracy, e.g., sensitivity, specificity, etc., as we presented here, together 

provide a more rounded evaluation of the performance of a method, especially when data are unbalanced, i.e., 

there are significantly more of one class than another. In other words, if, for example, the number of the data 

that are correctly clustered into CN is extremely large but the number of the data correctly clustered into AD 

is small, the overall accuracy still can be good, especially when the two classes of data are unbalanced: thus 

comparing other metrics beyond accuracy is important. 

Farouk et al. [14] used k-means method alone based on the selected ROIs and the whole brain, respectively. 

They obtained the best performance when using the whole brain (accuracy = 76.3%). Our accuracy was 

around 8% greater than this, which suggests that the PCANet is a key component that enhances the 

performance when clustering CN and AD data. Escudero et al. [16] also employed k-means to cluster CN and 

AD based on the normalised left and right hippocampus volumes from MRI scans, and 73.6% of AD were 

correctly clustered. Our proposed method achieved 79.65% of sensitivity, namely, 79.65% of the AD cases 

were clustered into the correct cluster, which is more than 6% higher than Escudero et al.’s [16] method. 

Cabreza et al. [24] applied a GAN to MRI scans and achieved an accuracy of 74.44%, a sensitivity of 73.86%, 

and a PPV of 82.28%, all of which were lower than our method. 



Table 4 The studies of CN/AD clustering and classification based on structural MRI. Empty values (-) indicate these measures were not 

reported in the respective publications 

 Study Accuracy Sensitivity Specificity PPV NPV Dataset Method 

 

Unsupervised 

learning 

[14] 76.3% - - - - 113 CN, 162 AD K-means 

[15] 89.15% - - - - 307 CN, 243 AD PCANet, k-means 

[16] - 69% 94% - - 200 CN, 200 AD K-means 

[24] 74.44% 73.86% - 82.28% - Not reported GAN 

 

Supervised 

learning 

[25] 96.92% 73% 88% 76.73% 82% 36 CN, 38 AD HPT-TSVM 

[26] 84.4% 83.6% 85.9% - - 226 CN, 186 AD FSNet 

[27] 87.1% 93.3% 85.5% - - 61 CN, 37 AD DBAD CNN based model 

[8] 98.62% - - - - 92 CN, 92 AD 

DBN-based multi-task 

learning 

[28] 88% - - - - 330 CN, 336 AD ROI-based CNN 

[29] 88.79% - - - - 229 CN, 188 AD 

CNN, PCA, extreme 

learning machine 

[30] 83.7% 79.16% 87.2% - - 228 CN, 188 AD CNN 

[31] 80% - - - - 61 CN, 50 AD 3D-CNN 

[32] 81.3% - - - - 233 CN, 188 AD ResNet 

[33] 81.25% - - - - 92 CN, 92 AD SDPSO-SVM 

 

Our approach 84.17% 79.65% 88.05% 85.46% 83.64% 231 CN, 198 AD 

Two-sample t-test, 

PCANet, k-means++ 

 

In addition to the studies that employed unsupervised learning methods, our method also outperforms some 

state-of-the-art supervised learning methods, as listed in the Table 4. From Table 4, we can see that the 

accuracy of our method is higher than those of some studies [30] [31] [32] [33]. Although some studies [25] 

[26] [27] achieved higher accuracy, some of the other measures that were achieved using our method were 

higher, i.e., sensitivity or specificity. Zeng et al. [8], Lin et al. [28], and Lin et al. [29]  achieved accuracies of 

98.62%, 88%, and 88.79%, respectively, which were much higher than our method. The reason could be that 

their methods learned more information from the labelled data by using supervised neural networks with 

backpropagation. However, the backpropagation also makes the process of diagnosis more time-consuming. 

Therefore, this becomes a trade-off between performance and efficiency: although our method achieved a 

slightly lower performance, it reduced the reliance on the labels of the data and the overall process was quicker. 



In other words, our method balanced the performance (a relatively advantageous performance) and the 

efficiency (quicker discrimination) of the diagnosis.  

An additional advantage of our using unsupervised learning methods, is that these do not require training data 

or test data. This means that there is no data leakage, a limitation identified by Wen et al. [34] in a number 

of earlier studies [35]–[38]. 

The advantages of the method proposed in our study can be summarised as follows: Our method reduced the 

need for labelled MRI scans in the process of diagnosis of AD, which required only 30 scans from CN and 

AD groups, respectively, for locating the AD-relevant regions. PCANet, as a 2-stage unsupervised neural 

network, converted the low-level features (voxels) within the ROIs to higher-level features without 

backpropagation. Although a number of CNN architectures, e.g., ResNet, LeNet, AlexNet, etc., have been 

developed, most of these architectures are supervised, which requires backpropagation and is time-consuming. 

However, the process of the feature extraction in the PCANet does not rely on the labels of data and this 

makes it much quicker than supervised neural networks. In addition, although there are improved versions of 

PCA, e.g., kernel PCA, they are still mainly used for reducing the dimensions of data rather than feature 

extraction. Therefore, PCANet manipulates the unsupervised characteristic of the PCA and the feature 

extraction of CNN to extract features from the data very well, and without the need for labels. Finally, k-

means++ performed well in discriminating between CN and AD without using labels of the data, which is 

relatively quick and simple. In addition to diagnosing AD, our method also has the potential to predict the 

development of AD. 

However, the proposed method has some limitations: First, the PCANet used a basic (linear) PCA to learn 

convolutional filters, which means that it cannot capture nonlinear structures within the data. Second, although 

the PCANet is simply structured (with only two convolution layers) and is quicker in extracting features due 

to not having backpropagation, it increases the dimension of the original features. In other words, the 

dimension of the output from the PCANet is much higher than that of the input. This suggests that, if the input 

of the PCANet has high dimensions, the extracted features will occupy a larger volume of computational 

memory. Therefore, when a PCANet is applied to MRI scans, ROIs or slices containing ROIs need to be 

selected beforehand. In this way, the performance of the PCANet also depends on the detection of the ROIs 



in this study. Despite these limitations, the methods used in this study make an important contribution to the 

detection of AD in MRI scans as is summarised below. 

6. Conclusion 

AD is the most common type of dementia, and it is becoming a worldwide problem. The available AD 

diagnosis that uses machine learning and deep learning often requires a large amount of labelled data but 

labelling medical imaging data is quite difficult. Methods involving a limited amount of labelled data or data 

without labels should therefore be considered. 

In this paper, we proposed a method to discriminate between CN and AD using a limited number of labelled 

brain structural MRI scans. We first employed a two-sample t-test to detect ROIs between CN and AD using 

the labelled scans; we then used PCANet to extract high-level features from the ROIs; finally, we utilised k-

means++ to divide the MRI scans into two clusters using the high-level features. The proposed method 

achieved accuracy of 84.17%, sensitivity of 79.65%, specificity of 88.05%, PPV of 85.46%, and NPV of 

83.64%. In addition, the method potentially predicts the progression of the CN participants, and it suggests 

that stable MCI and progressive MCI can be discriminated by using AD and CN data. This could be of 

potential benefit to clinicians in diagnosing people with dementia.  

The contribution of the study can be summarised as follows. This study proposed an approach  that combines 

a statistical method, a neural network, and a clustering algorithm, to locate AD-relevant regions and to 

discriminate between CN and AD based on only a limited number of labelled MRI scans. The method in this 

study reduced the reliance on the labels of the data and this could potentially save much of the time for the 

diagnosis of AD. In addition, this study also provides evidence that unsupervised learning methods have the 

potential to predict the development of AD and thus they could be used to help with the diagnosis of stable 

MCI and progressive MCI. 

Based on the limitations of this study and proposed method, some improvements could be developed in future 

work. In recent years, MCI has been increasingly studied due to its being an intermediate stage in the 

development of AD. The two substages, stable MCI (sMCI) and progressive MCI ((pMCI), are potentially 

indicative of a person’s likelihood of worsening and progressing to AD (pCMI) or not (sMCI) 



[39][40][8][41][42]. Therefore, future work could use MRI scan data to cluster and differentiate between 

stable MCI and progressive MCI. In addition, the grey matter in the brain also has had an essential role in 

more accurately diagnosing AD in previous studies [9][26][43][44], this could be used in future work to 

improve the accuracy of the diagnosis. As for the method used in this study, a two-sample z-test could be 

potentially used for detecting ROIs based on a larger number of labelled data (over 30 scans in each groups); 

other unsupervised neural networks, e.g., anchor neighbourhood discovery (AND) [45], could be considered 

for extracting features. For the clustering stage, other optimised k-means methods  e.g., quantum-inspired ant 

lion optimised hybrid k-means [6], could be used in future work, and, in addition to k-means algorithms, 

Gaussian mixture models could also be considered to cluster the data in future research. 

 

Summary table 

What was already known on the topic? 

• Millions of people suffering from Alzheimer’s disease (AD) globally; however, manual diagnosis of AD by 

doctors is time-consuming; 

• Machine learning techniques can help doctors to identify patients with AD using magnetic resonance 

imaging (MRI) scans.  

• Most previous studies employed supervised learning methods and MRI scans to diagnose AD, which means 

that their methods required a large number of labelled MRI scans. However, medical imaging data are very 

difficult to label. Therefore, the methods for diagnosing AD require further development and improvement. 

What this study added to our knowledge? 

• This study propsed a new approach that combines a statistical method and unsupervised learning models to 

diagnose AD using a limited number of labelled MRI scans.  

• The method achieved a relatively good performance for the diagnosis of AD  

• The proposed method also detected the AD-associated regions in the brain and validated them.  



• The study also provided a basis that the unsupervised learning methods have potential to predict the 

progression of AD. 

• Future studies should report sensitivity, specificity, positive and negative predictive values, as well as overall 

accuracy. Ninety-five percent CI should also be included. 
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