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Plant Methods

Free and open-source software for object 
detection, size, and colour determination 
for use in plant phenotyping
Harry Charles Wright1*, Frederick Antonio Lawrence2, Anthony John Ryan1 and Duncan Drummond Cameron3* 

Abstract 

Background Object detection, size determination, and colour detection of images are tools commonly used in plant 

science. Key examples of this include identification of ripening stages of fruit such as tomatoes and the determination 

of chlorophyll content as an indicator of plant health. While methods exist for determining these important pheno-

types, they often require proprietary software or require coding knowledge to adapt existing code.

Results We provide a set of free and open-source Python scripts that, without any adaptation, are able to perform 

background correction and colour correction on images using a ColourChecker chart. Further scripts identify objects, 

use an object of known size to calibrate for size, and extract the average colour of objects in RGB, Lab, and YUV colour 

spaces. We use two examples to demonstrate the use of these scripts. We show the consistency of these scripts 

by imaging in four different lighting conditions, and then we use two examples to show how the scripts can be used. 

In the first example, we estimate the lycopene content in tomatoes (Solanum lycopersicum) var. Tiny Tim using fruit 

images and an exponential model to predict lycopene content. We demonstrate that three different cameras (a DSLR 

camera and two separate mobile phones) are all able to model lycopene content. The models that predict lycopene 

or chlorophyll need to be adjusted depending on the camera used. In the second example, we estimate the chloro-

phyll content of basil (Ocimum basilicum) using leaf images and an exponential model to predict chlorophyll content.

Conclusion A fast, cheap, non-destructive, and inexpensive method is provided for the determination of the size 

and colour of plant materials using a rig consisting of a lightbox, camera, and colour checker card and using free 

and open-source scripts that run in Python 3.8. This method accurately predicted the lycopene content in tomato 

fruit and the chlorophyll content in basil leaves.

Keywords Colour, Chlorophyll, Lycopene, FOSS, Object detection, Open-source

Background
Quantitative colour analysis is an important aspect of 

plant material phenotyping and adds valuable informa-

tion in a variety of common applications. Colour has 

been shown to be an accurate predictor of ripeness in 

a variety of fruits, including bananas [1], tomatoes [2], 

and avocados [3]. As fruit ripens, the ratios of coloured 

compounds such as carotenoids, anthocyanins, and 

chlorophyll change and colourimetric methods are rou-

tinely used to determine the concentration of these com-

pounds, which can provide important information about 
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the quality and nutrition content of the plant/fruit [4]. 

Colour, in addition to fruit ripeness, is a good predictor 

of chlorophyll concentration in plant leaves, and models 

for several plant varieties, including rice [5], quinoa and 

amaranth [6], and Arabidopsis [7], have been developed. 

Furthermore, colour can be used to detect plant disease, 

which can save considerable time in plant pathological 

analysis [8].

When non-destructive colorimetric methods are 

required, visible imaging can be used to measure plant 

phenotypes such as leaf area, colour, yield, disease sever-

ity, fruit number, etc., and digital photography is the easi-

est and cheapest of these methods [9]. Many pipelines 

and tools have been developed for determining the size 

or colour of plant tissues; however, they often require the 

use of closed-source software/tools or extensive manual 

image correction [6, 10]. Eliminating proprietary soft-

ware and developing free and open source software 

(FOSS) has many benefits, including reducing research 

costs and generating software that is highly suitable for 

the required scientific task [11, 12] and makes these tech-

niques available to researchers with limited resources.

An improvement to FOSS that increases transpar-

ency, reproducibility, and reusability of software is to fol-

low the “FAIR” principles by producing software that is 

Findable, Accessible, Interoperable and Reusable, which, 

when used specifically for research software, is known 

as FAIR4RS [13]. Some recommendations have been 

made for FAIR4RS, including ensuring users know how 

to retrieve and cite software for findability, ensuring soft-

ware is preserved via “snapshots” using online reposito-

ries with concurrent version control to tag new releases 

to improve accessibility; adhering to software standards 

for interoperability; and including adequate documenta-

tion in conjunction with test data for improving repro-

ducibility [14]. Following FOSS and FAIR principles 

allows for the creation of plant colour software that is 

transparent, robust, and repeatable. This kind of colour 

detection system allows for generalisation of findings 

between systems and can help improve models used for 

colour detection and characterisation [15].

In this manuscript, we present a pipeline and set of 

FOSS scripts that follow the FAIR4RS principles for col-

our correcting digital photo images, separating objects, 

and determining the objects’ size and colour coordinates 

in various colour spaces. The pipeline is tested in four dif-

ferent lighting conditions to show the consistency of the 

colour correction pipeline. Two examples are then used 

to demonstrate possible use cases for these scripts: first, 

determining the lycopene content of tomatoes, which is 

done using three different cameras; and second, deter-

mining the chlorophyll content of basil leaves.

Materials and methods
Materials

 1. Any digital camera (whilst a DSLR camera that 

shoots in RAW is preferable, mobile phone cam-

eras can also be used).

 2. A 24 swatch colour checker (code provided and 

colour file are for SpyderCheckr24, https:// spyde rx. 

datac olor. com/ shop- produ cts/)

 3. A lightbox with supplementary lighting (this is 

optional however it does improve the quality of the 

results, see for example https:// tinyu rl. com/ s8x4v 

2jd). The example lightbox contains LED lighting; 

this could be further improved by using bulbs that 

are closer to standard illuminants (D65 for sRGB).

 4. An object of known size (coins work well).

 5. Software: Python 3.8.

 6. Python packages: List of packages and their ver-

sions used available in Additional file 1: S0.

 7. Custom Python Scripts: https:// github. com/ Harry 

CWrig ht/ Plant SizeC lr

 8. Snapshot of all scripts and data is available on 

Open Science Framework: www. doi. org/ 10. 17605/ 

OSF. IO/ QAYMU

 9. Optional for extraction of lycopene: acetone, high 

purity ethanol, hexane deionised water and a UV/

vis spectrophotometer

 10. Optional for extraction of chlorophyll: 80% acetone 

in deionised water and a UV/vis spectrophotom-

eter

Protocol

Figure  1A–F shows the general protocol and pipeline 

using the presented scripts for image correction, object 

detection and separation and colour and size determina-

tion and in depth details are provided.

Fig. 1 The framework for determining the size and colour of objects for plant phenotyping. The steps consist of (A) converting the raw file 

into a jpg file (optional) using the script NEF2JPG.py, (B) doing a background correction to account for the vignette effect by the camera lens using 

the BG_Corr.py file, (C) colour correction using a colour checker card using ClrCorr.py, (D) cropping of image for object identification using Crop.

py, (E) removal of the white background using BGRem.py (F) separation of objects using ObID.py and (G) determination of the size and colour 

of objects using SizeClr.py

(See figure on next page.)

https://spyderx.datacolor.com/shop-products/
https://spyderx.datacolor.com/shop-products/
https://tinyurl.com/s8x4v2jd
https://tinyurl.com/s8x4v2jd
https://github.com/HarryCWright/PlantSizeClr
https://github.com/HarryCWright/PlantSizeClr
http://www.doi.org/10.17605/OSF.IO/QAYMU
http://www.doi.org/10.17605/OSF.IO/QAYMU
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Fig. 1 (See legend on previous page.)
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1. A background image should be taken with the digi-

tal camera to perform a background correction that 

corrects for any lightness uniformity due to the cam-

era sensor or inhomogeneous lighting conditions. An 

example of a background image is provided in Addi-

tional file 2: S1.

2. Photograph plant tissue using a digital camera, ensur-

ing that plant tissue, colour checker board as well as 

an object of known size are all visible in the photo. 

Background removal and object separation relies on 

using a white background so users should capture 

images with a white background. The colour checker 

should be in a portrait orientation and the object for 

calibrating size should be the left most object (other 

than the colour checker board) an example of a good 

image is given in Fig. 1 A and in more detail in Addi-

tional file 3: S2. The scripts may not identify the col-

our checker if the colour checker is not square in the 

image, it is important to ensure it is when captur-

ing the images, otherwise the image may need to be 

cropped and rotated such that the colour corrector is 

square.

Note 1: Software scripts function for photos taken 

in both landscape and portrait, if using the Spyder-

Checker24 colour checker, the light blue swab should 

be in the top right and portrait irrespective of the image 

orientation.

Note 2: Photographs can be taken in varying lighting 

conditions; however, the use of lighting conditions that 

best imitate standard CIE illuminants (D55 or D65) will 

result in images with the lowest colour error. It is impor-

tant to ensure that there are no shadows cast onto the 

image or projected from the plant tissues, as this affects 

colour correction and object separation.

Note 3: All objects of interest (colour checker board, 

object of known size, plant tissue) should be placed as 

near to the centre of the photo as possible to minimise 

lens distortion effects.

3. If images are captured in RAW format, they need 

to be converted to *.jpg format, if a Nikon camera 

is used that saves RAW files as *.NEF file, then the 

included script NEF2JPG.py can be used to convert 

the file to jpg. This script can batch process all the 

files in a folder. If RAW images from other devices 

are used they will need to be converted to jpg outside 

of this pipeline before continuing with step 4.

4. Background correction is done on the *.jpg files. The 

script BG_Corr.py is able to batch process all files in a 

particular folder. The script will prompt you to select 

the background image file captured for background 

correction. It will then ask you for the folder with 

all the images that required background correction 

before corrected the files. Files will be saved using 

their initial filename plus”_BGcorrected.jpg”.

5. Colour correction is done on background corrected 

jpg files. The script will prompt you for the *.csv file 

that contains the RGB data of your colour correc-

tion swatches (if using SpyderCheckr24 this is sup-

plied in Additional file 4: S3). The order of the colour 

swatches entered into the.csv file is important and 

Additional file 5: S4 demonstrates the order the val-

ues need to be entered into the file. It will then ask 

you for the folder that contains the images that you 

wish to correct and proceed to colour correct the 

batch of images. It will print out the r [2] values of 

the colour correction matrix and these should all be 

above 0.95 if images have been successfully corrected. 

Corrected images will be saved using their initial file-

name plus the suffix “_fin.jpg”. Furthermore a.csv file 

will be generated that saves the average swatch error 

for each file before and after colour correction. This 

function also prints and saves the RGB values of the 

white swatch, to ensure that colour correction is not 

resulting in saturated RGB values. A note is printed 

in the command line stating whether there may be 

saturation problems that need further investigation.

6. For object identification and separation it is neces-

sary to crop the colour corrector out of the colour 

corrected images as shown in Fig.  1D. The pro-

vided script Crop.py is able to do this cropping. It 

will prompt you to select the folder with the cor-

rected images and then display the images one at a 

time. The user must click and drag a rectangle on the 

image with their mouse to select the region of inter-

est (ROI). The region of interest should include all 

objects of interest as well as the object of known size. 

The object of known size should now be the left most 

object in the image. Once the user is happy with the 

ROI they press enter and this will crop and save the 

image and open the following image. Images will be 

saved as their initial filename plus the suffix “_crop.

jpg”.

7. Background removal is done using the script 

BGRem.py. The user will be prompted to select the 

folder that has the images which require background 

removal. This script also has a threshold value that 

can be changed if the background removal is either 

cropping the objects of interest by being too aggres-

sive in thresholding or not removing the background 

entirely. This is changed on line 16 of the script 

BGRem.py (a good starting value is 150). Images with 

their background removed are saved as their initial 

name plus the suffix “_BGRem.jpg”.
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8. Object separation is done using the script ObID.py 

which will prompt the user to select the folder which 

has the image files for object separation. Once the 

script is run, an image will be displayed with an iden-

tified object highlighted and the user will be asked to 

give this object a name in the IDE software used to 

run the script. The object will then be saved as a jpg 

file with this name. This will then repeat for the next 

object in the image and once all objects have been 

named the script will move to the next image in the 

folder.

9. Finally colour and size information can be extracted 

from the individual saved objects. This is done using 

the script SizeClr.py. This will prompt the user for 

the folder with the separated object images and for 

the file that contains the object of known size. The 

user will be prompted for the height and width of the 

object in the unit of interest and should enter this in 

the IDE. The script will then work through each of 

the objects and extract their size data (width, height 

and area) as well as the colour in three colour spaces; 

RGB, YUV and CIELAB. For CIELAB it is assumed 

that the observer is 2° and the illuminant is a CIE 

standard illuminant D65. If this is not the case the 

user should change these values on line 583–585 of 

script PlantSzClr.py. Colour and size information is 

saved in a new.csv file. The user will be prompted to 

give the name of this csv file and information is saved 

in columns as shown in Fig. 1F.

Image processing

Although detailed understanding of the backend pro-

cessing is not required to use the pipeline, some under-

standing can benefit the user, particularly for background 

correction, colour correction, object separation, and col-

our determination.

Background correction: This function corrects an 

experimental image using a background image captured 

under the same conditions and camera settings. First, the 

background image is blurred (5 × 5 pixels) and normal-

ised to values between 0 and 1. Then, the experimental 

image is divided by the normalised background image to 

correct for any differences in lighting and exposure. The 

resulting corrected image is clipped to the valid range 

(0,255) and saved.

Colour correction: A colour correction process 

was performed using the colour_checker_detection 

python package with slight modifications to ensure 

accurate identification of all 24 swatches. The func-

tion implements polynomial regression to adjust for 

any discrepancies between the observed and reference 

RGB values of the swatches. The process takes in two 

parameters: an array of the reference sRGB values for 

the 24 swatches and the observed mean RGB colours 

of the same swatches. The function creates a design 

matrix with the observed RGB values and their powers 

up to the third order and fits a linear regression model 

to each of the R, G, and B channels using this matrix 

and the swatch sRGB values. The optimal correction 

coefficients were determined through ordinary least 

squares regression. The RGB channels of the experi-

mental image were corrected by applying the correc-

tion transformation (Eq. 1).

where  CCcorr is the corrected colour channel (R, G or B) 

value, β is the correction coefficient for each channel, and 

 Ri,  Gi and  Bi are the observed red, blue and green values 

within the image. This type of polynomial regression has 

been successfully used to minimise error when trans-

forming from RGB to device-independent sRGB that 

minimises the error due to non-ideal illuminants. Polyno-

mial modelling has also been used to convert directly to 

XYZ tristimulus values [16]. The sRGB colour space also 

has a relationship to the CIE colourimetric colour space 

and allows for conversion between these colour spaces 

[17]. To demonstrate the error reduction 50 images of 

lettuce were captured in a lightbox and the average error 

between the reference swatch sRGB value and captured 

value was calculated according to Eq. (2).

where  Rref,i,  Gref,i and  Bref,i are the reference sRGB val-

ues for the three colour bands for each of the swatches, 

 Ri,,  Gi, and  Bi are the observed colour band values in the 

image and ΔRGBi is the error for each of the 24 swatches. 

The mean error of the 24 swatches over the fifty images 

before colour correction was 43.05 and this was reduced 

to 10.49 once colour correction had taken place (Fig. 2).

Background removal: This function removes the back-

ground of an image using colour thresholding and mor-

phological transformations (cv2.getStructuringElement) 

and cv2.morphologyEx) which exclude small pixels and 

remove all except large objects.

Object separation: This function is designed to perform 

object detection and segmentation on digital images. It 

employs Canny edge detection to extract edges from the 

input image and applies contour detection to identify and 

sort the contours in the resulting edge map. The function 

then computes the mean RGB color of each object and 

(1)

CCCorr = β1,CCRi + β2,CCGi + β3,CCBi + β4,CCR
2
i

+ β5,CCG
2
i + β6,CCB

2
i + β7,CCR

3
i

+ β8,CCG
3
i + β9,CCB

3
i

(2)

�RGBi =

√

(Rref,i − Ri)
2 + (Gref,i − Gi)

2 + (Bref,i − Bi)
2



Page 6 of 15Wright et al. Plant Methods          (2023) 19:126 

transforms these values into YUV and CIE Lab* color 

bands. To determine the object’s maximum width and 

height, as well as its area, the function counts the number 

of non-white pixels.

Note on ideal plant tissue

Although there are many applications for this type of col-

orimetric determination in plant phenotyping, it must 

be noted that for the two case studies provided the plant 

tissues are ideal for this type of phenotyping (basil leaves 

are smooth, without wax or hairs, green and unvarie-

gated and tomatoes follow a green/yellow/orange/red 

ripening process and are undamaged and free from dirt). 

For non-ideal leaves there can be a significant change in 

their reflectance patterns and intensity [18] which would 

likely need a more complex pipeline for understanding 

colour than the pipeline provided here as would damage 

or dirty tomato fruit.

Lycopene extraction

Lycopene extraction was done as a case study using the 

pipeline. The lycopene was solvent extracted and its con-

centration measured by UV/vis spectrophotometry. Lyco-

pene extraction was completed according to the method 

described by Fish et  al. [19] with a slight modification. 

Fresh tomato tissue was finely ground in a mortar and pes-

tle with an equal weight of deionised water to give a paste. 

0.4–0.6 g of this paste was added to a vial and kept on ice 

in the dark until processing. To each vial, 5 mL of acetone, 

5 mL of 95% ethanol, and 10.0 mL of hexane were added. 

Vials were sealed and placed on their sides in a container 

that contained ice, and they were mixed for 15 min at 180 

rpm on an orbital shaker. After shaking, 3  ml of deion-

ised water was added to the vials, and they were shaken 

for another 5 min. Samples were then left to phase sepa-

rate at room temperature for 5 min before absorbance was 

measured. The UV/vis absorbance of the upper (hexane) 

fraction was measured between 400 and 700 nm, and the 

intensity at 503 nm was used for lycopene content deter-

mination, measured against a hexane blank. The lycopene 

concentration was calculated according to Eq. (3).

where L is the lycopene concentration in mg  kg−1,  A503 

is the absorbance at 503 nm, 17.2 ×  104   M−1   cm−1 is the 

molar extinction coefficient for lycopene in hexane [20].

Lycopene model training and validation

A large range of models have been suggested for fitting 

colour data from digital images to lycopene concentra-

tion, including linear and exponential models. Liñero et al. 

used a quadratic equation using the CIELAB colour space, 

which explained 95 percent of the variance [21], whereas 

Arias et  al. used linear and exponential fits using param-

eters from the CIELAB colour space to classify tomatoes 

into maturity groups and to predict lycopene content. An 

exponential model in the form shown in Eq. (4) was found 

to be the best predictor of lycopene concentration, with an 

 r2 of 0.96. [22].

where  Lpred is the predicted lycopene content, β1, β2 and 

β3 are fitting parameters and  a* and  b* are colour channels 

in the CIELAB colour space. For this case study Eq. (4) is 

used to fit lycopene data.

Chlorophyll extraction

Chlorophyll extraction was used to provide a second exam-

ple of the pipeline. Chlorophyll was extracted from basil 

leaves, and the chlorophyll content was determined using 

UV/vis spectrophotometry. 70−100 mg of fresh leaf matter 

was ground to a paste with a pestle and mortar in 3 ml of an 

80% acetone solution. This turbid paste was transferred to a 

15 ml centrifuge tube. A further 1.5 ml of 80% acetone was 

used to rinse the mortar and pestle, and the final solution 

was brought up to 5 ml with 80% acetone [23]. Chlorophyll 

extraction was allowed to take place in the dark overnight. 

Vials were then centrifuged at 4000 RPM for 10 min, and 

the supernatant was collected for spectrophotometry. The 

UV/vis absorption at 646 nm and 663 nm was used to esti-

mate the chlorophyll content according to Eqs. (5, 6 and 7) 

[24].

(3)

L =

A503

17.2 × 104M−1cm−1
×

536.9 g

mole

×

1 l

103ml
×

103 mg

g
×

10 ml

kg tissue

=

A503 × 31.2

g tissue

(4)Lpred=β1e
β2

a∗

b∗ +β3

Fig. 2 The error between captured RGB values and the sRGB 

(∆RGB) values for the 24 swatches on the SpyderCheckr24 colour 

checker before and after colour correction. The filled area indicates 

the standard deviation (n = 50) for different images of lettuces 

captured in a light box. The mean error before and after colour 

correction is shown on the right hand side
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where  Ca is the amount of chlorophyll a,  Cb is the amount 

of chlorophyll b and  Ct is the amount of total chlorophyll 

(all in µg  ml−1).  A663 and  A646 is the absorption at specific 

wavelengths.

Chlorophyll model training and validation

For model fitting of chlorophyll content an exponential 

model using the RGB colour system has been shown to 

accurately predict chlorophyll content in several crops 

including quinoa and amaranth [6], and Arabidopsis [7] 

and is used in case study example. Chlorophyll content 

was determined using the model shown in Eq. (8).

where  Ctpred is the predicted total chlorophyll content, β1, 

β2, β3 and β4 are fitting parameters and R, G and B are the 

colour bands in the RGB colour space.

Results and discussion
Lighting test

To determine the flexibility and robustness of the pipe-

line, and in particular the background and colour cor-

rection scripts, images containing just the colour 

corrector were captured in four different locations with 

varying lighting conditions. Location one was the most 

controlled in a LED-lit lightbox, location two was done in 

natural lighting conditions; and locations three and four 

were done in two separate laboratories with fluorescent 

lighting (Light intensity and spectrums given in Addi-

tional file 6: S5 measured with a LI-COR LI-180). Images 

were captured with a Nikon D60 with the following set-

tings: aperture = f/4.2, shutter speed = 1/200 s, ISO = 100, 

file storage = RAW. The average error of the swatches of 

the colour corrector, as defined in Eq. (2), was used to 

determine the deviation of the image from the reference 

sRGB colour space, and these values were compared for 

the four locations before and after background and col-

our correction.

A two-way ANOVA was performed to analyse the 

effect of location and colour correction on the ΔRGB 

error. Main effects analysis showed that both location 

(F(3, 184) = 15.7, p < 0.001) and colour correction (F(1, 

184) = 221, p < 0.001) had significant effect on the ΔRGB 

error. A statistically significant interaction between the 

(5)Ca = 12.21A663 − 2.81A646

(6)Cb = 20.13A646 − 5.03A663

(7)Ct = Ca + Cb

(8)Ctpred = e(β1R + β2G + β3B + β4)

effects was also revealed by the two-way ANOVA (F (3, 

184) = 9.57, p < 0.001) (Table 1). The light box and natu-

rally lit images had statistically significantly lower error 

than the two laboratories with fluorescent lighting, which 

had higher error before colour correction (Fig. 3A). For 

all locations, the ΔRGB error reduced after colour correc-

tion, and, after colour correction the error did not differ 

between the four locations (Fig.  3A). The log10 trans-

formed data is presented in Fig. 3 A as tests for normal-

ity and equal variance were not met with untransformed 

data. Additional file  7: S6 displays the untransformed 

error data. The images on the colour correction card 

make visualising these errors before and after colour cor-

rection easier, and these images are shown in Fig. 3B. The 

mean untransformed mean ΔRGB error for the four loca-

tions (lightbox, natural, lab 1 and lab2), after colour cor-

rection were: 10.6, 10.4, 10.0 and 14.3 (Additional file 7: 

S6) with the first three having similar error to that shown 

in Fig. 2.

This analysis reveals that although the lighting condi-

tions have a large influence on the ΔRGB error, once col-

our correction is done, the error is comparable between 

locations. The pipeline can be used in varying lighting 

conditions; however, it should be noted that locations 

with more consistent controllable light (natural and light-

box) had the lowest errors before colour correction and 

produced more consistent images. It is suggested that a 

lightbox be used in conjunction with this pipeline; how-

ever, in  situations where this is not possible, using sup-

plementary daylight LEDs (5000–6500  K) can increase 

consistency and decrease ΔRGB error.

Lycopene extraction

Twenty tomatoes were processed, and lycopene was sol-

vent extracted according to the protocol described in 

the methods section to generate their absorption spec-

tra (Fig. 4A). The full spectrum was measured for toma-

toes of different colours and at the wavelength of interest 

(503 nm) the absorbance peak increased as tomatoes rip-

ened from green to red (Fig. 4B).

Table 1 Two-way ANOVA table for the error of swatches on 

colour corrector card

Factor SS df F PR(> F)

Location 2.98 3 15.7  < 0.001

Corrected 14.0 1 221  < 0.001

Location x corrected 1.82 3 9.57  < 0.001

Residual 11.6 184 – –
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Lycopene model generation and multi camera test

Model training

Twenty tomatoes were imaged using three different 

cameras: a DSLR camera (Nikon D60) and two mobile 

phone cameras (Xioami Mi 9SE and iPhone 7) to 

determine whether the pipeline is flexible in respect of 

the camera and camera settings used. The settings used 

for the DSLR camera were: aperture = f/4.2, shutter 

speed = 1/200  s, ISO = 100, file storage = RAW. For the 

two mobile phones, images were captured in automatic 

Fig. 3 A  Log10 transformations of the error of the 24 colour corrector swatches before colour correction (pink) and after colour correction (blue) 

for images captured on a Nikon D60 at four different locations with different lighting conditions. The box is created from the first to the third 

quartile and the horizontal line through the box indicates the median. Thin whiskers show 1.5 × IQR from the edges of the box. Different letters 

indicate that means are significantly different (Tukey HSD, p < .05). B Shows the photos of the colour corrector board in the four locations, 

before and after colour correction
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mode with no settings controlled. The images were pro-

cessed using the colour and size pipeline, and Eq.  (4) 

was used to model lycopene content using the CIELAB 

colour space. For all three cameras, the model proved 

successful, and suitable fitting parameters were deter-

mined for all three cameras (Fig.  5). The DSLR cam-

era had the least amount of curvature of the three 

cameras, possibly due to proprietary image process-

ing routines on the mobile phones increasing this 

curvature. The predicted lycopene values accurately 

predicted the observed lycopene values for the Nikon 

D60  (r2 = 0.919), Xioami Mi 9 SE  (r2 = 0.931), and the 

iPhone 7  (r2 = 0.943) and the predicted against observed 

Fig. 4 A UV spectrophotometry spectrum for tomato fruit with the vertical dashed line indicating the wavelengths used to determine lycopene 

content (503 nm) and B background and colour corrected images of the tomato fruit before lycopene extraction

Fig. 5 a*/b* values from Lab colour space of test tomatoes captured on different cameras; A Nikon D60, B Xioami Mi 9SE and C iPhone 7 

against lycopene content determined via extraction and spectrophotometry. The black line indicates an exponential fit of the data used to predict 

lycopene content
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curve did not deviate from the y = x line for any of the 

cameras (Fig. 6).

The plant size and colour pipeline was able to success-

fully correct images from all three cameras and models 

with independent fitting parameters were developed 

for all three cameras. Although the DSLR camera that 

images in raw format has the model with the least cur-

vature, all three models have high  r2 indicating that the 

exponential model given in Eq. 4 is suitable for predicting 

lycopene content using the a*/b* ratio from the CIELAB 

colour space.

Model validation

To validate the model, five more tomatoes were imaged 

and had their lycopene solvent extracted. This was 

done using only the Nikon D60 and images were taken 

inside the lightbox under the same lighting conditions 

as the training set. The lycopene content predicted from 

the a*/b* ratio was for all five tomatoes was within the 

expected range of the model (Fig. 7A). Furthermore, one 

of the five tomatoes in the validation set had a lycopene 

content much higher than any of the training tomatoes 

and the model accurately predicted this value (Fig.  7B). 

This was not the case for the models developed for the 

iPhone 7 (Additional file 8: S7). The standardised residu-

als for the model for training and validation show similar 

deviation for the two datasets (Fig. 7C) and an ANOVA 

of the predicted vs observed values for the training and 

validation set further highlight the precision of the model 

(Fig. 7C).

The validation of the a*/b* model shows that once these 

models are developed the pipeline, in conjunction with 

developed fitting parameters, can be used to predict the 

lycopene content of tomatoes. This validation set also 

indicates the importance of using a range of coloured 

tomatoes that cover the full range of expected colours to 

generate data over the entire range of lycopene content 

when training models, to avoid the need for extrapolating 

models outside of their training range. This is particularly 

important when using a mobile phone camera, where 

models have greater curvature.

Chlorophyll extraction

Twenty basil leaves were processed, and chlorophyll was 

solvent extracted according to the protocol described in 

the methods section to generate their absorption spec-

tra (Fig. 8A). The full spectrum was measured for leaves 

of different colours and at the wavelengths of inter-

est (646  nm and 663  nm) the absorbance increased as 

the colour of the basil leaves changed from yellow to 

green (Fig. 8B).

Chlorophyll model generation and validation

Twenty basil leaves were imaged using a DSLR camera 

(Nikon D60). The settings used for the DSLR camera 

were: aperture = f/4.2; shutter speed = 1/200 s; ISO = 100; 

file storage = RAW. All images were taken inside a light-

box for the chlorophyll trials (both training and vali-

dation). The images were processed using the colour 

and size pipelines, and Eq. (8) was used to model chlo-

rophyll content using the RGB colour space. Equation 

(8) was suitable for fitting colour data to the extracted 

chlorophyll content from basil leaves, as fitting param-

eters were found and the predicted values were similar 

Fig. 6 Predicted lycopene content determined from Lab colour space of test tomatoes captured on different cameras; A Nikon D60, B Xioami Mi 

9SE and C iPhone 7 against lycopene content determined via extraction and spectrophotometry in mg lycopene per kg wet mass tomato. The 

black dashed line indicates the y = x line and the  r2 of the fit is inset and the solid blue line shows the fit of the observed and predicted data
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to the observed values  (r2 = 0.933). The predicted ver-

sus observed chlorophyll content curve deviated slightly 

from the y = x curve, indicating that the model slightly 

underpredicts chlorophyll content at low chlorophyll 

content and slightly overpredicts chlorophyll content at 

high chlorophyll content (Fig. 9A).

To validate the model, five more basil leaves were 

imaged and had chlorophyll extracted. Validation was 

done using only the Nikon D60, and images were taken 

inside the lightbox. The chlorophyll content was accu-

rately predicted for four of the validation leaves; however, 

the fifth validation leaf had a chlorophyll content greater 

than any in the training set, and the chlorophyll content 

of this leaf was under predicted  (Ctpred = 1.13  µg   g−1; 

 Ctobs = 1.51  µg   g−1) (Fig.  9B). The standardised residu-

als for the model for training and validation show simi-

lar deviation for the two datasets (Fig. 9C). An ANOVA 

of the predicted vs observed values for the training and 

validation dataset showed a lower F and p value for the 

validation dataset likely due to the single data point from 

outside of the training range skewing the result (Fig. 9C). 

This point is left in the analysis to highlight the impor-

tance of training models using a subset of leaves that 

cover the full range of expected chlorophyll content.

This underprediction in the validation data set rein-

forces what we learned from the lycopene validation data. 

In order to use colour data to accurately predict coloured 

compounds in plant materials, the training set needs to 

incorporate samples from the entire expected colour 

range, as model prediction is only accurate within the 

range of the training data (it does not always extrapolate 

accurately). This is particularly important when models 

have large curvature, such as the two models generated 

using the mobile phone cameras for lycopene content.

Validation tomatoes were also captured under the 

four different lighting conditions (Fig.  10A) used in the 

Fig. 7 A a/b values from Lab colour space of test tomatoes captured on a Nikon D60 against lycopene content determined via extraction 

and spectrophotometry in mg lycopene per kg wet mass tomato. The solid line indicates an exponential fit of the data used to predict lycopene 

content. B Predicted lycopene content determined from Lab colour space of test tomatoes captured on Nikon D60 against lycopene content 

determined via extraction and spectrophotometry in mg lycopene per kg wet mass tomato. The dashed line indicates the y = x line. The pink circles 

show the data used to train the model and the blue squares indicate validation data points. C The standardised residuals of the training dataset, 

pink circles, and validation dataset, blue squares of the model fit and descriptive statistics of the model, with d.f; F and p indicating the degrees 

of freedom, F value and p value for an ANOVA of the predicted against observed values of the model for the training and validation datasets. RMSE 

is the root mean square error of the model
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lighting test to determine importance of consistent light-

ing when capturing images (using the Nikon with the 

same capture settings as all previous captures). The a*/b* 

value is consistent for the four lighting conditions for low 

a*/b* (and lycopene) values, however for tomato 5 and 

tomato 6 the a*/b* value is significantly different between 

the lightbox/natural lit images and the two fluorescently 

lit images, lab 1 and lab 2 (Fig.  10B). This is likely due 

to the substantial amount of light reflected in lab 1 and 

lab 2. This result suggests that lighting should be kept as 

consistent as possible when capturing images for quanti-

fication of chemical compounds by colour. Furthermore 

models developed under one set of lighting are unlikely 

to be transferrable if lighting is drastically changed.

Conclusions
A set of open source Python scripts is presented with 

a pipeline for imaging, background correction, colour 

correction, cropping, separating objects, and deter-

mining the size and colour of objects. The pipeline is 

validated using lycopene extraction from tomatoes and 

chlorophyll extraction from basil leaves. Tomatoes were 

imaged in four different locations under four different 

lighting conditions (lightbox, natural light, and two 

different fluorescent lights) using three different cam-

eras (a DSLR and two mobile phones). In each of these 

cases, a colour corrector was imaged, and the differ-

ence between the actual colour of the swatches and the 

captured colour was compared. The error was highest 

Fig. 8 A UV spectrophotometry spectrum for basil leaves with the vertical dashed lines indicating the wavelengths used to determine total 

chlorophyll content (646 nm and 663 nm) and B background and colour corrected images of the basil leaves before chlorophyll extraction
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before colour correction in the images captured under 

fluorescent lighting conditions and was lowest in natu-

ral light and in the lightbox. Colour correction reduced 

this error in all locations, and there was no difference 

in the error of the swatches between the four locations 

after colour correction. All three cameras were able to 

predict lycopene content accurately; however, valida-

tion indicated that the DSLR camera was the only one 

that accurately predicted lycopene content outside of 

the training set. Furthermore, tomatoes captured under 

different lighting conditions, even after colour correc-

tion, had different mean a*/b* values at high lycopene 

content. The chlorophyll content of basil leaves was 

accurately predicted using the DSLR camera in the 

lightbox; however, validation showed that the model 

underpredicted when a leaf was imaged from outside 

the training set. This indicates that model training 

when imaging plant materials should include the entire 

range of expected plant material colours to ensure 

accurate predictions.

Fig. 9 A Training data of predicted total chlorophyll content determined from RGB colour space of test basil leaves captured on a Nikon 

D60 against total chlorophyll content determined via extraction and spectrophotometry in µg chlorophyll per g wet mass basil. The  r2 value 

is inset, the black dashed line indicates the y = x line and the blue line indicates the fit of the observed and actual data. B The blue squares show 

the validation data points predicted by the model and the dashed line indicates the y = x line. C The standardised residuals of the training dataset, 

pink circles, and validation dataset, blue squares of the model fit and descriptive statistics of the model, with d.f; F and p indicating the degrees 

of freedom, F value and p value for an ANOVA of the predicted against observed values of the model for the training and validation datasets. RMSE 

is the root mean square error of the model
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