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Balancing Feature Alignment and Uniformity
for Few-Shot Classification

Yunlong Yu, Student Member, IEEE, Dingyi Zhang, Zhong Ji, Senior Member, IEEE, Xi Li,
Senior Member, IEEE, Jungong Han, Senior Member, IEEE, Zhongfei Zhang, Fellow, IEEE

Abstract—Given a few samples for each novel class, Few-Shot
Learning (FSL) aims to correctly recognize new samples from
the novel classes, by learning a model from the base classes. The
existing methods focus on learning transferable knowledge from
the base classes by maximizing the information between the fea-
ture representations and their labels, which may suffer from the
supervision collapse issue due to the bias toward the base classes.
In this paper, we address this issue by preserving the intrinsic
structure of the data to learn a generalized model for the novel
classes. Following the InfoMax principle, we maximize both the
mutual information (MI) between the samples and their feature
representations and the MI between the feature representations
and their class labels, leading to a balance between discrimination
and generalization for the feature representations. Specifically, we
maximize the MI of samples and their representations with two
low-bias estimators to perform feature representation learning,
an estimator between a pair of intra-class samples, and an esti-
mator between a sample and its augmented views. We formulate
the whole idea into a united framework that perturbs the feather
embedding space by both distilling knowledge between class-wise
pairs and enlarging the feature representation diversity. Through
extensive experiments on a variety of popular FSL benchmarks,
the proposed approach achieves comparable performances with
state-of-the-art competitors, including 69.53% accuracy on the
minilmageNet dataset and 77.06% accuracy on the CIFAR-FS
dataset under the 5-way 1-shot task.

Index Terms—Few-Shot Learning, Mutual Information, Fea-
ture Representation, Knowledge Distillation, and Self-Supervised
Augmentation.

[. INTRODUCTION

He availability of large amounts of annotated data has

promoted deep learning techniques to advance signif-
icantly in the computer vision areas over the last decade.
Despite the dramatic advances, in actual computer vision
applications, a large amount of annotated data cannot be easily
obtained. It is thus imperative to develop methods for learning
from a few training samples. Research related to this subject is
usually termed as Few-Shot Learning (FSL) [1], [2], [3], [4]
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that aims at accurately recognizing samples from the target
classes with a few samples per class.

To address this task, the meta-learning-based approaches
[11, [51, [6], [71, [8] have been extensively studied and have
dominated FSL areas in recent years. These approaches aim at
training meta-models that are agnostic to different FSL tasks
from a collection of mimic FSL tasks formed with the base
data. Once trained, the meta-models are applied to solving new
FSL tasks sampled from the disjoint target classes. Recently,
some approaches [9], [10], [11], [12], [13] have demonstrated
that training a basic classification model with the cross-entropy
loss on the base classes performs very competitively for the
downstream FSL tasks. These approaches attempt to train an
effective feature extractor via either fine-tuning [10], [13] with
an episodic sampling way or retraining another network [11]
based on a pre-trained classification network. However, most
existing works train the feature extractor by overemphasizing
the correct predictions of base samples, which will be biased
toward the base classes and suffer from supervision collapse
[14], [15], [16] where the trained model drops any information
that is not necessary for predicting the training classes, in-
cluding the information that may be necessary for transferring
to novel classes. From an information-theoretic perspective,
the existing methods maximize the mutual information (MI)
between the feature representations and their associated class
labels but neglect to maximize MI between the feature repre-
sentations and the raw input samples.

As the InfoMax principle [17] indicates, maximizing MI
between the feature representations and the input samples
would preserve more information about the raw input samples,
which is beneficial for learning more generalized information.
However, maximizing MI between the feature representa-
tions and the input samples is intractable. Thus, some works
attempt to find MI estimators to address the supervision
collapse issue. Knowledge Distillation (KD) [18], [19] and
Label Smoothing (LS) [20], [21] are two popular strategies
to remedy the model from the collapse issue by maximizing
the mutual information between the feature representations
and the supervised representations. As shown in Fig. 1(a)(b),
KD obtains the supervised representations from a pre-trained
teacher model while LS artificially designs a soft represen-
tation. [11] applies the knowledge distillation framework for
FSL and demonstrates that softening the hard one-hot label
would benefit learning more transferable feature embeddings
for novel classes. However, traditional KD requires training
a teacher network in advance, which is limited due to the
computation costs. Though the soft labels provided with LS
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Fig. 1: The basic illustration of traditional two-stage knowledge distillation, label smoothing, and the proposed computation-free
knowledge distillation. Three strategies differ in the way of providing soft labels. The knowledge distillation provides the soft
labels with a pre-trained teacher, the label smoothing technique gives the soft labels from a prior distribution, and the proposed
strategy produces the soft labels with the other sample from the same class.

methods could relieve the overfitting issue, they hardly contain
the semantic relationships among classes, thus bringing in little
benefits for or even hurting the feature generalization on the
novel classes.

In this paper, we address the supervision collapse issue by
maximizing two low-bias estimators of the MI between the raw
samples and their feature representations, an estimator between
a pair of intra-class samples, and an estimator between a
sample and its augmented views. For the estimator between
intra-class pairs, we propose to mutually distill knowledge
between a pair of intra-class samples, as shown in Fig. 1(c).
Compared with the traditional two-stage KD methods, our one-
stage [ramework is more efficient as it requires no teacher
network in advance but only with a computation-free pair-
wise sampling strategy, and has the additional capability of
relieving the overconfidence risk as it dynamically changes the
soften label for each sample during training. We theoretically
show that mutually distilling knowledge between intra-class
pairs would encourage the model to pay more attention to the
hard samples, which would benefit the model generalization
as training the hard samplers requires capturing more valid
patterns. For the estimator between a sample and its augmented
views, we perturb the feature embedding space to prevent
the intra-class feature representations from collapsing into a
feature embedding by diversifying the feature representations
based on the augmented way. We formulate the whole idea
into a united framework to boost the model generalization
ability while keeping its discriminative ability by balancing
the alignment and uniformity in the feature embedding space.

We evaluate our approach on four FSL benchmarks. Though
simple, our approach obtains 69.53% accuracy on minilma-
geNet [22] and 77.06% accuracy on CIFAR-FS [23] under the
5-way 1-shot task, which is comparable or even better over the
state-of-the-art competitors.

To summarize, the highlights of our work are:

1) We propose an effective FSL approach that learns gener-
alized feature representations by balancing the alignment
and uniformity in the feature embedding space. Our
method maximizes both the MI between the feature
representations and their class labels and two low-bias
estimators of the MI between the feature representations
and their raw samples.

2) We formulate the whole idea into an easy-to-implement

framework that smooths the feature distributions by
mutually distilling knowledge in a pair of samples from
the same class and perturbs the feature embedding space
by diversifying the feature representations based on the
augmentation way.

3) We theoretically reveal that mutually distilling knowl-
edge between intra-class pairs would encourage the
model to pay more attention to the hard instances,
leading to a better generalization since learning the hard
instances could learn more valid patterns.

The remaining sections are organized as follows. Sec. II
describes the related work. Sec. III presents the proposed
method, including the theoretical analysis, and the framework
for training the model. Sec. IV provides extensive experiments
and evaluations, followed by the conclusion in Sec. V.

II. RELATED WORK
A. Few-Shot Learning

The existing FSL approaches are roughly divided into three
categories, i.e., gradient-based approaches, data-augmentation
approaches, and metric-based approaches.

Most of the gradient-based approaches are categorized into
the meta-learning paradigm as they aim at learning the task-
agnostic knowledge via training a collection of few-shot tasks
sampled from the base classes. On one hand, some studies [ 1],
[24], [25] attempt to learn a suitable initialization of the model
parameters, aiming at quickly adapting to new few-shot tasks
within a few iterations. On the other hand, some approaches try
to learn a new optimizer for replacing the traditional stochastic
gradient descent optimizer with an LSTM-based meta-learner
[26] or an external memory [27].

The data-augmentation approaches attempt to address the
data scarcity issue by generating or hallucinating additional
data for target classes. These approaches try to hallucinate
data from a few samples of the target classes either with the
variational models learned from the base classes [28], [29] or
directly with a generator trained in an adversarial way [&],
[30]. Besides, some approaches try to augment the target data
via performing quality-controlled image distortions [31] or
weaving a self-supervision strategy into the training objective
(321, [35].

A majority of metric-based approaches lead to the state-of-
the-art for the FSL tasks. These approaches aim at learning
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a general distance metric [5], [6] that can be used to com-
pare the similarities between different samples. Most existing
methods build upon this idea to learn an effective feature
extraction model via directly constructing constraints on the
feature embeddings with a sophisticated meta-learning strategy
[22], [34]. However, recent works [10], [9], [11], [12] have
revealed that either training a simple classification network
on base classes or applying the fine-tuned pipeline with the
pre-trained model could beat the most existing complicated
meta-learning designed approaches. Although not performing
a direct constraint on feature embeddings, they could capture
more generalized features among all the base classes instead of
a subset of classes. Our approaches also fall into this category.
The most related works to ours are [10], [11]. Both these stud-
ies contain two stages that first train a classification model with
the base data and then fine-tune the model with meta-learning
[10] or re-train another model distilled with the pre-trained
model [ 1]. In contrast, our approach consists of a one-stage
training process to regularize the intra-class feature embedding
distributions, without a pre-trained powerful teacher network.

B. Knowledge Distillation

Knowledge Distillation (KD), as an important model com-
pression technique traced back decades ago, has been proven
to be effective for transfer learning tasks. It is re-popularized
by Hinton et al. [18], which has shown that the knowledge
can be distilled and transferred to a student network from a
large ensemble of teacher models. Since then, KD is widely
explored and applied in many machine learning tasks. The
existing techniques on KD are roughly categorized into two
groups.

The first group mainly concentrates on the way to mine dark
knowledge. These approaches attempt to transfer knowledge
from the teacher network to the student network via either
similarity constraint [35], relation alignment [36], or attention
maps [37], [38]. The other group seeks to find a good
teacher network to distill the student network, including the
ensemble of teacher models [39], intermediate-performance
teacher models [40], and “tolerant” teacher [41] that selects
less peaked predictions for distillation. Without a pre-trained
teacher network, deep mutual learning [42] introduces two
parallel networks to mutually distill each other at the same
time. Neither requiring a pre-trained model nor a parallel net-
work, the proposed approach attempts to achieve knowledge
distillation with the cooperation between pair-wise samples
in a class-wise manner, thus being more efficient and easy
to implement. A similar idea has been explored in [43] that
uses the class prediction of the intra-class sample to supervise
the sample training. Differently, our strategy mutually distills
each other in an input intra-class pair instead of fixing the
supervision.

There are some attempts at integrating knowledge distil-
lation into the FSL framework. For example, RFS-distill [11]
first introduces the knowledge distillation into FSL that follows
the traditional two-stage training pipeline. Following [11], [44]
combine self-supervision into the learning process while [45]
performs a self-knowledge distillation where both the teacher

network and student network share the same architecture.
These methods perform knowledge distillation with a two-
stage pipeline, which requires training a teacher network in
advance. In contrast, our method is a teacher-free knowledge
distillation strategy, which is more efficient.

C. Self-Supervised Learning for FSL

Recently there have been some attempts [33], [32], [46],
[47] at integrating self-supervised learning into the framework
of FSL. These approaches benefit from sharing inductive bias
between the main task (FSL) and auxiliary self-supervised
tasks, thus boosting the FSL performance. However, these
works struggle in providing an in-depth understanding of why
self-supervised learning has positive effects on FSL. Our work
takes a step forward, revealing the effects of self-supervised
augmentation on perturbing the feature embedding space for
improving the model’s generalization from the perspective of
mutual information.

III. METHODOLOGY
A. Problem Definition

Given a set of base classes Cpqse With a large number of
labeled samples for each class, FSL is to classify the test
samples into the candidate target classes Ciqrget, With only
a few support samples being provided for each target class.
Note that the base classes and the target classes are disjoint
in the label space, i.e., Cpase N Crarger = D. FSL is to train
a model with the base classes and generalize on the few-shot
tasks. Specifically, an N-way K -shot task consists of a support
set and a query set, of which the support set contains N classes
with K samples for each class while the query set contains
the same IV classes with () samples for each class.

B. Proxy-based Baseline for FSL

Supervised training aims to reduce the classification loss
on the base classes, producing a feature extractor for the
novel classes to perform FSL tasks with a predefined distance
metric. For a sample = from the base set Cpyse, its predictive
probability for the i-th class is computed as:

exp(z; /T

Pi(r) = —3; (z4/7) ) (H
Zm:l eXp(Zm/T)

where z = [21,...,2i,..,2m] = hes © g(x) denotes the

logit vector of sample z, i.e., the class predictions before the
softmax function, g and h.;s denote the feature extractor and
the classification head, respectively. 7 > 0 is the tempera-
ture scaling parameter, which controls the smoothness of the
distribution. M denotes the base class number.

To ensure the consistency between the training and test
processes, we take the parameters of the classification head as
class proxies, each of which denotes the visual prototype of
the corresponding base class. The class prediction for sample
x is obtained with:

z=d(g(z); A), @
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Fig. 2: Illustration of the proposed BFAU framework. BFAU takes a pair of samples from the same class and their augmented
views as input to a feature encoder to obtain their feature representations. Then, four different objectives are performed on the
feature representations to regularize the model in extracting generalized features for novel classes, including a cross-entropy
loss, a feature alignment loss in the feature embedding space, a mutual knowledge distillation loss, and a self-supervised loss.

where d denotes the similarity metric, A = [ay, ..., a;, ..., ar]
denotes the learnable proxy matrix, where a; is the prototype
for class i. Note that when the similarity metric is the
inner product, this strategy is the same as the conventional
classification pipeline. The proxy-based training strategy is
widely applied for the metric learning area [48], [49] and
is also exploited in [12], [50] for FSL. For sample z, its
classification loss is defined as,

Lee(z)

where H denotes the cross-entropy loss, P(z) is the predictive
probability of visual sample x and y denotes its ground-truth
label.

As indicated in [51], minimizing the cross-entropy loss
is equivalent to maximizing the mutual information I(Z;Y)
between the feature representations Z and labels Y. Maxi-
mizing I(Z;Y") is beneficial for the recognition of the base
classes. However, such a training mechanism concentrates on
the class-specific features of the base classes, which will cause
neural collapse issue [52] that the representations of intra-class
samples collapse to their class prototype. Thus, the model
trained with the cross-entropy loss may neglect the general
features widely shared among different classes, which will
compromise the performance when the model is applied for
the downstream tasks, especially for the novel classes that are
disjoint from the training classes.

Following the InfoMax principle [17] that preserving the
raw data information would benefit in learning more gener-
alization representations among the classes, we relieve the
objective loss to not only maximize the mutual information
I(Z,Y) between the feature representations and their class
labels but also maximize the mutual information I(Z, X') be-
tween the raw input samples and their feature representations.
Maximizing I(Z,Y’) encourages the model to learn feature
representations associated with their labels while maximizing

= H(y, P(x)), 3)

1(Z, X) encourages the model to preserve the raw information
of the input samples with less bias to the class labels.

In practice, the maximization of I(Z,X) is intractable.
Thus, we resort to an alternative objective I(Z;Z’), a lower
bound of I(Z, X), where Z’ denotes the feature embeddings
of the other view of X. In this paper, we explore two kinds of
views, an augmented view from the sample itself and a view
from the associated class of the sample.

C. Mutual Information between Intra-class Samples

We first explore the mutual information between the intra-
class samples. Specifically, we sample a pair of samples from
the same class and maximize the mutual information objective
I(Z;,Z;) = I(f(X;), f(X;)), X; can be seen an intra-class
view of X; and vice versa. Given a pair of intra-class samples
x; and x;, their class predictive probabilities P(z;) and P(z;)
could be obtained with Eq. (1), and their mutual information
objectives are:

Iz, 25) oc I(P(x:), P(x5)), I(zj,2:) o< I(P(x5), P(x:)). (4)

In practice, maximizing Eq. (4) is hard to optimize. Thus,
we introduce an alternative objective:

I(zi,x) o< I(P(2:), P(w45)) + 1(P(x;), P(xi5)), (5)

where P(z;;) denotes the mean value of P(z;) and P(x;). We
add the mutual information between the intra-class samples to
the objective to train the model. The objective for sample x;
is formulated as:

L(z;) = aH(y, P(x:)) + BH(P(xij), P(xi)),  (6)

where o and (3 are two hyper-parameters to balance the
two items and o + 8 = 1. Minimizing the cross-entropy
loss H(y,P(z;)) is equivalent to maximizing the mutual
information I(P(x;);y) and minimizing H(P(x;;), P(z;)) is
equivalent to maximizing the mutual information I(z;,z;).
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Interestingly, minimizing H (P (z;;), P(x;)) is also equivalent
to distill P(x;) with P(z;;). Thus, the objective loss for
sample x; is:

L(zi) = H(ay + BP(wij), P(xi))- (7

Eq. (7) builds a balance between the mutual information
I(Z,Y) and I(Z;,Z;). This formulation is very similar to
the knowledge distillation objective function where P(z;;) is
replaced with the prediction of a teacher model. In contrast,
our strategy distills the samples without a teacher model but
with their intra-class partners, which is easy to implement.

In the implementation, we develop a binocular framework
for the above formulation to perform the mutual knowledge
distillation for each input pair. As shown in Fig. 2, a pair of
samples from the same class are sent to the framework that
consists of twin networks and they are mutually supervised
with each other. Therefore, for each input sample, it is
supervised with both its ground-truth label and a soft label
provided by the mean value of itself and its peer’s predicted
probability. Note that the mean value is detached and no
gradient is propagated through it during the training. Since
P(x;;) denotes the relationships between the sample and the
base classes, minimizing Eq. (7) could maximize the mutual
information between the input pairs on the relationships with
the base classes.

As discussed above, Eq. (7) is similar to the knowledge
distillation methods. Different from the existing knowledge
distillation approaches, the input samples of our method are
not supervised by themselves from either a pre-trained teacher
model or the previous iterations but are supervised by their
intra-class samples. The only requirement of the proposed
method is to sample in class-wise pairs. Such a sampling
strategy is easy to implement and may bring in a basket of
benefits. First, the knowledge may be distilled in a single
network without a pre-trained teacher model, which relieves
the computation burden. Second, the distilled knowledge from
the teacher is not static but dynamically evolved as the
sampling and the training proceed. Third, the mean predicted
probability of the input pair serving as the teacher forces the
model to produce more consistent and generalized feature
representations. Finally, it is empirically observed that our
method performs better than the two-stage KD competitors
for FSL tasks.

D. Mutual Information between Different Sample Views

We then explore the mutual information between the sample
and the augmented views from the sample itself. Due to
its simplicity and effectiveness, the image rotation is used
to augment the samples with three possible 2D rotations in
R = {90°,180°,270°}. Note that the sample itself can be
seen as being rotated with 0° and thus the combination rotation
set is denoted as R = {0°,90°,180°,270°}. For an input
sample x;, we first create its three rotated copies {z]|r € R},
where z7 denotes the sample x; rotated by r degrees, and then
extract their visual embeddings with the feature extractor g and
obtain their class prediction with the classification head hs.
The mutual information between the sample and its augmented

views could be estimated in both feature embedding space and
class prediction logits space.

In the feature embedding space, maximizing the mutual
information I (x;, ;) is equivalent to minimizing the distances
of their feature embeddings, which is formulated with:

Lfa($i71'j) = Z lg(z}) —g(w§)|\2- ®)
Vrer

where x; and x; are from the same class. Minimizing Eq. (8)
encourages the feature alignment of the input pairs in different
rotation views. In this way, the manifold information of
different rotations in the feature embedding space could be
preserved.

In the logits space, all the samples and their augmented
views are projected into the label space, of which the di-
mensionality is equal to the class number. Thus, the logits
of each sample contain the structure information of different
classes. As the classification loss only performs on the original
samples, their augmented views are harder to classify. To
this end, we distill the knowledge from the mean probability
value of the original input sample pair to the augmented ones.
Accordingly, maximizing the mutual information I(z;, x;) in
the logits space is estimated with:

Lra(wsay) = S H(P(ay), P())) + H(P(xy;), P(a5). )
VreRr

where P(z;;) is the mean value of the original input pair
predicted probabilities P(xz;) and P(z;). As Sec. A pointed
out, the knowledge distillation encourages the model to focus
on the hard samples. In this way, the model pays more
attention to the hard samples and the rotated samples to extract
more general representation patterns, which is beneficial to the
downstream FSL tasks.

E. Balancing Feature Alignment and Uniformity Framework

We formulate the whole idea into a united framework.
As illustrated in Fig. 2, the framework consists of a feature
encoder and a classification head. Since we augment the
samples with different rotations, a self-supervised head to
predict the rotations of the input samples is also added after
the class-predicted logits.

Based on the rotation predictions from both the input sam-
ples and their rotated views, the self-supervised head performs
as a rotation classifier to predict their rotation labels. Thus, the
self-supervised loss is formulated as:

Loa(wi,zy) = Y H(r, Q=) + H(r,Q(«})),  (10)
Vrer

where Q(x) is the rotation predicted probability of x. Min-
imizing Eq. (10) is equivalent to maximizing the mutual in-
formation between the feature representations and the rotation
labels, which learns less bias toward the class labels.

To this end, the overall objective of the framework is:

Alignment

Lall = ]E(xi,mj)mcbase Lce(ziy x_j) + aLfa(wh *Tj)
BLka(wi, ;) +YLssi(wi, T5),

Uniformity

an
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where Lee(2;,2;) = Lee(2;s) + Lee(x;) denotes the cross-
entropy loss of both x; and z;, o, B3, and 7 are hyper-
parameters. The alignment denotes that the difference between
the representations of different samples from the same classes
should be minimized while the uniformity denotes that the
difference between the representations of different views of
the same samples should be maximized. To this end, our
method strikes a balance between alignment and uniformity
for feature representation learning and is abbreviated as BFAU.
Minimizing the first two terms of Eq. (11) is beneficial for
recognition of the base classes while minimizing the last two
terms would reduce the bias toward the base classes, which
encourages the model to learn comprehensive information to
accommodate the novel classes. Thus, the objective function
builds a balance between discrimination and generalization.

FE. Applying the Model for FSL

Once the model is trained on the base classes, we remove
both the classification head and self-supervised head and
obtain the feature encoder g, which maps the input instances
into the feature embedding space where the similarities are
obtained. Given an N-way K -shot classification task with the
support set S, we follow [5] and calculate the visual prototype
of each class. Specifically, for class c, its prototype p. is:

1
P = 15 > g(x), (12)

€S,

where S.. and |S,| denote the data set and sample number for
class c, respectively.

For each test sample x; in the query set, its probability

belonging to the class c is:

_ _ _ exp(d(g(z1), pe))

p (y - c|$t) - N ’

Zn:l eXp(d(g(It)7 pn))

where d is a similarity metric and the cosine similarity is

applied in this work. To this end, the test samples can be

predicted based on their probabilities belonging to all the
candidate N classes.

13)

IV. EXPERIMENTS

In this section, we first document the experimental settings
and implementation details and then comprehensively compare
the proposed approach with some competitors. Finally, both
the ablation study and analysis are provided.

A. Datasets and Settings

Datasets. We evaluate our models on four datasets, minilm-
ageNet [22], tieredlmageNet [ 7], CIFAR-FS [23], and Caltech-
UCSD Birds-200-2011 (CUB) [53]. Both minilmageNet and
tieredlmageNet datasets are the subsets of the ILSVRC-
12 ImageNet dataset. Specifically, the minilmageNet dataset
contains 100 classes and 600 downsampled images of size
84 x84 per class. Following the split introduced in [26], 64
classes are used for training; the remaining 16 and 20 classes
are used for model validation and testing, respectively. In
contrast to the minilmageNet, the tieredImageNet dataset has
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a hierarchical structure of broader categories corresponding to
high-level nodes. The top hierarchy has 34 categories, which
are divided into 20 training, 6 validation, and 8 test categories,
respectively, corresponding to 351 base, 97 validation, and
160 test classes. This high-level split strategy ensures that
the training classes are semantically distinct from the test
classes. The average number of samples in each class is 1,281.
Similarly, all images are resized to 84 x84 pixels. The CIFAR-
FS dataset is the derivative of the CIFAR-100 dataset that
contains 100 object classes, each of which has 600 samples of
32x32 pixels. Specifically, the CIFAR-FS dataset randomly
splits the original 100 CIFAR classes into 64, 16, and 20
classes for training, validation, and testing, respectively. CUB
is a fine-grained dataset that consists of 200 bird classes. We
follow [12] and split the 200 classes into 100, 50, and 50 for
training, validation, and testing, respectively.

In the experiments, we train a model with the training set
and select the model that performs the best on the evaluation
set for the test. We evaluate our models with five runs and
report their average value as the final performance. For each
trial, the instance number of each query class is set to 15 and
the classification performance is averaged over 600 randomly
sampled FSL tasks from the test set. For the hyper-parameters,
we select them from O to 1 with an interval of 0.2 and report
the performances of the model that performs the best on the
validation set.

Evaluation metric. For FSL, we follow the existing FSL
competitors and take both the classification accuracy and the
95% confidence interval as the evaluation metric. For the
ablation study, only the classification accuracy is reported.

Implementation details. We use the ResNetl2 [73] back-
bone as the feature extractor for a fair comparison with the
existing approaches. We also conduct experiments with the
ResNet18 [73] backbone on minilmageNet, CIFAR-FS, and
CUB datasets. If not specified, the results are obtained with
the ResNetl2 backbone. For minilmageNet and CIFAR-FS
datasets, we train 60 epochs with batch sizes of 32 and 56,
respectively. The model is trained with the SGD optimizer
with a momentum of 0.9; the learning rate is initialized as
0.05 and decayed with a factor of 0.1 at epochs 40 and 50,
respectively. For both tieredImageNet and CUB datasets, we
train 100 epochs with the SGD optimizer. The learning rate
is also initialized as 0.05 and decayed at epochs 60 and 80
with a factor of 0.1, respectively. The batch size is set to 32.
In the training stage, the standard data augmentation strategies
are applied, including random resized crop and horizontal flip.
The model is trained with PyTorch on the platform with two
1080 GPUs.

Competitors. To show the effectiveness of our model, we
only select the competitors published in the recent three years
for comparison. These competitors are in the same setting as
ours and their results are directly reported from the published
literature.

B. Comparison with State-of-The-Art

Results on both minilmageNet and tieredlmageNet.
TAB. I shows the results of our BFAU and the competitors
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1 . .
2 TABLE I: FSL accuracy (%) and 95% confidence interval TABLE II: FSL accuracy (%) and 95% confidence interval
3 on both minilmageNet and tieredlmageNet datasets. The best on both CIFAR-FS and CUB datasets. The best results are
4 results are in bold. Underline denotes the second-best. highlighted in bold. Underline denotes the second-best.
5 minilmageNet CIFAR-FS
g Backbone Method | 1-Shot | 5-Shot Backbone | Method | 1-Shot | 5-Shot
Su et.al [33] - 76.0 £ n/a AFHN [30] 68.32 £ 093 | 81.45 +0.87
8 SimpleShot [54] 62.85 + 0.20 | 80.02 +0.14 ResNet18 BFAU (Ours) 77.82 £ 043 | 89.04 + 0.25
9 AFHN [30] 62.38 £0.72 | 78.16 = 0.56
10 ResNet18 Arcmax [55] 59.88 + 0.67 | 8035 + 0.73 Shot-Free [59] 69.20 £ 0.40 | 84.70 + 0.40
MixtFSL [56] 60.11 073 | 77.76 % 0.58 MetaOptNet [60] | 72.80 £ 0.70 | 85.00 + 0.50
11 BFAU (Ours) 6721 + 038 | 82.86 + 0.30 RFS-distill [11] 73.89 + 0.80 | 86.93 = 0.50
12 — — ResNet12 DeepEMD [64] 75.65 + 0.83 | 88.69 + 0.50
SetFeat12 SetFeat [57] 68.32 + 0.62 | 82.71 £ 0.46 RENet [69] 74.51 £ 0.46 | 86.60 = 0.32
13 PyramidFCN MCL [58] 67.45 £ n/a 84.36 + n/a BML [70] 73.45 £ 047 | 88.04 £ 0.33
g o | msom | wsosoin
15 MetaOptNet [60] 64.09 £ 0.62 | 80.00 % 0.45 - -
16 MABAS [61] 65.08 £ 0.86 | 82.70 = 0.54 CUB
17 gngf‘ﬂ} [ I w000 | Brle0b Baseline++ [12] | 67.02 090 | 83.58  0.54
18 DSN-MR [63] 64.60 £0.72 | 79.51 % 0.50 A TSI | Bes e
19 DeepEMD [64] 6591 £ 0.82 | 82.41 +0.56 ResNet18 IXtFSL [20] 394 & 1. 01+ 0.
20 DeepDBC [65] 67.34 + 043 | 82.38 % 0.32 g;;“[‘;"; o[ ]) ;g% : })‘gz gggg : %Zg
urs B x L. . x L.
” ResNet]2 FRN [66] 66.45 +0.19 | 82.83 + 0.13
DAN [67] 67.76 + 0.46 | 82.71 + 0.31 SetFeatl2 | SetFeat [57] | 79.60 £ 0.80 | 90.48 + 0.44
22 MixtFSL [56] 63.98 +0.79 | 82.04 £ 0.49
23 SKD-GENI [44] 67.04 £ 0.85 | 83.54 £ 0.54 Deep DTN [74] 72.00 £ n/a | 85.10 + n/a
SnaTCHer-L [68] 67.60 + 0.83 | 82.36 + n/a FEAT [62] 08.87 £ 0.22 | 82.90 £0.15
24 RENet [60] 67.60 + 044 | 82.58 + 0.30 RFS-distill [11] 77.12 £ 0.55 | 88.89 +0.31
25 BML [70] 67.04 + 0.63 | 83.63 +0.29 FRN [60] 8.16 xn/a | 92.59 + n/a
COSOC [71] 69.28 + 049 | 85.16 + 0.42 ResNetl2 | DeepEMD [64] 8335+ n/a | 91.60 £ n/a
26 Li etal [77] 68.94 £ 028 | 85.07 + 0.50 RENet [09] 79.49 +044 | 9111 %024
27 BFAU (Ours) 69.53 + 0.32 | 84.81 + 031 BML [70] 7621 £0.63 | 90.45 £ 0.36
78 BFAU (Ours) 80.48 + 0.40 | 92.08 + 0.28
tieredlmageNet
;3 PyramidFCN MCL [58] ‘ 72.01 + n/a ‘ 86.31 + n/a
3 SetFeatl2 SetFeat [57] 7363 £088 | 87.59£0.57  hard to implement. Moreover, on both 5-way 1-shot and 5-
32 MetaOptNet [60] 6599 £0.72 | 81.56 + 0.53 shot tasks, our model performs much better than [I1] that
33 I1\1/11?511[1?&?&1[1 [] 1 Sigg f 8'28 gé‘gg f 8‘33 distills knowledge from a pre-trained teacher model, which
34 FRN [66] 7116 + 022 | 86.01 + 0.15 indicates the effectiveness of the proposed mutual distillation
35 DeepEMD [64] 71.16 £ 0.87 | 86.03 = 0.58 framework.
DeepDBC 72.34 £ 049 | 87.31 £0.32 .
36 Dg‘;\l])-MR [[ ]] 6739 = 0.82 | 82.85 « 0.56 On the other hand, BFAU also performs very competi-
37 ResNet12 DAN [67] 71.89 + 0.52 | 85.96 + 0.35 tively on the tieredlmageNet dataset. Specifically, our BFAU
SnaTCHer-L [68] 70.85 £ n/a | 85.23 £ n/a is only 0.87% and 1.15% inferior to [72] on 1-shot and
38 MixtFSL [56] 70.97 £ 1.03 | 86.16 = 0.67 . . .
39 SKD-GEN1 [44] 7203 £ 091 | 86.50 £ 0.58 5-shot classification tasks, respectively. However, [72] and
40 RENet [69] 71.61 £ 0.51 | 85.28 +0.35 [57] exploit support-query relationships in a many-to-many
€OSOC [71] 73.57 £043 | 87.57£0.10  correspondence way on the dense feature maps and require
41 Li et.al [72] 73.76 + 0.32 | 87.83 = 0.59 . . .
42 BML [70] 68.99 = 0.50 | 8549 + 0.34 more operations, while our method exploits support-query
43 BFAU (Ours) 72.89 £ 0.42 | 86.68 £ 0.38 relationships in a one-to-one correspondence way on the global
44 image representation vector and is more efficient. Besides, we
45 observe that the performances on the tieredlmageNet dataset
46 on both minilmageNet and tieredImageNet datasets. On one are higher than those on the minilmageNet, even though the
47 hand, Our BFAU performs very competitively on minilma- tieredlmageNet dataset is more challenging. The reason may
48 geNet when compared with the models trained with the same  be that the tieredImageNet consists of more instances with
49 backbone. For ResNet18, our model obtains 4.36% and 2.84% more base categories; hence the models could learn a good
50 improvements over [54] for 5-way l-shot and 5-way S5-shot feature representation for the downstream FSL tasks.
51 classification tasks, respectively. Besides, the 5-way 5-shot Results on CIFAR-FS and CUB. In TAB. II, we demon-
52 classification accuracy of our model has 6.86% improvement strate the comparison results on both CIFAR-FS and CUB
53 over that of [33], a method also enjoying the benefits of self- datasets. For the CIFAR-FS dataset, we observe that our
54 supervision learning. For ResNetl2, our model has a 0.25% model performs the best for both 5-way 1-shot and 5-shot
55 improvement on the 5-way 1-shot classification task over the classification tasks with different backbones. When compared
56 second-best method and is 0.35% inferior to the best method with the models trained using ResNet12, our model has 0.16%
57 COSOC [71]. However, COSOC requires manually cropping and 0.96% improvements over SKD-GEN1 [44] that performs
58 each image in a base set according to the largest rectangular the second-best on the 5-way 1-shot and 5-shot classification
59 bounding box containing the foreground object, which is tasks, respectively. Besides, we observe our method performs
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TABLE III: FSL accuracy (%) of the model with different
losses on minilmageNet, CIFAR-FS, and CUB datasets.
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TABLE IV: FSL accuracy (%) of the combinations of different
loss items on minilmageNet, CIFAR-FS, and CUB datasets.

Objective minilmageNet CIFAR-FS CUB L I I minilmageNet CIFAR-FS CUB

l-shot 5-Shot  1-Shot 5-Shot  1-Shot  5-Shot fa Thkd Tssl 1_.Shot  5-Shot 1-Shot  5-Shot 1-Shot 5-Shot
CE 62.02 79.64 7150 8600 73.12  87.49

Eq. () c1oc 2021 1293 8672 7534 8816 X X X 6496 8021 7293 8672 7534 88.16
Eq. (7) 6672 8230 7550 8792 7605 8838 v X X 6502 8068 7228 8622 7588 87.93
Eq. (11) 6948 8472 7698 8942 8031  90.06 X VX 6656 8246 7455 8833 76.55 90.66
X X vV 6293 8019 7046 8688 73.22 88.04
vV /X 6687 8312 7609 8855 78.69 90.96
much better than BML [70], a competitor also applies a mutual Vo X /6512 8089 7369 8781 7731 8926
. . Differentlv. BML tak ol e as i X vV / 6894 8401 7560 8853 79.16 91.28
ramework. Ditferently, takes a single sample as input to v Vv 6948 8472 76.98 8942 8031 90.06

two separate networks, one is for whole feature representation,
and the other is for local feature maps, while our method takes
a pair of samples as input to a single network to mutually
distill each other. When compared with the models using
ResNet18, our model has 9.50% and 7.59% improvements
over AFHN [30] for 5-way 1-shot and 5-shot classification
tasks, respectively. We speculate that AFHN may suffer from
the overfitting issue with the ResNetl8 which has a larger
capacity than ResNet12. In contrast, our method may mitigate
this issue by softening the labels and augmenting the training
data. For the CUB dataset, we observe that the proposed
BFAU performs very competitively on both tasks with both
backbones. When comparing the results with ResNet12, BFAU
performs slightly worse than [64], [66]. We argue that both
competitors exploit the support-query correspondences on
cither the feature map or the image grids and learn finer
feature matching, thus is beneficial for fine-grained datasets. In
contrast, our method performs the support-query relationships
in a simple prototype-to-vector way. When comparing the
results with ResNet18, BFAU obtains the best on the two tasks
and achieves 4.61% improvement over the second-best method
on the 5-way 1-shot task, which indicates that the proposed
BFAU is very competitive on the fine-grained dataset.

C. Further Analysis

Impacts of Objective Functions. In this section, we
conduct experiments to evaluate the impacts of objective
functions. TAB. III shows the results of different objective
functions on three datasets. ‘CE’ denotes the cross-entropy
loss. ‘Eq. (3)° denotes the proxy-based cross-entropy loss.
‘Eq. (7)’ denotes the combination of both cross-entropy loss
and knowledge distillation loss. ‘Eq. (11)’ further combines
the self-supervised loss and feature alignment loss on the basis
of Eq. (7). Note that the results in TAB. III are obtained
when all the hyper-parameters equal 1. From the results,
we have the following observations. First, the model trained
with proxy-based cross-entropy loss boosts the performance
on three datasets, especially on the 1-shot task. Second, the
mutual knowledge distillation could improve the performances
significantly over the baseline, indicating the effectiveness
of the distillation approach. Third, exploiting the augmented
samples further boosts the FSL performances, indicating that
the data augmentation brings benefits in gencralizing the
downstream tasks. Besides, it is interesting to observe that
the performance gains on the 5-way 1-shot classification task
are larger than those on the 5-way 5-shot classification task.

1-shot 5-shot

Performance (%)

08 /*/DB !
\v(/os

04

beta
gamma

(a) 1-Shot

(b) 5-Shot

Fig. 3: Few-shot results of different hyper-parameters on the
CUB dataset.

We speculate that the reason is that the classifiers are more
robust to the outliers when more support data are provided.

To further validate the effects of the losses in Eq. (11), we
conduct ablation studies to evaluate the impacts of different
loss terms on minilmageNet, CIFAR-FS, and CUB datasets.
From the results reported in TAB. IV, we observe that the
feature alignment loss Ly, improves a little or even hurts the
performance while adding L, individually into the objec-
tive would hurt the performance. However, their combination
would improve the performance of the three datasets. In
contrast, adding L4 individually would boost the performance
with large margins. Note that the third line in TAB. IV is
different from the third line in TAB. III as the former also
consists of the knowledge distillation on the augmented views.
Though Ly, and L, bring little performance improvement,
combining them with Ly would significantly boost the per-
formance.

Impacts of Hyper-parameters. In this experiment, we
evaluate the impacts of hyper-parameters on the few-shot
classification performances. We observe that the few-shot
performances are not sensitive to « and set it to 1, thus we
vary both § and « from 0.4 to 1 with an interval of 0.2 to
evaluate their impacts. As illustrated in Fig. 3, we observe that
the performances differ significantly with different 5 and +,
and the superior performances are obtained when ~ equals 1.

Evaluation of Different Ways of Producing Soft Labels.
TAB. V illustrates the few-shot classification results of Label
Smoothing [20], TF-KD [21], RFS-distill [11], [45], and our
method trained with Eq. (7). These methods differ in the way
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TABLE V: Comparison results (%) of Label Smoothing, TF-
KD [21], RFS-distill [11], [45] and ours on three datasets. *
denotes the results implemented by ourselves with the released

TABLE VII: Few-Shot classification accuracy (%) with and
without pre-training stage on the three datasets.

. . BN . . . minilmageNet tieredImageNet CUB
codes using the cosine similarity metric, same with ours. Pretrain I-Shot  5.Shot  l-shot  5.Shot  l-shot  5-Shot
Method minilmageNet CIFAR-FS CUB w/o 69.79 84.81 72.89 86.68 80.48 92.08
1-shot  5-Shot 1-Shot  5-Shot 1-Shot  5-Shot with 71.12 85.03 73.93 87.03 83.22 92.46
LS [20] 63.38 7590 71.17 83.30 72.21 84.47 50000
Tf-KD [ ] 64.21 7795 7243 84.78 73.46 85.93 mEm BFAU 50000 = BFAU
RFS-distill* [11] 66.03 80.86 74.37 86.18 77.12 88.89 g 40000 CE P CE
Li et.al [45] 6539 8151 7464 8763 - - e gooee
Ours 66.72 8230 75.50 87.92 76.05 88.38 5 30000 & 30000
§ 20000 2 20000
£ g
. . Z 10000 =z
TABLE VI: Comparison results (%) of different self- 10000
supervised augmentation ways. ) 1 p 3 3 7 H p 3 2
Entropy Entropy

CIFAR-FS CUB
5-Shot 1-Shot  5-Shot

88.79 78.12 90.85
89.69  80.69 91.73
89.42 8031 90.06

minilmageNet
1-shot  5-Shot 1-Shot

RandomCrop  66.72 82.98 75.55
Jigsaw 69.31 84.83 76.12
Rotation 69.48  84.72 76.98

Method

of producing soft labels for optimizing the model. LS, TF-
KD, and ours are teacher-free methods while both RFS-distill
and [45] require pre-training a teacher model in advance. LS
and TF-KD artificially design the soft labels while RFS-distill,
[45], and ours obtain the soft labels from the prediction of
the samples. From the results, we observe that the distillation
approaches perform much better than LS and TF-KD. We
speculate that the soft labels provided by the distillation-based
approaches contain structural information, which not only pre-
vents the model from overfitting but also improves the model’s
generalization. We also observe that our one-stage method
performs better than the two-stage knowledge distillation com-
petitors on both minilmageNet and CIFAR-FS datasets, which
indicates that the mutually distilling knowledge between intra-
class samples is beneficial for the model’s generalization on
the novel classes. Besides, we observe that Label Smoothing
[20] performs even worse than the baseline without the soft
labels, which indicates that the label smoothing strategy would
impair the model’s generalization.

In terms of efficiency, LS, TF-KD, and our method do
not require a pre-trained teacher network and thus are more
efficient. Theoretically, the efficiency of our method is twice
higher as that of RFS-distill during training and is the same
as RFS-distill during the test.

Impacts of different data augmentation methods. In this
experiment, we explore the effects of different self-supervised
augmentation ways. Except for the rotation, we explore the
other two augmentation ways, i.e., Jigsaw, and random crop.
Specifically, the jigsaw task rearranges the input image and
uses the index of the permutation as the self-supervised
label while random crop augmentation does not provide self-
supervised labels. TAB. VI shows the results of three different
augmentation ways. From the results, we observe that random
crop augmentation performs the worst on three datasets. We
speculate that no self-supervision loss is associated with the
objective. Besides, the Jigsaw performs slightly better than

(a) minilmageNet (b) CIFAR-FS

Fig. 4: Histogram of entropy values of the predicted proba-
bilities on both minilmageNet and CIFAR-FS datasets. The
networks are trained with ResNet12.

Rotation on the CUB dataset. In contrast to Rotation, the
Jigsaw has more self-supervised views and captures finer
patterns for the fine-grained dataset. However, for the coarse-
grained datasets, Rotation and Jigsaw perform neck-to-neck.
Pre-training for Few-shot Learning. As most of the
competitors follow a two-stage pipeline, a pretraining, and a
fine-tuning stage, we also apply a two-stage pipeline to train
the feature extractor. Instead of training a supervised model
in the first stage, we train the model in a self-supervised way.
Specifically, we apply MOCO [76] to train the model in the
first stage and then use the trained parameters to initialize
the feature extractor. TAB. VII shows the results with and
without the pre-training stage on the three datasets. From the
results, we conclude that the pre-training stage could boost
performance significantly, especially on the 1-shot task.

D. Qualitative Analysis

Fig. 4 illustrates the histogram of entropy values of the
predicted probabilities on two benchmarks. We observe that
the entropy values of the baseline with CE are smaller and
more concentrated than those of our BFAU, which indicates
that the baseline could confidently predict the instances from
the base set into the correct classes but easily suffers from
the overfitting issue. In contrast, our BFAU predicts the
base instances less confidently and smooths the predictions,
alleviating the overfitting issue correspondingly and preventing
the feature collapse.

Fig. 5 illustrates the tSNE [75] visualization of the feature
embeddings of both minilmageNet and CIFAR-FS datasets,
respectively. We randomly select a query set to visualize,
which consists of 150 samples from 5 novel classes. The
baseline model trained with CE loss is taken for comparison.
From the results, we observe that the feature embeddings of
our BFAU are distributed more compactly and have fewer
outliers than the baseline. Fig. 6 provides the Grad-CAM
[77] visualization results on three novel classes from the
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Fig. 5: tSNE [75] visualization of both minilmageNet and
CIFAR-FS datasets. Different colors denote different classes.

a) Input age (b) Baseline (c) BFAU
Fig. 6: Grad-CAM [77] visualization results on the novel
classes of the minilmageNet dataset.

minilmageNet dataset. We observe that our BFAU focuses
more discriminative areas than the baseline, indicating that
BFAU extracts more generalization features for the novel
classes.

Fig. 7 illustrates the Top-3 predictions of some examples
with the BFAU model at the twentieth epoch. For the easy
instances (e.g., the carrier), they are predicted very confidently
and consistently between the input pairs, where BFAU brings
in little benefits. For the hard instances (e.g., the beetle), they
are neither predicted confidently nor correctly, thus BFAU
neither brings in benefits. For the cases where the input pair
consists of an easy instance and a hard one, (e.g., white fox),
BFAU will force the easy one to help the hard one, and in
turn, the hard one will soften the easy one. As the training
progresses, each sample goes from hard to easy, thus BFAU
would work at a certain stage for each sample.
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V. CONCLUSION

In this paper, we have proposed an effective FSL approach
to learning generalized feature representations by balancing
the alignment and uniformity in the feature embedding space
and developed a conceptually simple but methodologically
effective framework. Our method delivers generalized feature
representations for the disjoint target classes via smoothing the
class predictions of the input class-wise pairs and augment-
ing more hard instances. The extensive experiments on four
benchmark datasets demonstrate that the proposed approach
effectively extracts compact intra-class feature representations
for the novel classes and achieves competitive FSL results.
Besides, we conclude that maximizing the mutual information
between the feature representations and the input samples
could improve the generalization of the model on the novel
classes.

APPENDIX A
THEORETICAL ANALYSIS

Inspired by [78], we show that our method pays different
attention to different instances. When the hyperparameter 3 is
fixed, the gradient in Eq. (7) with respect to logit value z; is
given as:

—8532(9:) =0/ = alp; —yi) + Blpi — (pi tp5) )-
(14)
For z; where i equals to the target class G, ie., y; = 1,
9% becomes:

o = (py— 1) - pCTRIE) ) i)

For z; where i does not equal to the target class, i.e., y; = 0,
9% becomes:
ot =, — gL (16)
Considering that 0 < § < 1, we set 8f Fd < 0 forall i except
the target class, i.e., p; — S(p; +p;)/2 > 0. As >, p; = 1,
we conclude (p;¢ — 1) — B((pi,c +pjc)/2 —1) < 0 and
> iz [Pi—B(pitp;) /2] = (1=pi,.c) =B~ (pi,c+pjc)/2)-
To this end, the L; norm of the gradient of L;f4(x) is written
as:

i,G T+ Dj
D10 =201 - pu) 280 - BEZEE).an)

Similarly, we may obtain the L; norm of the gradient of
LCE(:L‘) in Eq. (3)Z

> 107F] =201 - pig). (18)
Then we consider the gradient rescaling factor by applying
TFD: 1d
210 |y 1= (it pic)/2
i i)/2
_1plit)/2
Vi

where r; denotes the probability of being incorrect.
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1
2
3
4
5
6 ] i
7 beetle M 0.201 poodlec N 0.672 white fox N 0.955 carrier N 0.982
8 longlegs M 0.182 komondor [ 0.226 poodle | 0.02 yvawl | 0.004
9 robin Wl 0.114 saluki |l 0.134 komondor | .01 stage | 0.002
10 ground-truth: beetle ground-truth: poodle ground-truth: white fox ground-truth: carrier
11
12
13
14
15 b < Wit
16 longlegs I 0.346 poodle I 0.497 white fox I 0.623  carrier [ 1.000
17 green mamba [l 0.903 komondor [l 0.268 poodle | 0.142 vawl | 0.000
18 spider web Ml 0.441 saluki [ 0.172 komondor l 0.128 stage | 0.000
19 ground-truth: beetle ground-truth: poodle ground-truth: white fox ground-truth: carrier
20 Fig. 7: Examples of Top-3 predictions with the BFAU model at the 20 epochs.
21
22
23 When the sample x; is hard to classify, i.e., 7; is large and ACKNOWLEDGMENT
24 wﬂ is small, we obtain a large gradient rescaling factor, Thi K rted i it by the National N 1
25 which means that the model would pay more attention to the Sci 15 vlzor dls ,SuprO Ci, mn p; Gy e6 ) 082121218 hatg a
26 hard sample. Conversely, if the sample is easy to classify, its Ri%lc; oun am;nz(;l o ma}t)m <?r ragth' 2021’Ct()fll9ey
27 gradient rescaling factor is small and the model would pay NSEC r[(_)ﬁlgi]gao(zﬁ 6?16617112%1 56r0V1ECC’F (1ina ( I R )ﬁ
28 less attention to it. From this point of view, the proposed Fund ; he C ’ 1 Uni ), ,t, e ggzzm?\?rsmgsearcd
29 method is a dynamic attention strategy for the instances. As 281118303(]);0;66 entral Universities ( Q ). an
30 shown in Fig. 8, the proposed method has an advantage over )
31 the models with CE in convergence, which indirectly proves
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