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Global gene expression 
analysis of systemic sclerosis 
myofibroblasts demonstrates 
a marked increase in the expression 
of multiple NBPF genes
Giuseppina Abignano1,2,5, Heidi Hermes3,5, Sonsoles Piera‑Velazquez3, Sankar Addya4, 
Francesco Del Galdo1,2,5* & Sergio A. Jimenez3,5*

Myofibroblasts are the key effector cells responsible for the exaggerated tissue fibrosis in Systemic 
Sclerosis (SSc). Despite their importance to SSc pathogenesis, the specific transcriptome of SSc 
myofibroblasts has not been described. The purpose of this study was to identify transcriptome 
differences between SSc myofibroblasts and non-myofibroblastic cells. Alpha smooth muscle 
actin (α-SMA) expressing myofibroblasts and α-SMA negative cells were isolated employing laser 
capture microdissection from dermal cell cultures from four patients with diffuse SSc of recent 
onset. Total mRNA was extracted from both cell populations, amplified and analyzed employing 
microarrays. Results for specific genes were validated by Western blots and by immunohistochemistry. 
Transcriptome analysis revealed 97 differentially expressed transcripts in SSc myofibroblasts 
compared with non-myofibroblasts. Annotation clustering of the SSc myofibroblast-specific 
transcripts failed to show a TGF-β signature. The most represented transcripts corresponded to 
several different genes from the Neuroblastoma Breakpoint Family (NBPF) of genes. NBPF genes are 
highly expanded in humans but are not present in murine or rat genomes. In vitro studies employing 
cultured SSc dermal fibroblasts and immunohistochemistry of affected SSc skin confirmed increased 
NBPF expression in SSc. These results indicate that SSc myofibroblasts represent a unique cell lineage 
expressing a specific transcriptome that includes very high levels of transcripts corresponding to 
numerous NBPF genes. Elevated expression of NBPF genes in SSc myofibroblasts suggests that NBPF 
gene products may play a role in SSc pathogenesis and may represent a novel therapeutic target.

Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology characterized by progressive 
fibrosis of skin and multiple internal organs and a severe proliferative vasculopathy1–4. The cells responsible 
for tissue fibrosis and fibroproliferative processes are myofibroblasts, a population of mesenchymal cells dis-
playing unique biological functions including cell mobility and tissue contraction, and the high expression of 
α-smooth muscle actin (α-SMA) and numerous molecules associated with fibrotic processes5–8. The accumula-
tion of myofibroblasts in affected tissues and their expression of a persistent profibrotic phenotype are crucial in 
the development of the fibroproliferative process in SSc. There is also strong evidence to indicate that these cells 
regulate the extent and rate of progression of the fibrotic alterations in SSc, and, therefore, play an important 
role in determining the clinical course, response to therapy, prognosis, and overall mortality of the disease9–13. 
Indeed, it has been shown that the number of myofibroblasts present in affected SSc skin correlates with the 
severity of SSc-associated tissue fibrosis12.
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The origins of the myofibroblasts responsible for the exaggerated and uncontrolled production of collagen and 
other extracellular matrix proteins in SSc have not been completely elucidated. Extensive studies have shown that 
these cells may originate from several sources, including expansion and activation of resident tissue fibroblasts13, 
migration and tissue accumulation of bone marrow-derived circulating fibrocytes14,15, or from trans-differentia-
tion of epithelial or endothelial cells to mesenchymal cells, complex processes known, respectively, as epithelial 
to mesenchymal transition16–19 and endothelial to mesenchymal transition20–23. The relative contribution and 
importance of the different myofibroblast sources to the fibrotic alterations in SSc is unknown, and it is likely to 
depend on the stage of evolution of the disease as well as on the specific organ involved. Furthermore, it is likely 
that myofibroblasts originated from different cellular sources or present in different tissues may display unique 
features or play distinct roles in the pathogenesis or perpetuation of tissue fibrosis in SSc7–13,24. For example, it 
has been shown that the global gene expression profile of SSc myofibroblasts present in lungs from patients with 
SSc-associated interstitial lung disease examined employing single cell RNA sequencing assays displays unique 
gene expression signatures compared to two different types of fibroblasts25. However, the gene expression profile 
of SSc dermal myofibroblasts has not been examined and it is not known whether these cells may represent a 
specific cellular phenotype. Thus, the purpose of this study was to analyze the specific transcriptome of pure 
SSc myofibroblasts. To accomplish this goal myofibroblasts expressing α-SMA actin were isolated employing 
laser capture microdissection (LCM) from monolayer cultures of cells derived from skin biopsies from affected 
SSc skin.

Results
Laser capture microdissection of α‑SMA‑positive myofibroblasts and α‑SMA‑negative fibro‑
blasts.  To determine the global transcriptome of α-SMA positive SSc myofibroblasts we examined mon-
olayer cell cultures that had been expanded from biopsies excised from the leading (proximal) edge of forearm 
skin lesions of four patients with dcSSc of recent onset. Passage 3 cells were dissociated and subcultured directly 
on Leika LCM slides and when the slides were essentially fully covered by growing cells, a quick fixation/stain-
ing protocol on ice was performed to preserve the mRNA integrity. Alpha-SMA positive myofibroblasts and 
α-SMA-negative fibroblasts were isolated employing LCM (Fig. 1) and the mRNA of the separate populations 
was amplified. Real Time PCR was used to confirm the enrichment of α-SMA in the myofibroblasts. The results 
showed that α-SMA expression was an average of 370% greater in the α-SMA-positive myofibroblasts compared 
to the α-SMA-negative fibroblasts as described elsewhere26.

Differential gene expression of α‑SMA‑positive SSc myofibroblasts compared with 
α‑SMA‑negative SSc fibroblasts.  The global mRNA expression pattern of α-SMA-positive SSc myofi-
broblasts isolated employing LCM from monolayer cell cultures derived from affected SSc skin identified 97 
genes differentially expressed (greater than 1.5 fold with a p value of < 0.5) compared to the transcriptome of 
LCM captured α-SMA-negative SSc fibroblasts. Twenty one transcripts were downregulated and 76 upregulated 
(Supplementary Data S1). A representative heat map of the corresponding genes as an average of the two sets 
of samples (4 α-SMA-negative samples vs. 4 α-SMA-positive samples) is shown in Fig. 2A. A heat map show-
ing the 8 samples in one single figure, and 4 additional heat maps showing separate images of each individual 
pair comparison are included in Supplementary Figs. S1 and S2. The full microarray data are publicly available 
through NCBI GEO website (http://​www.​ncbi.​nlm.​nih.​gov/​geo/). Annotation Clustering analysis indicated that 

Figure 1.   Laser capture microdissection of SSc myofibroblasts from monolayer cultures of dermal fibroblasts 
expanded from affected SSc skin in vitro. The image shows immunofluorescence staining (red) for α-SMA 
before (PRE-LCM) and the empty space following its removal (POST-LCM) employing laser capture 
microdissection. The image is representative of 250 cells per experiment and four different experiments from 
cultures obtained from four different dcSSc skin biopsies. Original magnification 400 × .

http://www.ncbi.nlm.nih.gov/geo/
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the transcripts with the highest enrichment score corresponded to members of the NBPF cluster which dis-
played an enrichment score of 2.93. Multiple NBPF transcripts were found in the array, that corresponded to at 
least six different NBPF genes (Fig. 2A). Canonical pathway analysis according to Ingenuity software identified 
numerous relevant genes related to inflammatory and fibrotic pathways. A diagram of the genes interacting with 
NBPF genes is shown in Fig. 2B. A full list of CanPath analysis is summarized in Supplementary Table S1. Data 
of the quality and quantity of RNA samples used in the microarray experiments are shown in Supplementary 
Fig. S4 reporting the list of the RNA samples with their concentrations, the 260/280 ratio for demonstration of 
their high purity and the nanodrop analysis.

NBPF protein expression in systemic sclerosis affected skin.  To determine whether the increased 
expression of NBPF observed in the microarray of the LCM SSc myofibroblasts was also present in vivo, we ana-
lysed by immunohistochemistry skin biopsies from three dcSSc patients and biopsies from three healthy subjects 
obtained from the same anatomical region (forearm). Immunohistochemistry studies indicated that epithelial 
cells within the epidermis showed a strong and homogeneous NBPF staining in both healthy control skin and in 
SSc skin biopsies. In contrast, in SSc skin biopsies virtually all the cellular elements within the papillary dermis, 
showed a strong positivity for NBPF whereas in the dermis of healthy control skin NBPF expression was con-
fined to fewer cells (Fig. 3A). These observations were confirmed by Western Blot analysis of cell extracts from 
confluent cultures of dermal fibroblasts established from patients with dcSSc and from normal control skin. 
These studies showed a substantial increase in protein bands corresponding to numerous NBPF transcript levels 
in cultures of SSc dermal fibroblasts compared to normal dermal fibroblasts (Fig. 3B, C).

Figure 2.   Hierarchic clustering of the gene expression levels in SSc myofibroblasts compared to non-activated 
fibroblasts. Comparison of gene expression levels of α-SMA positive SSc myofibroblasts and α-SMA negative 
SSc fibroblasts isolated from the same culture dish employing LCM. (A) The image shows the heat map 
containing the genes as an average of the two sets of samples (4 α-SMA-negative “A” samples vs. 4 α-SMA-
positive “B” samples). Gene expression levels are depicted as color variation from red (high expression) to blue 
(low expression). The gene expression microarrays were performed employing Affymetrix gene chips (human 
gene 1.0 ST arrays), and the analysis were performed utilizing the Agilent Gene Spring Software 11.5 also from 
Affymetrix. (B) Schematic representation of the genes interacting with NBPF genes according to Ingenuity 
Pathway Analysis (IPA), performed to obtain biological and functional network analysis and utilizing ingenuity.
com 8.0 software. The complete list of the genes and pathways identified by Ingenuity CanPath is shown in 
Supplementary Table S1.
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Dermal fibroblast expression of NBPF in vitro is not stimulated by TGF‑β.  To examine whether 
the expression levels of NBPF gene products were modified by exposure to TGF-β, qRT-PCR and Western blot 
analysis of normal dermal fibroblasts cultured in vitro in the presence of TGF-β were examined. The results 
showed that incubation of the cells with 10 ng/ml of human recombinant TGF-β for either 24 or 48 h failed 
to induce any detectable increase in the expression of NBPF at either the mRNA or the protein level (data not 
shown). Similar results were obtained at the protein level following treatment of cultured normal and SSc dermal 
fibroblasts with TGF-β for 24 h as shown in Fig. 3B, C.

Discussion
Extensive experimental evidence indicates that myofibroblasts are the key cellular elements in normal tissue 
repair responses5–8 and have been shown to play a crucial role in the pathogenesis of tissue fibrosis in SSc and 
other fibrotic disorders9–12. It has already been shown that these cells may originate from numerous sources7,13,24, 
including TGF-β-induced activation of quiescent fibroblasts7,8,24 as well as from circulating fibrocytes14,15 or from 
epithelial or endothelial cells undergoing a phenotypic transition into mesenchymal cells16–23. However, there is 
extreme heterogeneity in their proportion compared to non-myofibroblasts in the skin of SSc patients9–13. The 
unequivocal evidence that within affected SSc skin there is remarkable heterogeneity and variability in the abun-
dance of myofibroblasts compared to that of quiescent fibroblasts is of remarkable interest taking into account 
the premise that essentially all cells within a skin biopsy are exposed to the same microenvironment in vivo.

Our study aimed to identify the differences in gene expression between α-SMA-positive LCM isolated myofi-
broblasts and LCM isolated α-SMA-negative fibroblasts derived from monolayer cultures established from skin 
biopsies from patients with diffuse SSc of resent onset. Microarray analysis indicated that 97 transcripts were 
differentially expressed in the myofibroblasts compared to the non-myofibroblasts isolated employing LCM 
from the same monolayer cultures of SSc skin derived cells. Among these, some transcripts were clearly related 
to profibrotic activation, whereas others were ribosomal genes, mitochondrial genes involved in oxidative phos-
phorylation, or genes involved in cell to cell adhesion and in antigen processing and presentation. A remark-
able observation was that the most enriched family of genes within the LCM SSc myofibroblast signature was 
the NBPF family, which was represented by transcripts corresponding to at least 6 different NBPF genes. This 

Figure 3.   Increased expression of NBPF in affected SSc skin and in cultured SSc dermal fibroblasts. (A) 
Immunohistochemistry for NBPF on one representative skin biopsy from a healthy control (normal) or from a 
SSc patient. Note that fibroblasts within healthy control skin did not show any staining for NBPF (black arrows) 
whereas fibroblasts within SSc dermis were intensely stained in brown (arrow heads). Original magnification 
20X. Panels are representative of five independent skin biopsies. Panels on the right are a tenfold magnification 
of the squared inset in the panels on the left. (B) Western blots of cell extracts from three different normal 
fibroblast cell lines and three different SSc dermal fibroblast cell lines cultured in monolayers with or without 
TGF-β1 (10 ng/ml) for 24 h employing an NBPF antibody. The NBPF bands shown have been identified based 
on their expected molecular weights. (C) Bar graph displaying a quantitative assessment of the data shown in 
(B). The gel blots used to prepare the images shown in (B) and (C) were cropped above the 130 KD and below 
the 70 KD molecular size marker bands because the migration of the relevant NBPF molecular species was 
expected to be between these molecular sizes. There were no other crops in the gel blots. Full blots of Western 
Blot included in this figure are shown in Supplementary Fig. S5.
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observation is of substantial interest owing to the fact that the NBPF genes are highly enriched in humans as a 
result of a marked genetic expansion and human lineage-specific amplification and selection that occurred in 
the human genome following the evolutionary separation of Homo sapiens from chimpanzees27,28. The NBPF 
encoded genes represent a large gene family comprising as many as 25 distinct genes that are localized almost 
exclusively within chromosome 1. This large gene family received the nomenclature of NBPF genes because one 
of its members (NBPF1) was found to be disrupted by a chromosomal translocation in a neuroblastoma patient. 
Although, at the present, the function(s) of NBPF gene products have not been fully elucidated it has become 
apparent that besides a possible role in the development of neuroblastoma, the proteins encoded by these genes 
have important functions in brain development and cognitive functions29. However, the full functional range 
of these genes is not known. Indeed, it has been recently demonstrated that NBPF encoded proteins may par-
ticipate in inflammatory/immunologic reactions owing to their role as putative transcription factors responsive 
to NFkB30. While the lack of functional data on NBPF prevents to imply a specific role in SSc pathogenesis, the 
remarkable increase in the expression of transcripts corresponding to several NBPF genes in myofibroblasts 
obtained from SSc patients supports the possibility that these highly expanded human lineage genes could be 
involved in the pathogenesis of a disease such as SSc that displays human-specific expression31,32. On the other 
hand, it is possible that NBPF is regulated by matrix stiffness since all the experiments were performed under 
regular culture conditions, which corresponds to a stiff matrix. Numerous recent studies have indicated a highly 
important role of matrix stiffness and of the biophysical properties of the extracellular matrix in the regulation 
of gene expression including a marked profibrotic effect of a stiff matrix on fibroblast/myofibroblast biosynthetic 
patterns33,34. This aspect is of high relevance and will need to be examined in greater detail. However, it should 
be emphasized that since both types of laser captured cells studied here were obtained from the same culture 
matrix it is unlikely that matrix stiffness played a role in the markedly increased differential expression of NBPF 
gene transcripts we observed.

It is generally accepted that TGF-β plays a crucial role in the pathogenesis of SSc- associated fibrosis35–38. Fur-
thermore, it has been shown in numerous in vitro studies that TGF-β is capable of inducing a potent stimulation 
of the conversion of quiescent mesenchymal fibroblastic cells to activated myofibroblasts39. However, a recent 
study that examined regulators involved in the phenotype of cultured primary SSc dermal fibroblasts employ-
ing RNA interference failed to demonstrate a role for TGF-β in the induction of SSc myofibroblasts40. The data 
presented here are in agreement with these latter observations.

Limitations of our study included the small number of enrolled patients and controls and the lack of cor-
rection for multiple comparison, however the results of this study clearly indicate that SSc myofibroblasts may 
represent a specific lineage of mesenchymal cells with a specific transcriptional signature that could determine 
a functional phenotype playing a crucial role in the pathogenesis of the SSc-related fibrotic process. The identi-
fication of a specific myofibroblast cellular phenotype in SSc with a unique gene expression profile quite distinct 
from that induced by TGF-β could pave the way to a more precise understanding of the complex pathogenesis 
of tissue fibrosis in SSc and may be of great value for the development of novel therapies for this currently incur-
able disease.

Methods
Patients and skin biopsies.  Full thickness skin biopsies were surgically obtained from the forearms of 
four adult patients with SSc of recent onset, which was defined as disease duration of less than 18 months from 
the appearance of clinically detectable skin induration. All participants provided written informed consent to 
participate in this study. Informed consent procedure and all experiments were approved by the Institutional 
Review Board of Thomas Jefferson University (IRB#: 06F.186). All experiments were performed in accordance 
with relevant guidelines and regulations. The patients satisfied the 2013 ACR/EULAR criteria for the classifica-
tion of SSc41 and had the diffuse cutaneous clinical subset (dcSSc) as defined by LeRoy et al.42. The SSc skin biop-
sies were obtained from the proximal edge of expanding forearm lesions. One portion of the biopsies was fixed in 
formaldehyde and embedded in paraffin for diagnostic and other histopathological and immunohistochemical 
studies. The remaining tissues were used for isolation and establishment of monolayer cultures of dermal cell 
lines as described previously43,44. All participants provided written informed consent to participate in this study. 
Informed consent procedure was approved by the Institutional Review Board of Thomas Jefferson University 
(IRB#: 06F.186) as described previously43,44.

Cell cultures.  Cell cultures were established from SSc skin biopsies obtained from the leading edge of fore-
arm lesions from untreated patients with dcSSc of recent onset and from the dorsal side of forearms from normal 
volunteers as described previously43,44. The cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 
(Invitrogen, Carlsbad, CA) supplemented with 10% FBS, antibiotics and glutamine (complete medium) until 
confluent and were used before reaching passage 6.

Laser capture microdissection (LCM).  For LCM, third passage monolayer cultures of dermal cells 
derived from the skin biopsies of four SSc patients were dissociated and plated directly onto polyethylene naph-
thalate membrane-coated slides (Leica Microsystems, Wetzlar, Germany), which had been pretreated with 
RNAse Zap (Ambion, Life Technologies, NY), sterilized with 100% ethanol, and allowed to air dry under an 
ultraviolet light prior to being placed in a standard polystyrene tissue culture dish. Following 48 h culture, the 
cells were fixed with acetone and incubated for 7 min on dry ice with a mouse anti-α-SMA primary antibody 
(1:50, Thermo Fisher Scientific, Fremont, CA), followed by 3 min incubation with fluorescent rabbit anti-mouse 
Cy3 secondary antibody (1:200, Sigma-Aldrich, Saint Louis, MO). The antibody diluent consisted of 2% BSA 
in PBS with added RNAse inhibitor (1 U/µl final concentration). Cold PBS was used for all interval rinses. The 
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slides were subsequently dehydrated in serial ethanol dilutions and placed on dry ice. LCM and pressure cell 
capturing were performed immediately following antibody staining according to a modification of previously 
published procedures45. The laser capture microdissected cells were collected in RNA-ase free tubes to avoid 
RNA degradation, and were stored at − 80 °C until processed as described in detail previously26.

Immunohistochemistry.  For Immunohistochemistry, paraffin-embedded skin sections from 3 dcSSc 
patients and 3 sex- and age-matched healthy controls, were incubated with heat retrieval solution (Access Rev-
elation, Menapath, A. Menarini Diagnostics, UK) and then transferred to the slide wash following heat medi-
ated antigen retrieval according to the manufacturer’s protocol. Slides were then incubated with 3% H2O2 for 
20 min to inhibit endogenous peroxidase activity and for additional 20 min with 1% casein, for protein-blocking. 
Neuroblastoma Breakpoint Family (NBPF) was detected by incubation at a 1:50 dilution, for 2 h at room tem-
perature with a polyclonal anti-NBPF antibody that detects endogenous levels of total NBPF including NBPFs 
1/9/10/12/14/15/16 and 20 (NBPF1-71614; Novus Biologicals, Littleton, CO). Slides were then incubated with 
NovocastraTM Post Primary (Leica Biosystems, UK) for 30 min, washed in TBS and incubated with Novo-
linkTM Polymer for 30 min to detect the tissue–bound primary antibody. Sections were further incubated with 
the substrate/chromogen, 3,3’–diaminobenzidine (DAB), prepared from NovocastraTM DAB Chromogen and 
NovolinkTM DAB substrate buffer, according to the manufacturer’s protocol. Sections were counterstained with 
hematoxylin.

RNA isolation, amplification and quantitative real time PCR.  Two hundred and fifty α-SMA pos-
itive SSc myofibroblasts and two hundred and fifty α-SMA negative SSc fibroblasts were harvested by LCM 
as described above and then processed for RNA extraction (RNAeasy kit; Qiagen, Valencia, CA) as described 
previously26,46. Normal and SSc human dermal fibroblasts were cultured in monolayers until reaching conflu-
ency and then they were treated with trypsin–EDTA, washed in PBS and then processed for RNA extraction 
(RNAeasy kit; Qiagen, Valencia, CA) according to the manufacturer’s instructions. Amplified cDNA was pre-
pared using nuGEN WT-Ovation RNA amplification system (nuGEN, San Carlos, CA) followed by the NuGEN 
WT-exon module. Total RNA (2 µg) was reverse-transcribed using Super-script-II reverse transcriptase (Inv-
itrogen, Carlsbad, CA). Real-time PCR was performed using SYBR green Master mix chemistry employing a 
standard amplification protocol on a Bio- Rad MyiQ real-time PCR system (Bio-Rad, Hercules, CA). Reactions 
were conducted as described previously26,46. All primers were designed using Primer Express (Applied Biosys-
tems, Foster City, CA) and validated employing the National Center for Biotechnology Information (NCBI) 
database for specificity. The primers used to amplify NBPF sequences were: Forward-TAA​GGG​AGA​AGT​TGC​
GGG​AA; and Reverse-AGT​GAG​GAG​GGC​CTG​GAG​AT.

Global gene expression profiling of LCM‑isolated SSc myofibroblasts.  Total RNA was extracted 
from LCM isolated SSc myofibroblasts and non-myofibroblastic SSc cells using the Qiagen RNeasy Mini kit 
(Qiagen, Valencia, CA). A DNase I digestion step was included to eliminate DNA contamination. Four separate 
pairs of samples were studied. Assessment for each group was performed in triplicate. RNA was quantified on 
a NanoDrop spectrophotometer (Nanodrop- ThermoSACientific, Wilmington. DE), followed by RNA quality 
assessment on an Agilent 2100 bioanalyzer (Agilent, Palo Alto, CA, USA). Amplification of cDNA was per-
formed using the Ovation Pico WTA-system V2 RNA amplification system (NuGen Technologies, Inc.). Briefly, 
50 ng total RNA was reverse transcribed using a chimeric cDNA/mRNA primer, and a second complementary 
cDNA strand was synthesized. Purified cDNA was then amplified with ribo-SPIA enzyme and SPIA DNA/RNA 
primers (NuGEN Technologies, Inc.). Amplified DNA was purified with Qiagen MinElute (Qiagen) reaction 
cleanup kit. The concentration of purified cDNA was measured using the NanoDrop spectrophotometer and 
2.5 µg cDNAs were fragmented and chemically labeled with biotin to generate biotinylated ST-cDNA using FL-
Ovation cDNA biotin module V2 (NuGen Technologies, Inc.).

Global gene expression microarrays were performed employing Affymetrix gene chips (human gene 1.0 ST 
array; Affymetrix, Santa Clara, CA) as described previously26,46. The gene chips were hybridized with fragmented 
and biotin-labeled target (2.5 µg) in 110 µl of hybridization cocktail. Target denaturation was performed at 99 °C 
for 2 min and then 45 °C for 5 min followed by hybridization for 18 h. Arrays were then washed and stained 
using Gene chip Fluidic Station 450, using Affimetrix Gene chip hybridization wash and stain kit. Chips were 
scanned on an Affymetrix Gene Chip Scanner 3000, using Command Console Software. Data analyses were 
performed using Gene Spring software 11.5 (Agilent Technologies, Inc., Santa Clara, CA). The probe set signals 
were calculated with the Iterative Plier 16 normalization algorithm; baseline to median of all samples was used 
as baseline option. The data were filtered by percentile and a lower cut off was set at 25. The criteria for differ-
entially expressed genes were set at ≥ 1.5-fold changes. Statistical analysis was performed to compare the results 
obtained from 4 samples of α-SMA-positive SSc myofibroblasts displaying the highest α-SMA transcript levels to 
the results obtained from 4 samples of α-SMA-negative SSc fibroblasts using T-Test unpaired with p-value equal 
or less than 0.5. Heat maps were generated from the differentially expressed gene list. The list of differentially 
expressed genes was loaded into Ingenuity Pathway Analysis (IPA) 8.0 software (http://​www.​ingen​uity.​com) to 
perform biological network and functional analyses.

Western blot analysis.  Dermal fibroblasts isolated from SSc patients and healthy donors were cultured in 
monolayers with and without TGF-β1 (10 ng/mL) for 24 h, then harvested and lysed in RIPA lysis buffer con-
taining protease inhibitors. For Western blots, aliquots of the extracts containing 30 µg of protein were separated 
by electrophoresis in 8% TrisGlycine polyacrylamide gels and the separated proteins were electroblotted onto 
nitrocellulose membranes (Invitrogen). The membranes were blocked in PBS/0.5% dry milk/0.01% normal goat 
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serum for 1 h at room temperature. The transferred proteins were incubated overnight at 4 °C with an NBPF 
antibody that recognizes NBPF species 1, 9, 10, 12, 14, 15, 16 and 20 (Assay Biotech, Fremont CA). Rabbit sec-
ondary antibody coupled to peroxidase and the ECL detection system (Thermo Scientific Pierce) were employed 
for detection. Quantitative assessment of the protein in the blots was performed employing quantitative den-
sitometry. The identity of the various NBPF protein bands was assigned based on their estimated molecular 
weight.

Data availability
The full microarray data are publicly available through NCBI GEO website (http://​www.​ncbi.​nlm.​nih.​gov/​geo/).
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