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Abstract. Due to the global pandemic, the use of online courses is in-
creasing signiőcantly; yet the rate of student dropout from online courses
is rising. The Accessible Culture & Training Massive Open Online Course
(ACT MOOC) dataset is comprised of a temporal sequence of student
actions and subsequent dropout information. We introduce a novel ap-
proach based upon temporal graphs, which uses the sequence of (and
time between) events to predict dropout. The dataset consists of 7,047
users, with a dropout rate of 57.7%. The Temporal Graph-Based Convo-
lutional Neural Network (TG-CNN) models developed in this study are
compared against baseline models and existing models in the literature.
Performance is assessed using the AUC, accuracy, precision, recall, and
F1 score. Our novel TG-CNN model achieves an AUC score of 0.797,
which improves upon previous literature: JODIE 0.756, TGN + MeTA
0.794, TGN 0.777, and CoPE 0.762. Our model offers a novel and intu-
itive formulation of this problem, with state-of-the-art performance.

Keywords: Temporal Graphs · Dropout Prediction · Neural Networks

1 Introduction

Massive Open Online Courses (MOOCs) allow people to study and learn a wide
range of material wherever and whenever they choose [8]. Despite this, student
retention with MOOCs is low and course dropout is high [15]. The COVID-19
pandemic has caused a rise in the number of students partaking in online courses.
Simultaneously, MOOC dropout rates are increasing as educational resources are
forced to move online and an epidemic of screen fatigue sets in [13]. Additionally,
it has been noted that dropout rates are higher from MOOCs compared to in-
person and off-line courses [13]. Predicting user dropout based on clickstream
data could enable identification of behaviour patterns prior to dropout, to target
interventions designed to encourage course completion [7, 5].

Graph networks (GNs) are rising in popularity in machine learning (ML) [12,
16]. GNs capture object interactions, and are used to represent social networks
and recommender systems, for example where nodes may represent people and
edges depict messages from one person to another. Convolutions applied over
graph structures have been shown to learn effectively in various tasks [12, 1].
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The model described in this paper utilises temporal GNs, a three-dimensional
Convolutional Neural Network (3D CNN) and Long Short-Term Memory (LSTM)
units, to evaluate clickstream data (user actions) making use of the elapsed time
between events to improve predictive performance of student dropout.

The 3D CNN component has the ability to capture short-term temporal
patterns of user actions, whilst the LSTM can cover longer-term associations.
Our formulation of this problem as a graph classification task diverges from
previous work in this area, where node and edge level classification are typically
used. The approach outlined in this research utilises temporal graphs and 3D
CNNs to represent, and learn from, structured temporal data. This generates
two novel contributions:

1. Previous MOOC articles have focused on classifying the nodes/edges within a
graph, as opposed to our formulation which classifies entire graph structures.

2. LSTMs assume a constant elapsed time between sequence elements, an issue
which has received some attention in the literature [4, 15]. Our TG-CNN
approach offers an alternative formulation of this problem (including variable
time dilation), which can model more complex temporal links.

2 Methods

2.1 Dataset and Modelling Approach

The Accessible Culture & Training MOOC (ACT MOOC) dataset includes
timestamped actions and dropout labels for 7,047 users1. There are 97 poten-
tial clickstream actions a user can take which are timestamped. Timestamps
are counted in seconds from the first interaction a user makes with the online
course. In total over 411,749 interactions are captured, with the highest number
of actions taken by one user totalling 505. Dropout occurred in 57.69% of users.

Our approach to this dropout prediction task is to turn this sequence of
events into a temporal multigraph and formulate dropout prediction as a binary
graph classification task, where each student has their own temporal graph to
be classified. In particular, the n = 97 possible actions form the nodes of this
graph and the temporal edges capture the elapsed time between actions. This
can be stored in a 3D tensor G(i, j, k) = tk where i, j ∈ {1, . . . , n} are nodes in
the graph, and tk is the elapsed time for the kth edge in the temporal graph. An
example with 4 possible actions is shown in Figure 1.

In practice, we actually store G(i, j, k) = exp(−γtk), where γ > 0 is a train-
able parameter of the model. This has two benefits:

1. Actions taken in quick succession or simultaneously have a value close to 1
and actions with a greater temporal gap are closer to 0. Events that are not
related have value zero. This allows the temporal graph to be stored as a
sparse 3-tensor, saving significant memory in the representation of the data.

1 Stanford Network Analysis Project - https://snap.stanford.edu/data/act-mooc.html
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Fig. 1. Graph network visualisation showing connections between actions completed
by a user in both graph form and tensor form. This example has only 4 possible actions,
so is much smaller than the 97× 97× 100 tensor that is used in this project.

2. Elapsed time can be rescaled to avoid extreme values in the neural network
and potential under/overflow when using half-precision arithmetic.

The classification of these temporal graphs is performed using a neural net-
work architecture based upon 3D convolutions. In particular, each convolution
covers m = 2, 3, 4, . . . consecutive timesteps and each filter, of size n × n × m,
is applied across the temporal dimension of the 3-tensor. The filters utilise in-
formation about the sequence of actions taken and the elapsed time between
actions and the convolution operation (with stride 1) collapses this 3-tensor of
size n×n×K into a vector of length K−m+1. The output of the convolutions
is a sequence of feature vectors capturing short patterns (accounting for elapsed
time); we pass these to an LSTM which allows for longer temporal patterns,
built from these sub-patterns, to be captured.

For this particular task we use the most recent 100 actions of each user to re-
duce computational burden, front-padding any 3-tensors representing sequences
of length less than 100 to ensure the most recent actions are always at the end
of the 3-tensor. We also experiment with using a secondary pipeline of filters
with stride 2, referred to as a "2-stream architecture", and concatenate the two
before the final FCLs of the neural network.

Torch version 1.7.0, Tensorflow 2.8.0, NumPy 1.19.2, Pandas 1.2.4, Scikit-
Learn 0.23.1, and CUDA 10.2.89 were used on a desktop with a NVIDIA RTX
3090 (Table 1), and the N8 Bede machine based at Durham University: an IBM
Power 9 system with NVIDIA V100 GPUs (Table 2).

2.2 Model Architecture

Our proposed Temporal Graph-based Convolutional Neural Network (TG-CNN)
model is shown in Figure 2. The model described can handle data that is irregu-
larly sampled in time. The input 3-tensor of size 97× 97× 100 is fed into the 3D
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CNN layer, extracting information on the sequence of actions and elapsed times.
This is then passed through a Batch Normalisation function and a Rectified
Linear unit (ReLU) activation function, before proceeding through the LSTM.
The output of the LSTM has dropout applied, passing the hidden features into
a FCL. Dropout and a ReLU are then used again before a final FCL. Binary
cross entropy logits loss is used for the binary target. Adam optimisation with L2
regularization is used to smooth oscillations during training. Our implementa-
tion also utilises a learning rate (LR) scheduler, multiplying the LR by 0.9 with
an exponential decay each 10,000 steps. Early stopping is used with a patience
of 50, to checkpoint the model when the validation loss decreases, interrupting
execution when the model gets stuck in a local minima.
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Fig. 2. Model architecture of proposed TG-CNN.

The γ variable controlling time dilation is a trainable parameter within the
model. Longer gaps between actions could mean the action was less relevant,
which could be modelled by increasing γ. An ablation study was performed
to test the model with the γ variable, without the LSTM layer, without the
exponential scaling parameter and with elastic net (L1 + L2) regularisation.

Additionally, we investigate the impact of adding a second stream (2-stream)
to the network, where there is a second row 3D-CNN and LSTM using filters
with a stride of 2, whereas the original 1-stream has a stride of 1. The output of
the two independent streams are concatenated after the FCLs.

This model has interpretability potential, as the CNN features could be
viewed directly and visualised to show the filters learnt from the data, whereas
with LSTMs this is more difficult to comprehend.

2.3 Model Evaluation

This work adopts a 80/10/10 train/validation/test split for the TG-CNN models.
Previous models using similar data have primarily focused on area under the re-
ceiver operating characteristic curve (AUC), so hyperparameters were optimised
for best AUC score on the validation set and test set results are reported.

To optimise the model based the on validation set AUC value, we conducted
a random hyperparameter search by sampling the number of epochs [25, 50, 75,
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100], LR [0.1, 0.01, 0.05, 0.001, 0.005, 0.0001], number of filters [32, 64, 128],
filter size [4, 16, 32, 64], number of LSTM hidden cells [16, 32, 64, 128, 256], L2
regularisation (L2 reg) parameter [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 5e-2, 5e-3, 5e-4],
FCL size [128, 256, 512, 1028, 2056], and dropout rate [0.2, 0.3, 0.4, 0.5]. For
the 2-stream models, the two streams each had filters of the same size but with
different strides. This results in 230,400 possible combinations of hyperparameter
values, necessitating the use of random search instead of a grid search.

We also fit two baseline models to the dataset for comparison, an LSTM
(BL-LSTM) and Recurrent Neural Network (BL-RNN) architecture - a single
RNN layer (LSTM or RNN respectively) followed by two FCLs. Five-fold cross-
validation was used to optimise the AUC over the hyperparameter combinations
for these baseline models. The BL-LSTM and BL-RNN models were tuned by
optimising the LR, the number of epochs, the hidden units in the RNNs, and
the number of hidden neurons in the FCLs.

3 Results

We tested the TG-CNN models with 1,430 hyperparameter samples from the list
in Section 2.3. The best performing hyperparameters and performance metrics
for these models are shown in Table 1, metrics are averaged over ten runs to show
robustness. BL-LSTM and BL-RNN were each fitted using 5-fold cross-validation
with 576 different hyperparameter combinations. The best performing BL-LSTM
achieved an AUC of 0.783, 79.26% accuracy, 0.800 precision, 0.852 recall and an
F1-score of 0.824 within 20 epochs, using a LR of 0.01, 128 hidden LSTM neurons
and FCL sizes of 32 and 16. The best performing BL-RNN achieved an AUC
of 0.778, 78.86% accuracy, 0.801 precision, 0.844 recall and an F1-score of 0.819
within 20 epochs, with a LR of 0.001, 32 hidden RNN neurons and FCL sizes of
64 and 32.

Table 2 shows the best variants of each model in the ablation study, and
compares to existing models in the literature (which also use the model with
maximal AUC for a fair comparison). The best performing variant overall was
the TG-CNN with fixed time dilation γ = 1 (AUC 0.797), closely followed by the
2-stream version (AUC 0.796). The average results after 10 re-runs led to the 2-
stream model achieving the best performance (Table 1). Eliminating the LSTM
component led to significantly poorer results (AUC 0.705). These results show
the importance of both the multi-streams and LSTM component in achieving
good performance with this approach.

4 Discussion

Table 2 shows the predictive performance of models with the best AUC score
using the ACT MOOC dataset. Our novel TG-CNN approach has state-of-the-
art performance on this task, despite being more intuitive and conceptually
simpler than some of the other approaches in previous literature.
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Table 1. Hyperparameter values and test set metrics for the best performing variants
of the TG-CNN architecture (mean ± standard deviation from 10 runs).

Parameter Variable γ 1-stream 2-stream No LSTM No exp Elastic Net

Epochs 50 75 52 25 100 100
LR 0.05 0.05 0.0005 0.0001 0.001 0.001
# Filters 64 64 128 64 32 32
Filter Size 16 32 4 4 64 32
RNN Cells 128 64 32 N/A 16 16
L2 Reg 1e-3 1e-2 5e-4 N/A N/A N/A
FCL Size 1028 512 2056 512 1024 1024
Dropout 0.5 0.5 0.3 0.5 0.3 0.5

Test AUC 0.662±0.08 0.748±0.02 0.763±0.01 0.705±0.02 0.710±0.02 0.711±0.02
Accuracy 0.703±0.06 0.771±0.02 0.775±0.01 0.583±0.01 0.690±0.02 0.702±0.02
Precision 0.687±0.06 0.764±0.02 0.773±0.02 0.581±0.01 0.677±0.02 0.688±0.02
Recall 0.923±0.05 0.883±0.02 0.859±0.04 1.00±0.00 0.871±0.02 0.886±0.02
F1-Score 0.782±0.03 0.817±0.01 0.811±0.02 0.735±0.01 0.761±0.01 0.774±0.02

Table 2. Best AUC results of user dropout prediction using the ACT MOOC dataset,
from our results (left columns) and from the results in the literature (right columns).

TG-CNN and Baseline Models AUC Literature Models AUC

TG-CNN 1-stream 0.797 TGN + MeTA [16] 0.794
TG-CNN 2-stream 0.796 TGN + TNS [17] 0.791
BL-LSTM 0.783 TGN [12] 0.777
BL-RNN 0.779 CoPE [21] 0.762
TG-CNN 1-stream γ = 4.819 0.760 JODIE [7] 0.756
TG-CNN with Elastic Net 0.758 TGAT + TNS [17] 0.755
TG-CNN without LSTM 0.750 NPPCTNE [23] 0.745
TG-CNN without the Exponential 0.744 TGAT [16] 0.743

The ablation study demonstrated that the LSTM layer and the exponential
function enabled the model to learn more effectively, this is potentially due to
the LSTM enabling long-term memory alongside the filters learnt from the CNN.
The γ variable converged to an average value of 4.819 in the best performing
model, which suggests that actions taken closer together are more important
to predicting dropout than actions further apart. The cut-off caused by t̂ =
exp(−4.819× t) is sharper than when γ = 1 , therefore when γ = 4.819 and the
elapsed time t is more than 47 seconds t̂ will round to 0.

Other advantages of the TG-CNN approach include the constant tensor size,
allowing for optimisation of the underlying linear algebra operations, and the
ability to extract temporal features in parallel using 3D convolutions, as opposed
to RNN-based architectures that require sequential processing through time. The
3-tensor structure enables the filters to be extracted back into a intuitive graph
structure. This could serve as a visual tool to show which sequences of events
and temporal patterns lead to dropout.



TG-CNNs for Online Course Dropout Prediction 7

5 Related Work in MOOC Dropout

We searched the IEEE database using the terms “MOOC AND predict*”. 95
papers were found, 24 of these were analysed from their title and abstract, and
we found that 4 used CNNs [18, 11, 22, 20]. Only 1 paper utilised GNs [15], where
the problem was formulated as a node/edge prediction task over time, to which
they applied a novel data augmentation approach to existing models. This differs
from our formulation of this problem as a graph-level classification task.

Learner behaviour feature matrices, weighted by importance, have been used
alongside CNNs to predict dropout from clickstream data and improve predic-
tive accuracy compared to basic models [18, 22, 8, 11]. In [20], the authors use
CNNs alongside Squeeze-and-Excitation Networks (SE-Net) and a Gated Recur-
rent unit (GRU). The GRU enables maintenance of the time series relationship
between the clickstream data and the SE-Net helps with automatic feature ex-
traction, this resulted in an accuracy above 90% on their dataset. Interestingly,
Edmond Meku Fotso et al. found simple RNNs provided better accuracy com-
pared to LSTMs and GRUs [4]. Standard ML algorithms and ensemble methods
including Support Vector Machines, Logistic Regression, Multi-layered Percep-
trons, and Decision Trees have also been applied to this task [6, 8, 5].

Moving away from clickstream data, video views and quiz behaviour have
been identified as significant factors contributing to dropout prediction [4]. In
other work, course information and the type of interaction (solving problems
v.s. watching videos etc.) were found to be important in an analysis based upon
GRUs with attention weightings [10].

The JODIE model (see Table 2) utilises RNNs to learn and update embed-
dings that represent individual interactions between users and actions [7]. The
actions and users each have their own RNNs to generate separate static and
dynamic embeddings. The embeddings dynamically change over time, capturing
the temporal aspect in a statically sized graph. These two RNNs are used to-
gether for the user embeddings to update the item embedding and vice versa. The
JODIE model alters the embeddings significantly after longer periods of time,
implicitly assuming that actions taken closer together have smaller impact.

6 Related Work in Graph Learning

Searching the Web of Science and IEEE databases using the terms "Convolution
AND (3d OR three$dimension*) AND (time OR temporal) AND graph AND
predict* AND network$" returned 18 papers. Of these, there were 5 relevant
papers using temporal GNs [1–3, 19, 9], though they were focused on node and
edge detection. To the best of our knowledge, this is the first work to develop
temporal graph-based 3D CNN models for graph-level classification.

At the time of writing (12th May 2022), Kumar et al. had 200 citations of
their paper [7]. To observe if any other researchers had used the ACT MOOC
dataset processed by Kumar et al. (7,047 users), we screened these 200 papers
and found 11 papers performing dropout/node prediction tasks.
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Four of these utilised RNN components in their model architectures to pro-
cess time, e.g. [14]. The others used graph models, all based on a node/edge
classification formulation of the task. Wang et al. used temporal graph networks
(TGNs) with dual message passing mechanisms (TGN + MeTA), to augment
data and retain semantics for edge-level prediction and node classification [16].
These messaging passing techniques involve memory translation and cross-level
propagation, to adapt the model with temporal and topological features to ig-
nore noise more effectively. This increases the previously obtained AUC scores by
1.7% [12], with no cost to efficiency and reducing the overfitting that occurs due
to noisy data. Other models tweak neighbourhood propagation techniques using
temporal information e.g. [17, 23]. Zhang et al. use ordinary differential equations
and GNs to observe model changes over time and for information propagation
[21]. By contrast, our TG-CNN approach makes use of a novel 3-tensor struc-
ture, storing the temporal graphs in a sparse and intuitive format, which is easily
amenable to feature extraction using convolutions for graph classification.

7 Study Limitations and Future Work

The ACT-MOOC dataset in this project provides clickstream events as numerical
labels. Events/clickstreams descriptions are not provided. Therefore, reasoning
for dropout cannot be explained.

Limits on the amount of computation time available meant we were unable
to perform a full grid-search of the TG-CNN hyperparameters, and it is likely
that a more optimal configuration could be found. Nevertheless, this approach
improves upon previous work and can be adapted to a range of different graph
classification tasks. In future work we aim to incorporate attention mechanisms
into this approach, to enable further trust in the model and explain why certain
predictions may have occurred [10].

The variant of the model including the time dilation factor γ as a trainable
parameter performed the poorest (Table 1). The reason behind this is unclear,
though the additional complexity modelled by the time dilation will increase
the difficulty of the underlying optimisation problem; it is possible that a more
optimal hyperparameter set could be found to improve this performance.

8 Conclusions

We propose a novel model for the classification of temporal graphs, using student
online course dropout data to develop and test the method. Our approach pro-
vides a unique formulation of this problem, compared to previous formulations of
node/edge prediction tasks. This method improves upon current state-of-the-art
models in terms of AUC score, and our approach has a number of other benefits
in terms of memory utilisation and parallel processing compared with other ap-
proaches. In future work we aim to extend this approach further, incorporating
attention mechanisms to improve explainability of the model output.
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