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Real-Time Dynamic Obstacle Avoidance for
Robot Manipulators based on Cascaded

Nonlinear MPC with Artificial Potential Field

Tianqi Zhu, Student Member, IEEE, Jianliang Mao, Member, IEEE, Linyan Han,

Chuanlin Zhang, Senior Member, IEEE, and Jun Yang, Fellow, IEEE

Abstract—Nowadays, the realization of obstacle avoid-
ance for robot manipulators are generally based on offline
path planning, which may be insufficient for real-time dy-
namic obstacle avoidance scenarios. In order to achieve
safe and smooth avoidance of dynamic obstacles, a low-
latency motion planning algorithm which takes into ac-
count the dynamic planning is of practical significance. To-
wards this end, this paper proposes a cascaded nonlinear
model predictive control (MPC) assigned with a two-stage
optimization problem. Specially, the high-level MPC com-
bines artificial potential field (APF) as a motion planner to
generate foresight smooth trajectories. The low-level MPC
acts as a trajectory tracker and a safety protector, taking
along hard constraints to avoid collisions and singularities.
In addition, a super-twisting observer (STO) is deployed
to enhance the motion estimation accuracy of dynamic
obstacles. Experimental results show that the proposed
approach is beneficial to achieve safe and smooth dynamic
obstacle avoidance in real-world scenarios.

Index Terms—dynamic obstacle avoidance, model pre-
dictive control, artificial potential field, robot manipulators,
super-twisting observer.

I. INTRODUCTION

With the rapid development of robotic science, robot ma-

nipulators are not limited to be applied in structured factory

environments, but are becoming more and more popular in

people’s daily lives, such as medical surgery [1], dressing as-

sistance [2] and playing table tennis [3]. If robots interact with

various uncertain environments, one of the key technologies is
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how to achieve dynamic obstacle avoidance in complex task

scenarios.

It is well acknowledged that motion planning plays a vital

role in achieving obstacle avoidance, which can be roughly

divided into the following categories: sampling-based methods

[4], grid-based methods [5], artificial potential filed (APF)

based methods [6] and numerical optimization methods [7]. In

general, the sampling-based methods such as rapidly exploring

random tree (RRT) [8] and probabilistic roadmap (PRM) [9]

are widely used due to their efficiency and low memory [10].

However, since these methods have certain randomness in

path planning, applying them directly to dynamic obstacle

avoidance may lead to the motion oscillation of the robot. For

grid-based methods like A-star [11], it is difficult to perform

real-time planning tasks in dynamic scenarios as the time

cost grows exponentially as the dimension of the state space

increases. The advantage of using APF methods is that they

assign a virtual repulsive potential to each known obstacle and

an attractive potential to the desired goal configuration, en-

abling the robot to navigate towards the goal whilst reactively

avoiding obstacles. In addition, APF methods offer flexibility

and adaptability by accommodating different shapes and sizes

of robots through the adjustment of potential fields from a

virtual point-shaped particle model. However, one limitation

of this approach is the possibility of getting trapped in a local

minima due to inappropriate parameter setup [12], [13]. More-

over, numerical optimization methods usually transform the

dynamic constraints of motion planning into an optimal control

problem. As a numerical optimization control strategy, model

predictive control (MPC) has become one of the most powerful

methods for multi-variable control systems since it provides

an effective and efficient methodology to handle complex

and constrained problems [14], [15]. Therefore, MPC-based

dynamic obstacle avoidance algorithms have gradually been

widely studied in unmanned aerial vehicles and autonomous

ground vehicles in recent years [16], [17].

Although MPC is widely used in motion planning of

intelligent systems with uncertain environments, the hard

constrained optimization may lead to infeasible solution in

practice when the constraints are violated [18]. Additionally,

the determination of the prediction horizon is also crucial for

the effect of motion planning. Taking the obstacle avoidance

for robot manipulators for as an example, a short prediction

horizon may lead to a lag in response to obstacles, resulting in
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the jerk motion of a robot, while a long prediction horizon may

be difficult to guarantee the real-time performance of dynamic

obstacle avoidance.

To address these issues, some insightful works design

cascaded architectures to address target requirements at dif-

ferent levels, rather than rely on an independent MPC for

motion planning and control have been reported [19]–[21].

Specifically, the high-level controller employs reinforcement

learning-based intelligent control for legged mobile manipula-

tors with a relatively larger sampling time in [19]. Although

this method has achieved success in specific environments, the

establishment of the simulated environment and the training

of the neural networks take a lot of time. In addition, the

design of the reward mechanism also largely depends on

human experience. Conversely, the construction of the high-

level controller based on MPC is relatively convenient [20],

[21]. However, despite the introduction of high-level MPC

enlarges the predictive range, its larger discretization time

may amplify the difference between the nominal model and

the real-world model, resulting in the planned trajectory that

possibly violates the prescribed constraints. Therefore, it is not

a superior choice to directly set hard constraints on obstacle

avoidance at the high level, but it is more inclined to set soft

constraints such as adding an alternative penalty function to

the cost function.

Additionally, the accurate measurement of dynamic obsta-

cles is also crucial for successful obstacle avoidance. Since

the motion estimation of obstacles is introduced to predict a

future short-term motion behavior, it is essential to develop an

observer/estimator that is able to realize the velocity estimation

of obstacles. As a nonlinear state observer, the super-twisting

observer (STO) can not only realize fast state estimation within

a finite time, but also reduce the chattering problem produced

by the traditional non-continuous sliding mode approach [22],

which has been extensively explored in servo drives [23], [24]

and robotic systems [25].

Motivated by the above analysis, this paper proposes a cas-

caded nonlinear MPC with APF for real-time dynamic obstacle

avoidance tasks. Specially, the high-level MPC is constructed

as a motion planner to extend the predictive range and improve

the predictive ability on obstacles, whereas the low-level MPC

acts as a trajectory tracker and safety protector with features

of collision-free and singularity avoidance. In this regard,

the proposed motion planning scheme essentially degenerates

to a two-stage optimization problem. Furthermore, a STO is

deployed to precisely observe the movement of obstacles and

the estimates are thereafter incorporated into the optimization

framework. Finally, the real-world experiments are conducted

on a six-axis robot manipulator to verify the effectiveness of

the proposed approach. The main contributions of this paper

can be summarized as follows:

1) By associating the APF-based penalty term in the objec-

tive function, a cascaded nonlinear MPC framework is

put forward to simultaneously resolve the foresight and

safety issues in dynamic obstacle avoidance.

2) Compared with the existing cascaded MPC based on hard

constraints, the proposed method improves the sensitivity

Manipulators

Ground

Obstacle

Base Link

Fig. 1. Selections of critical points in UR5.

to obstacles within the prediction range and circumvents

the high-level constraint violations due to obstacles.

3) The proposed scheme takes joint velocities as the input

to the robot low-level controller instead of poses in

Cartesian space, thus avoiding the singularity problem in

conventional trajectory planning.

The paper is organized as follows. In Section II, the models

of robot kinematics and dynamic obstacles are discussed.

Then, the proposed cascaded nonlinear MPC for obstacle

avoidance is introduced in detail in Section III. In Section IV,

experiments on a real 6-axis robot manipulator are performed

to illustrate the capabilities of the proposed approach. Finally,

conclusions are given in Section VI.

II. MODEL DESCRIPTION AND CONTROL OBJECTIVE

A. Robot Kinematics

The core of dynamic obstacle avoidance is to ensure that the

body of the robot manipulator always keeps a certain distance

from all obstacles. Meanwhile, the end-effector goes as close

as possible to the target pose. In this paper, obstacle avoidance

is carried out by selecting the critical points on each link of

the robot manipulator and ensuring that the critical points meet

the safety conditions. An example of the creation of critical

points for the whole body of the Universal Robots 5 (UR5)

is shown in Fig. 1. Specifically, the i-th critical point position

qcpi
∈ R

3, i = 1, 2, · · · , n and the end-effector pose pee ∈ R
7

can be calculated with forward kinematics as follows:

qcpi
= fcpi

(θ) (1)

pee = fee(θ) (2)

where θ ∈ R
6 is the joint position, fcpi(·) and fee(·) represent

the forward kinematics mapping relative to the i-th critical

point and end-effector, respectively.

Furthermore, the Cartesian velocities of the critical points

and end-effector can be derived through the Jacobian matrix,

which are expressed by

q̇cpi
= Jcpi

(θ)u (3)

ṗee = Jee(θ)u (4)

where Jcpi
(·) and Jee(·) denote the Jacobian matrices relative

to the i-th critical point and end-effector, respectively, u ∈ R
6
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Fig. 2. Framework of the cascaded nonlinear MPC system. r denotes the reference Cartesian pose, u∗

h
represents the first entry in the optimal

control sequence of the high-level MPC, p∗

ee and q∗

cpi
represent the optimal end-effector pose and the i-th optimal critical point position for low-

level optimization, respectively, u∗

l
represents the first entry in the optimal control sequence of the low-level MPC, Oi denotes the spatial position

of the i-th obstacle, V̂Oi
represents the velocity estimation of the i-th obstacle, and θ is the feedback joint position.

is the system input, indicating the joint velocity of the robot

manipulator. Discretizing (3) and (4) by Euler method with

sampling period T yields

qcpi
(k + 1) = qcpi

(k) + TJcpi
(θ(k))u(k) (5)

pee(k + 1) = pee(k) + TJee(θ(k))u(k) (6)

B. Obstacle Definition

Considering converting a dynamic obstacle avoidance task

into an optimization problem with dynamic constraints, the

original obstacle physical model needs to be simplified by

treating it as a square or sphere with simple physical char-

acteristics. In this paper, we assume that the obstacles are

sphere, then the spatial position of the i-th obstacle is defined

as Oi = [xoi , yoi , zoi ]
⊤.

In addition to the position, the obstacle velocity also needs

to be derived since the obstacles are moving. Denote the i-th
obstacle velocity as VOi

∈ R
3. With the sampling period T ,

the relationship between the velocity and position of the i-th
obstacle at k sampling instant can be expressed as

Oi(k + 1) = Oi(k) + TVOi
(k) (7)

C. Control Objective

The control task involved in dynamic obstacle avoidance for

robot manipulators is a complex process. It primarily requires

designing an effective strategy to enable the robot to move

smoothly and accurately towards a specified target, despite the

presence of dynamic obstacles along its path. To this end, it

is crucial to synthesize advanced motion planning and control

algorithms that not only prioritize optimal trajectory planning

but also offer real-time responsiveness for efficient control.

III. MOTION PLANNING AND CONTROL DESIGN

In this section, a novel cascaded nonlinear MPC framework

combined APF is proposed for real-time dynamic obstacle

avoidance, as shown in Fig. 2. The specific design of each

module is given step by step.

A. STO-Based Velocity Estimation of Obstacles

For the motion estimation of obstacles, a STO is constructed

to realize the observation of the obstacle velocity based on the

obstacle position obtained by computer vision system. To this

end, the motion equation of the i-th obstacle can be further

indicated by

Oi(k + 1) = Oi(k) + TVOi
(k)

VOi
(k + 1) = VOi

(k) + Tξia(k) (8)

where ξia denotes the acceleration of the i-th obstacle.

For system (8), the STO is designed as:

Ôi(k + 1) = Ôi(k) + T
(

V̂Oi
(k) + Ziv(k)

)

V̂Oi
(k + 1) = V̂Oi

(k) + TZia(k) (9)

where Ôi and V̂Oi
are the state estimation results of Oi and

VOi
, respectively, and Ziv and Zia are the correction terms

to guarantee finite-time stability, which is constructed by

Ziv(k) = L1

∣

∣

∣
Oi(k)− Ôi(k)

∣

∣

∣

1

2

sign
(

Oi(k)− Ôi(k)
)

Zia(k) = L2 sign
(

Oi(k)− Ôi(k)
)

(10)

where L1,L2 ∈ R
3×3 are the parameters matrices and sign(·)

denotes the signum function.

Define the the system observation errors as follows:

eoi(k) = Ôi(k)−Oi(k),

evi(k) = V̂Oi
(k)−Vi(k) (11)

According to (8) and (9), the error dynamics can be derived

as

eoi(k + 1) = eoi(k) + T
(

evi(k)− L1|eoi(k)|
1

2 sign(eoi(k))
)

evi
(k + 1) = evi

(k) + T (−L2 sign(eoi(k))− ξia(k)) (12)

Following Theorem 1 presented in [26], by properly select-

ing L1,L2, one can arrive at the conclusion that the error

dynamic system (12) is finite-time stable.
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Fig. 3. Cost of repulsive function for the horizontal and vertical distances
between a critical point and an obstacle.

B. Motion Planning: High-level MPC

The high-level MPC employs APF to incorporate obstacle

information into the cost function, which improves the overall

prediction range of the system and increases the predictive

foresight to obstacles.

1) Artificial potential field function: To create the potential

field, we use the repulsive force to indicate the penalty cost

about the distance to obstacles, i.e., let the optimization of

MPC tend to be close to the desired pose and away from

obstacles with repulsive forces. Based on the world coordinate

system, the horizontal distance refers to the straight-line dis-

tance in the X-Y plane, while the vertical distance is measured

along the Z-axis. A visual image of the repulsive function for

the horizontal and vertical distances between a critical point

and an obstacle is depicted in Fig. 3.

Denote the distance between the i-th critical point and the

j-th obstacle as di,j . For the k sampling instant, we have

di,j(k) = ||qcpi
(k)−Oj(k)||2 (13)

By combining di,j(k), an alternative repulsive function is

constructed as

Pi,j(k) =

{

Ao

di,j(k)
2+0.05

, di,j(k) ≤ dlim

0, otherwise
(14)

where Ao denotes the weight of the repulsive potential field

and dlim represents the farthest distance of the repulsive

forces.

Remark 1: The selection of a small constant value 0.05

in (14) serves the main purpose of preventing singularity

problems during the optimization and minimizing the impact

of significant cost changes resulting from minor distance

variations in the APF function.

For simplicity of subsequent expressions, the sum of the

total repulsive forces at k sampling instant is expressed by

referring to the new variable Po as

Po(k) =

Ncp
∑

i=1

No
∑

j=1

Pi,j(k) (15)

where Ncp represents the total number of critical points and

No represents the total number of obstacles.

Remark 2: It is worth noting that if only a conventional hard

constraints-based MPC is developed for motion planning, there

mainly exist three shortcomings: a) The planned trajectory

tends to stick close to constraints belt, which may cause the

low-level controller to violate constraints; b) Hard constraints

are not foresighted and only reactive to obstacles at moments

when constraints are to be violated within the predicted range,

possibly resulting in jitter phenomenon of the robot; c) A

larger discretization time may amplify the difference between

the nominal model and the real-world model, which may cause

the planned trajectory that possibly violates the prescribed

constraints.

2) Constraint settings: For robot manipulators, the first

constraints to be considered is that they conform to the

actual physical characteristics, i.e., the joint position and joint

velocity are physically limited. Regarding the joint position,

we have

θi,min ≤ θi ≤ θi,max (16)

where θi,min and θi,max represent the minimum and maximum

joint positions for the i-th joint, respectively. Similarly, the

joint velocity needs to be limited by

ui,min ≤ ui ≤ ui,max (17)

where ui,min and ui,max represent the minimum and maximum

joint velocities for the i-th joint, respectively.

The second issue to be considered for robot manipulators are

self-collision. The core of the self-collision avoidance is that

each joints are always kept at a safe distance from each other.

Mathematically, it can be converted into minimum distance

between critical points as

si,j ≥ si,j,min (18)

where si,j and si,j,min represent the distance and minimum

constraint distance between the i-th critical point and the j-th

critical point, respectively.

Remark 3: To reduce the computational load during opti-

mization, in certain circumstances, this distance can be further

converted into constraints on specific joint positions. However,

it should be noted that such an approach could potentially

reduce the feasible solutions due to the constraints imposed

on the joint range. The corresponding joint constraints can be

designed as follows:

θi,self,min ≤ θi ≤ θi,self,max (19)

where θi,self,min and θi,self,max represent the minimum and

maximum joint positions for the i-th joint to avoid self-

collision, respectively.

Additionally, it is also necessary to take account of colli-

sions between the robot manipulator and the base ground. For

this issue, it can be achieved by constraining the height of

critical points from the ground within a certain range, which

can be expressed as:

gi ≥ gi,min (20)
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where gi and gi,min respectively represent the height and

minimum safe height between the i-th critical point and the

ground.

3) MPC for motion planning and obstacle avoidance:

In order to achieve the goal of motion planning by reach-

ing the reference Cartesian pose r ∈ R
7 and implementing

obstacle avoidance, the end-effector pose pee,k and critical

point positions qcpi,k
are introduced. According to (5) and

(6), one needs the current desired input uk to compute the

above expected values. To this end, by defining uk = uh(k)
where uh(k) is the decision variable, the high-level stage

optimization problem in conjunction with APF and constraint

settings can be formulated by

U∗

h = argmin
Uh

J(Uh) (21)

with

J(Uh) =

Nhp
∑

j=1

‖pee(k + j)− r(k + j)‖2Qh

+

Nhc−1
∑

j=0

‖uh(k + j)‖2Rh
+

Nhp
∑

j=1

Po(k + j)

(22)

subject to

qcpi
(k + 1) = qcpi

(k) + ThJcpi
(θ(k))uh(k), (23a)

pee(k + 1) = pee(k) + ThJee(θ(k))uh(k), (23b)

Oj(k + 1) = Oj(k) + ThV̂Oj
(k), (23c)

di,j(k) = ||qcpi
(k)−Oj(k)||2, (23d)

θι,min ≤ θι(k) ≤ θι,max, (23e)

uι,min ≤ uh,ι(k) ≤ uι,max, (23f)

si,κ(k) ≥ si,κ,min, (23g)

gi(k) ≥ gi,min, (23h)

i = 1, 2, · · · , Ncp, j = 1, 2, · · · , No, (23i)

ι = 1, 2, · · · , 6, κ = 1, 2, · · · , Ncp (23j)

where Qh and Rh are weighting matrices on the states and

inputs, respectively, Nhp is the prediction horizon, Nhc is the

control horizon, Uh = [uh(k)
⊤,uh(k+1)⊤, · · · ,uh(k+Nhc−

1)]⊤ is the control sequence, and Th is the high-level sampling

period.

It can be observed from (22) that the smaller the cost

function J means that the optimal control sequence U∗

h is

likely to be closer to the desired pose and farther away from

obstacles. Furthermore, by taking the first action of the optimal

control sequence, the optimal end-effector pose p∗

ee,k and the

i-th optimal critical point position q∗

cpi,k
can be obtained.

Subsequently, the resulting optimized values will be served

as the low-level MPC input references.

C. Safety Guarantee: Low-level MPC

For the low-level layer, we deploy MPC to ensure that the

robot manipulator can smoothly track the optimized trajectory

and guarantee sufficient safety without collisions and singular-

ities. We utilize only hard constraints without the inclusion of

APF functions for the optimization, resulted from the follow-

ing reasons: a) Due to the nonlinearity of the APF function,

the calculation burden is usually large when performing the

receding optimization, which reduces the control bandwidth;

b) Soft constraints such as APF are not sufficient to guarantee

that the robot manipulator consistently maintains a specific

safety distance from obstacles.

1) Constraint settings: First of all, the constraints (16),

(17), (18) and (20) on the joint positions, joint velocities, self-

collision and ground-collision are taken into consideration. To

meet the demands on dynamic obstacle avoidance, the follow-

ing hard constraints are further required to be guaranteed:

di,j ≥ di,j,min (24)

where di,j,min represents the minimum distance between the

i-th critical point and the j-th obstacle.

In addition, singularity avoidance can also be considered

into the proposed optimization framework, which can be

realized by introducing a manipulability ellipsoid M(θ) with

the constraint as

M(θ) =
√

det
(

Jee(θ)Jee
′(θ)

)

≥ γ > 0 (25)

where γ is a lower bound of manipulability. It is found

that as long as M(θ) is always greater than zero, the robot

manipulator will not go through singular configurations that

lead to sudden peaks of joint velocities or accelerations.

2) MPC for trajectory tracking and safety guarantee:

Since the high-level MPC keeps the current planned path

until the next sampling instant, the low-level MPC needs

to implement trajectory tracking perfectly with avoidance of

collisions and singularities. For this purpose, the optimization

problem in the low-level layer is formulated as:

U∗

l = argmin
Ul

J(Ul) (26)

with

J(Ul) =

Nlq
∑

j=1

Ncp
∑

i=1

‖qcpi
(k + j)− q∗

cpi,k
‖2Qlq

+

Nlp
∑

j=1

‖pee(k + j)− p∗

ee,k‖
2
Qlp

+

Nlc−1
∑

j=0

‖u(k + j)‖2Rl

(27)

subject to

qcpi
(k + 1) = qcpi

(k) + TlJcpi
(θ(k))u(k), (28a)

pee(k + 1) = pee(k) + TlJee(θ(k))u(k), (28b)

Oj(k + 1) = Oj(k) + TlV̂Oj
(k), (28c)

di,j(k) = ||qcpi
(k)−Oj(k)||2, (28d)

θι,min ≤ θι(k) ≤ θι,max, (28e)

uι,min ≤ uh,ι(k) ≤ uι,max, (28f)

si,κ(k) ≥ si,κ,min, (28g)

gi(k) ≥ gi,min, (28h)

M(θ(k)) ≥ γ, (28i)
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Fig. 5. Velocity estimation results for different obstacles: (a) slow moving
obstacle and (b) fast moving obstacle.

di,j(k) ≥ di,j,min, (28j)

i = 1, 2, · · · , Ncp, j = 1, 2, · · · , No, (28k)

ι = 1, 2, · · · , 6, κ = 1, 2, · · · , Ncp (28l)

where Qlq , Qlp and Rl are weighting matrices, Nlp is the

prediction horizon and Nlc is the control horizon, Ul =
[u(k)⊤,u(k + 1)⊤, · · · ,u(k + Nhc − 1)]⊤ is the control

sequence, and Tl is the low-level sampling period.

Similarly, by taking the first action of the optimal control

sequence U∗

l , the desired joint velocities can be derived for

the dynamic controller of the robot manipulator.

IV. EXPERIMENTAL VALIDATION

In this section, to illustrate the effectiveness of the proposed

cascaded nonlinear MPC strategy, comparative experiments

are performed on a UR5 robot. Detailed results in real world

experiments can also be referred in our video on the website.1

A. Experimental Setup

The experimental setup consisted of a 6-axis robot manipu-

lator and two obstacles, as shown in Fig. 4. In order to reduce

the burden of visual recognition, both of these obstacles were

marked with AprilTags [27]. For the sake of explanation, we

refer to a rectangular prism with dimensions of 20 cm in

length, 30 cm in height, and 6 cm in width as the large

obstacle, while a cube with an edge length of 10 cm as

1https://www.bilibili.com/video/BV1TG4y1o7Z7.

t =1.50st = 1.00s t =2.00s

t = 2.50s t = 3.00s t = 3.50s

Collision
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EndEnd

StartStart

EndEnd EndEnd

StartStart

StartStart

EndEnd

StartStart

EndEndEndEnd

StartStart

Fig. 6. Frame-by-frame plots under HC-MPC.

TABLE I
INITIAL AND DESIRED POSES OF THE END-EFFECTOR

Cartesian poses of end-effector

x (m) y (m) z (m) qw qx qy qz

Initial 0.40 0.40 0.45 0.8404 -0.1443 0.5075 0.1236

Desired 0.50 -0.40 0.50 0.7068 0.0003 0.7074 0.0003

the small obstacle. The real-time image was captured by a

Realsense camera. The software structure was based on robot

operating system (ROS) and MoveIt! [28]. ACADO toolkit

was employed to solve the two-stage optimization problem

[29]. Image processing of the obstacle was realized by VISP

library [30]. The software ran on a Lenovo laptop with an

i7-10750H CPU and 32 GB RAM.

We used the basic link of the manipulator as the origin of

the world coordinate system. The initial and desired poses of

the end-effector were shown in Table I. The initial position

of the large obstacle relative to the world coordinate system

was [0.58, −0.49, 0.31]⊤m, and the small obstacle was

[0.58, −0.49, 0.25]⊤m. To thoroughly evaluate the test with

obstacles moving at different speeds, we designed a motor-

driven mechanism to control the obstacle movement speeds at

two distinct levels: 6.5 cm/s and 13 cm/s. For the sake of

simplicity in subsequent descriptions, we refer to a speed of

6.5 cm/s as the slow speed and a speed of 13 cm/s as the

fast speed. The velocities for both the slow and fast speeds,

along the Y-axis, can be represented as follows:

Ovy,slow =

{

0.065 m/s 0s ≤ t ≤ 12s

0 t > 12s

Ovy,fast =

{

0.13 m/s 0s ≤ t ≤ 6s

0 t > 6s

B. Comparative Controller Settings

To better demonstrate the effectiveness of the proposed

APF-based cascaded MPC (APF-Double-MPC), two kinds of

control strategies with different architectures were designed
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Fig. 7. Error and control input curves of APF-Double-MPC and HC-
Double-MPC for obstacles with different sizes and different speeds:
(a) APF-Double-MPC with the large fast obstacle, (b) HC-Double-MPC
with the large fast obstacle, (c) APF-Double-MPC with the large slow
obstacle, (d) HC-Double-MPC with the large slow obstacle, (e) APF-
Double-MPC with the small fast obstacle, (f) HC-Double-MPC with the
small fast obstacle, (g) APF-Double-MPC with the small slow obstacle,
and (h) HC-Double-MPC with the small slow obstacle.

for performance comparison, i.e., the independent MPC with

hard constraints (HC-MPC) in [17] and the cascaded MPC

with hard constraints (HC-Double-MPC) in [21].

For the configured device, we chose 5 critical points, as

shown in Fig. 4, namely, Ncp = 5, No = 1. To prevent

self-collision within the specified range of joint motion, the

position of the fourth joint was restricted between −2 rad
and 2 rad, the position of the fifth joint was limited between

APF-Double-MPC HC-Double-MPC

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Fig. 8. Actual and obstacle-free trajectories of the robot manipulator’s
end-effector during the high-level planning: (a) APF-Double-MPC with
the large fast obstacle, (b) HC-Double-MPC with the large fast obstacle,
(c) APF-Double-MPC with the large slow obstacle, (d) HC-Double-MPC
with the large slow obstacle, (e) APF-Double-MPC with the small fast
obstacle, (f) HC-Double-MPC with the small fast obstacle, (g) APF-
Double-MPC with the small slow obstacle, and (h) HC-Double-MPC with
the small slow obstacle.

−2 rad and 0 rad, and the remaining joints were constrained

between −2.5 rad and 2.5 rad. Moreover, the joint velocities

were limited between −0.6 rad/s and 0.6 rad/s, and the

minimum distance between each critical point and the ground

gi,min was set as 10 cm. To guarantee the efficient obstacle

avoidance, the value of dlim should be set according to the

respective obstacle sizes. For the large obstacle, dlim was set

as 25 cm, while for the small obstacle, dlim was set as 15 cm.

In order to ensure the fairness of experimental comparisons

as much as possible, for the high-level layer of APF-Double-

MPC and HC-Double-MPC, the sampling period Th was set as

0.4s. Due to the large sampling period already present at the

higher level, HC-Double-MPC, relying on hard constraints,
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Fig. 9. Frame-by-frame plots under APF-Double-MPC and HC-Double-MPC: (a) results under the large obstacle and (b) results under the small
obstacle.

is highly susceptible to violating them when the prediction

horizon is excessively prolonged. So the HC-Double-MPC

and APF-Double-MPC prediction horizon Nhp was set as 3
and the control horizon Nhc was set as 1. For the weighting

matrices Qh and Rh, the elements on the diagonal were

selected as 10 and 1 respectively. For the APF function, as the

weight parameter Ao increases, the robot manipulator tends to

maintain a greater distance from obstacles. However, a higher

gradient in the APF may introduce oscillations in the planned

trajectory. Therefore, we set Ao as 1 in the proposed approach.

For the parameters selection of STO, to achieve an accurate

velocity estimation of the obstacle, the diagonal matrix L1

was set as 0.3I3×3 and L2 was set as 0.24I3×3.

C. Experiments on Dynamic Obstacle Avoidance

First of all, the effect of STO obstacle velocity estimation

is shown in Fig. 5. It can be observed that the estimation of

the obstacle velocity can be basically completed within 1s.
In order to illustrate the advantages of the designed motion

planning and control schemes on dynamic obstacle avoidance,

five aspects in terms of task reachability, motion smoothness,

constraint violations, predictive foresight and computational

time consumption are compared.

1) Task reachability: As shown in Fig. 7, the first column

of the images shows the curve of position error changing

with time, the second column shows the curve of posture

error changing with time, and the third column shows the

curve of joint velocity changing with time. For each case

with varying obstacle sizes and speeds, the tracking errors of

APF-Double-MPC and HC-Double-MPC eventually converge

to zero. However, as shown in Fig. 6, HC-MPC has crashed

with the obstacle during the planning task, which is due to

that the obstacle avoidance behavior is too aggressive. Since

the prediction range of the independent MPC is short, it is

very easy to cause the failure of the task, therefore, we will

not further compare HC-MPC in the follow-up content.

2) Motion smoothness: As can be seen from the frame-

by-frame images in Fig. 9, the actual end-effector trajectory

under APF-Double-MPC control is noticeably smoother than

that of HC-Double-MPC. Additionally, the planning images in

Fig. 8 reveal that the high-level planning of APF-Double-MPC

is significantly smoother than HC-Double-MPC and does not

exhibit abrupt changes in the planned trajectory. Moreover, the

velocity curves in Fig. 7 also corroborate this observation, as

the joint velocity changes in APF-Double-MPC are noticeably

less abrupt compared to those in HC-Double-MPC.

3) Constraint violations: We introduce the index Λ to

measure the constraint violations as follows:

Λ(k) = min
i,j

di,j(k) (29)
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(b) (a) 

Fig. 10. Minimum distance between the obstacle and critical points
under APF-Double-MPC and HC-Double-MPC: (a) results under the
large obstacle and (b) results under the small obstacle.

Fig. 11. Computational time consumption of APF-Double-MPC and Hc-
Double-MPC.

Fig. 10 displays the closest distance between the obstacles

and the robot manipulator during the obstacle avoidance pro-

cess, with the black dashed lines representing the correspond-

ing constraint bands. Regardless of whether encountering a

large or small obstacle, the HC-Double-MPC violates the

constraint conditions multiple times during obstacle avoidance.

In contrast, APF-Double-MPC, guided by the high-level APF,

effectively avoids getting too close to the obstacles.

4) Predictive foresight: The predictive foresight of the

algorithms can be observed from the planned trajectories and

the minimum distance to the obstacle. As seen in Fig. 8, during

the early stages of an approaching obstacle, APF-Double-MPC

demonstrates a clear trend of adjusting its trajectory to avoid

the obstacle, while HC-Double-MPC essentially coincides

with the original obstacle-free trajectory, only altering its

trajectory when it is on the verge of violating the constraints.

In Fig. 10, the minimum distance to the obstacle also indicates

that when the obstacle gets closer (around 4 seconds), the slope

of the APF-Double-MPC curve exhibits a more gradual trend,

whereas HC-Double-MPC maintains its original trajectory

until it approaches the constraint band.

5) Computational time consumption: The computational

time consumption for APF-double-MPC and HC-double-MPC

as illustrated in Fig. 11. The computation time for both low-

level controllers is almost identical, with a maximum time of

17.584 ms. For high-level planning, since APF-double-MPC

introduces a highly nonlinear term in the cost function, it

results in a significantly longer computation time than HC-

double-MPC. But it is notable that its maximum computation

time is 79.514 ms, which also satisfies the planning require-

ment to be completed within 400 ms.

V. CONCLUSION

In this paper, a novel cascaded nonlinear MPC frame-

work for dynamic obstacle avoidance has been proposed. The

purpose of this solution is to improve the safety of robot

manipulators in motion planning and control. For the velocity

estimation of the dynamic obstacle, a STO has been firstly de-

ployed to improve the estimated accuracy. With the construc-

tion of a two-stage MPC optimization problem, the optimized

joint velocities are derived to guarantee the collision-free

and singularity-free motion planning. The performance of the

proposed strategy is experimentally verified on a six-axis robot

manipulator in terms of task reachability, motion smoothness,

predictive foresight, constraint violations, and computational

time consumption. The reported results show that the proposed

method has more distinguishable features for dynamic obstacle

avoidance in comparison with the conventional cascaded MPC.

Our future work would focus on the adaptability of our

proposed strategy in different uncertain environments.
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