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ABSTRACT

Machine learning (ML) methods are of rapidly growing interest for materials modeling, and yet, the use of ML interatomic potentials for
new systems is often more demanding than that of established density-functional theory (DFT) packages. Here, we describe computational
methodology to combine the CASTEP first-principles simulation software with the on-the-fly fitting and evaluation of ML interatomic poten-
tial models. Our approach is based on regular checking against DFT reference data, which provides a direct measure of the accuracy of the
evolving ML model. We discuss the general framework and the specific solutions implemented, and we present an example application to
high-temperature molecular-dynamics simulations of carbon nanostructures. The code is freely available for academic research.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0155621

I. INTRODUCTION

Molecular dynamics (MD) simulations have become a key
research technique in physics, chemistry, and materials science.
Quantum-mechanical methods, most commonly density-functional
theory (DFT), make it possible to accurately predict forces on atoms,
which in turn can be used to integrate Newton’s equation of motion
and, therefore, to drive high-fidelity simulations of molecular sys-
tems and condensed phases.1 This type of simulation, sketched in
Fig. 1(a), is often referred to as first-principles or “ab initio” MD
(AIMD): because it is based on the laws of quantum mechanics,
no prior knowledge of the system is required as long as a rea-
sonable initial structural model is chosen. Such AIMD simulations
can reach system sizes of several hundreds of atoms, but remain
computationally highly expensive.

Machine learning (ML) has opened up an increasingly pop-
ular alternative route in this regard.2–6 The key idea is to fit ML

surrogate models of the potential-energy surface of a given system
based on a relatively small number of DFT reference computations.
Despite the growing popularity and widespread use, there is still
a significant barrier from the users’ perspective compared to how
widely and routinely DFT is used day-to-day. One bottleneck has
been the development of suitable reference databases, which ini-
tially had to be constructed and curated with substantial user input.
Examples for ML potentials, fitted to extensive databases of that
type, are Gaussian approximation potential (GAP) models for car-
bon7 or silicon8 or the ANI series of neural-network potentials for
organic molecules.9,10 Once trained, these general-purpose models
enable predictions outside of the direct scope of their training: for
example, resolving the intricate structure of amorphous phospho-
rus11 without having included it explicitly in the reference database.
We also note recent work in the field on creating widely applicable,
“universal” pre-trained neural-network potentials, which are begin-
ning to be tested for very different chemistries.12–14 For all those
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FIG. 1. Machine-learned acceleration for ab initio MD. (a) Simplified flowchart of the overall methodology in AIMD, as implemented in CASTEP and other DFT-based
simulation software. Solving the electronic-structure problem yields DFT-based forces Fi for the ith atom. Those are used to move the atoms (by integrating Newton’s
equations of motion), and the process is repeated until the simulation time, t, reaches its user-defined maximum, tmax. (b) Extension of this flowchart to ML-accelerated MD. In
this case, the DFT forces are gradually replaced by an ML model prediction, F̃i , which is “learned” on the fly. The decisions whether to use DFT or ML forces, and whether to
update (“refit”) the ML model, can be based on different criteria. See also Ref. 18. (c) Principles of operation for ML-accelerated MD. Three possible use cases are sketched;
relevant system sizes are illustrated using MD snapshots of 200-atom and 10 000-atom carbon systems (cf. Sec. V).

approaches, there is a substantial requirement for human and com-
putational time in the first place, yet a significant possible benefit
once the methodology is used in practice.

A somewhat complementary approach is now to use the under-
lying DFT code not just for labeling the data (i.e., computing
reference energies and forces) but also to generate the structural data
themselves “on the fly.” In other words, the ML potential fit can be
incorporated directly into the AIMD workflow [Fig. 1(b)]—starting
anMD simulation with DFT forces, then accelerating it substantially
with an on-the-fly fitted ML potential model where this is possible,
and updating the model with new reference data as required. This
way, there is no requirement for expert knowledge from the user,
even for unseen systems. This type of approach was pioneered for
the Vienna Ab initio Simulation Package (VASP),15,16 which now
offersML potential model fitting on the fly.17–20 We review emerging
applications in more depth below.

In the present work, we describe a computational framework
that allows for the direct interfacing of the DFT-based simula-
tion software CASTEP (Ref. 21) with ML potential fitting. The key
methodological steps described herein are (i) the integration of rele-
vant functionality into the CASTEP code itself and (ii) a stand-alone
decision-making code that connects to external software for the fit-
ting of ML models. The code is designed to be interoperable with

different ML potential fitting frameworks, whether already estab-
lished in the field, newly emerging, or envisioned in the future:
the practical aspects will change, but we expect the overarching
ideas to remain the same. We illustrate these developments with a
case study of a potential that is “learned” by our hybrid CASTEP
+ML scheme and then taken out and used for a larger, stand-alone
simulation.

II. METHODOLOGY

A. Machine-learned acceleration for ab initio MD

Figure 1 provides an overview of the methodology: the regu-
lar AIMD workflow is shown in simplified terms in Fig. 1(a), and
the inclusion of the ML model requires additional actions (in blue)
and decision points (magenta), as shown in Fig. 1(b). We note that
this flowchart is deliberately generic, and the questions when to “Use
ML?” and when to “Refit?” in Fig. 1(b) can be answered in multiple
ways—one of which is discussed below (Sec. II C).

Irrespective of how exactly an on-the-fly fitted ML potential
is created, there are different principles by which it can be used in
computational practice [Fig. 1(c)]. It can be applied directly within
the AIMD code to accelerate simulations of systems with typically
a few hundred atoms. This direct acceleration is exemplified in
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Fig. 1(c) by showing a 200-atom disordered carbon structure. How-
ever, once an on-the-fly model has been generated, it can also be
used subsequently as a stand-alone potential22–24—evaluating it with
an external MD engine, rather than within the AIMD code, thereby
enabling much larger-scale simulations. Finally, one might expect
in future work to take an on-the-fly generated fitting database (yel-
low) and combine it with other, existing datasets (gray), together
yielding a combined ML potential for a more complex system.
An example for the second principle is shown in Fig. 1(c) for a
10 000-atom carbon structure; we will discuss this specific example
in Sec. V.

On-the-fly ML potential fitting methodology has been imple-
mented in VASP17,18 using kernel-based regression models simi-
lar to the ones used in GAP fitting and the associated Bayesian
error estimation to define the decision criteria. The capability
of the methodology was initially demonstrated for temperature-
dependent structural distortions in a hybrid halide perovskite17

and for melting-point predictions,18 respectively. The utility of the
approach was then shown for a wider range of research questions:
for simulations of thermal properties that would be computation-
ally highly expensive at the full DFT level25,26 and for beyond-DFT
computations for bulk and surface systems.27,28 Once the ML poten-
tial has been fitted in this way, it can be taken out and used
in larger-scale, stand-alone simulations [Fig. 1(c)], as has been
demonstrated in Refs. 22–24. We mention in passing that there
are analogies to other “on-the-fly” schemes, which similarly aim
to accelerate MD simulations, although in different ways: by com-
bining force-field and quantum-mechanical simulations29,30 and by
making external DFT calls during an ML-driven simulation (often
referred to as “active learning”).31–35 In the following discussion,
we take “on-the-fly” to refer to one of the workflows sketched in
Figs. 1(b) and 1(c).

B. Gaussian approximation potentials

In the present work, we primarily fit ML potentials using the
Gaussian approximation potential (GAP) framework and the QUIP
and gap_fit codes. GAPs were initially introduced by Bartók et al.
in Ref. 36, and many aspects of the methodology have been estab-
lished in a series of papers on tungsten,37 carbon,38 and silicon.8 The
underlying theory of Gaussian process regression (GPR), as well as
the design choices that are relevant in computational practice, has
been reviewed in Ref. 39.

In brief, the aim of GPR models is to predict some target quan-
tity, ỹ(x), at a location, x. This prediction is made by comparing the
new location to all N points in the training,

ỹ(x) ≙
N

∑
i≙1

cik(x, xi) ≡ c
T
k(x), (1)

where ci are the fitting coefficients and k is a kernel (or similarity)
function.

The choice of k is, therefore, the first important decision to be
made in GAP fitting. k is typically given by the Smooth Overlap of
Atomic Position (SOAP) kernel.40,41 Themost relevant SOAP hyper-
parameters are the radial cutoff, rcut, and the smoothness used for the
neighbor density, σatom. The convergence of the neighbor-density
expansion with respect to its local basis is controlled by setting

maximum values for the radial and angular quantum numbers, n
and l, respectively.

The training task in GPR fitting is in finding the coefficients,
ci, in Eq. (1). Given reference data labels, y, the coefficients are
obtained by minimizing a loss function, conveniently expressed in
the notation as above,

c ≙ (KNN + Σ)
−1
y, (2)

where Kij ≙ k(xi, xj) and Σ adds the GPR regularization term(s).
In practice, there are two important points beyond the simple

formula above. First, in the context of interatomic potentials, y is a
local energy term, but this is not normally available from quantum
mechanics directly—it is instead observed through the total energy
and its derivatives, which changes the expression above (see Ref. 39).
Second, only a limited number of representative points, M, is used
in GAP fitting, leading to a sparse GPR model fitted according to

c ≙ [KMM +KMNΣ
−1
KNM]

−1
KMNΣ

−1
y, (3)

where M ≪ N and the cost of prediction now depends on M rather
than N, making the evaluation of a GAP independent of the size
of its training database. Therefore, M becomes another important
aspect to control the quality of the potential. It is usually chosen
large enough to approach convergence with respect toM for general-
purpose models;8 for on-the-fly-fitted models, as generated here, the
value will need to be smaller to speed up both fitting and evaluation.
The choice of optimized parameters for “low-cost” on-the-fly ML
potentials is under ongoing study in our laboratories.

C. Checking criteria

ML models accelerate AIMD by replacing the expensive
ab initio force calculation with faster ML forces when possible.
There is an inherent trade-off in accuracy between the two methods,
requiringmonitoring of the error of theMLmodel. This gives us two
requirements for the design of the code: (1) minimizing the number
of ab initio force calls throughout the simulation and (2) keeping the
accuracy of the entire simulation within a specified bound. To ful-
fill these requirements, a decision-making procedure is introduced
before force calculations [Fig. 1(b)], determining whether ML or
ab initio forces should be used for the next step. We note that this
decision can, in principle, be based on any structural or model-
derived information, as long as that information is predictive of the
error of the evolving ML model.

We have made the design choice to use direct checking against
ab initio data to decide whether or not a potential needs to be refit-
ted. This makes the approach applicable to all ML potential fitting
frameworks, irrespective of whether they have internal confidence
estimates available. At MD steps where checks are performed, both
the ab initio and ML forces are evaluated, and the disagreement
between the two is checked against user-supplied tolerance values.
The new ab initio observation gathered can be used for updating
the model either at all such observations or only when tolerances
are not met. As there is a non-negligible cost associated with this
refitting step, we only perform model training on occasions where
the user-defined tolerances are not met. In principle, the model
can be updated more often, though this is only economical if an
existing model can be extended without needing to re-train from
scratch—e.g., for neural-network-based models.
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Figures 2(a) and 2(b) illustrate two possible interval modes
for checking the accuracy of the model. The basis of both pre-
sented methods is a direct comparison between the CASTEP DFT
results (which serve as the ground truth), on one hand, and the ML
model prediction, on the other hand. The user can set tolerances
for energy, force, and stress errors against which the evolving ML
potential is assessed. The interface allows for running a number of
initial DFT steps to gather data, indicated by blue shading, followed
by a fit (“training”) of the ML model to those data. This is useful
for starting from scratch, i.e., without any previous ML potential
model, as well as for updating a model to the structure/calculation
at hand in cases where previously gathered ab initio data are
supplied.

The checking then proceeds at specified points during the MD
run. The simplest solution is pre-defining a fixed interval for the
DFT re-evaluation and running a constant number of ML-driven
steps in between. This is illustrated in Fig. 2(a): the only choice to
make here is the number of MD time steps per interval, denoted
as n_fix in the input file. We implemented an adaptive scheme
as well [Fig. 2(b)], in which the number of MD steps between
DFT force calculations is adapted according to the accuracy of the
model observed: the previous interval is increased when tolerances
are met and decreased otherwise, together with refitting the model.
We use a scaling factor (keyword factor in the input file) by
which to multiply or divide the interval, keeping it between a lower
and upper bound of steps to take (keywords n_min and n_max,
respectively).

Figure 2(c) illustrates the application of adaptive checking
intervals for aluminum oxide, Al2O3. In this simple experiment, we
take a 2 × 2 × 1 (120-atom) supercell expansion of the corundum-
type unit cell of Al2O3 and remove one Al and one O atom each, as a
prototype for more extended simulations of vacancy migration. We
plot the energy (top) and force (bottom) errors observed during the
first 1 ps of the MD run, indicating points where both DFT checks
were passed in blue and those where at least one was not passed in
red. Vertical lines indicate the refitting events. Detailed data, includ-
ing the associated input files and the results of a longer simulation,
are provided in the repository accompanying this paper (see the Data
availability statement).

III. IMPLEMENTATION

In our implementation, we connect CASTEP21 as the AIMD
software to a custom and standalone Python program, which we call
hybrid-md. Within the present study, we primarily use the GAP
code for potential fitting and evaluation (Sec. II B). We emphasize,
however, that hybrid-md can be interfaced with other ML potential
fitting and evaluation frameworks as well, for example, through a
custom Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) interface described below, which we expect to be rele-
vant in the future. We refer to the overall framework as “CASTEP
+ML” and to the specific potential models fitted in the present work
as “CASTEP-GAP” models.

FIG. 2. Checking intervals. (a) and (b) Fixed and adaptive intervals for checking the quality of the simulation through a DFT call and refitting if necessary. (c) Energy and force
error evolution during an MD simulation of Al2O3. This illustrates how during the simulation two criteria are tested: that of a maximum energy error of 5 meV per atom and
that of a maximum force component error of 0.3 eV Å−1. When one or both of these criteria are met, the potential is refitted, as indicated by vertical gray lines.
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FIG. 3. Implementation of the decision-making code. The left-hand side shows a simplified flowchart of the overall methodology in CASTEP, which iterates over a number of
Velocity Verlet (VV) steps and evaluates forces on atoms during the cycles. The dashed box, shaded in gray, encloses all steps that are being carried out within CASTEP
(normally executed through castep.mpi). The close-up shows how the FORCES routine is being modified here to enable interfacing with the hybrid MD code. Functionality
within the decision-making code, which is accessed separately through system calls, is highlighted in magenta; functionality of ML model fitting and evaluation codes is
highlighted in blue.

Figure 3 provides an overview of the implementation, separated
according to those tasks that are carried out within CASTEP (light
gray), within the decision-making code described here (magenta),
and by external ML potential fitting and evaluation software
(blue).

A. GAP interface

We provide an interface in the CASTEP Fortran code to eval-
uate any QUIP-compatible interatomic potential model, including
GAP. We designed a simple interface of the Python code as a shell
executable that can be used by the CASTEP code via system calls.
Decisions are passed as shell exit codes, parsed by the Fortran code.
The behavior of the decision-making code is controlled by an input
file; we show an example in Listing 1.

The model updates are provided by the Python code, build-
ing on the results of the DFT calculations being written to xyz

files by CASTEP. The model fitting itself is carried out using the
built-in fitting executable of GAP, which fits a new model from
scratch each time there is an update in the data. Again, we note
that the code is designed to enable extension and future interfaces
with other fitting frameworks as well; we show initial examples to
this effect below. In Fig. 3, we refer to generic tasks rather than spe-
cific ML potential software to emphasize the general nature of the
approach.

LISTING 1. Example input file for the hybrid-md code.
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The Python code is intended to be self-contained and provide
the single interface for non-core development. This is favorable from
a licensing point of view (the CASTEP license is more restrictive
than GAP’s ASL license) as well as for the efficiency of develop-
ment: if the user wishes, they can change the Python code for the
specific research question they are addressing or add a new cus-
tom feature, while not having to obtain, change, and recompile
the source of the DFT code. The latter would be a clear issue on
high-performance computing (HPC) systems, for example, on top
of the typically higher barrier of entry into Fortran programming
(compared to Python).

B. LAMMPS interface

We further extended CASTEP with an interface to call
LAMMPS42 as a force calculator, which provides access to a wider
variety of ML models through optional packages in LAMMPS.
For this work, we used the ML-PACE and ML-MACE packages in
LAMMPS, making it possible to evaluate Atomic Cluster Expansion
(ACE) models43 and equivariant message-passing neural-network
models based on ACE (MACE),44 respectively.

LAMMPS uses domain decomposition for parallelism, split-
ting the simulation cell between Message Passing Interface (MPI)
processes for neighbor list and force calculations. Our interface
implements supplying the entire MPI communicator to LAMMPS
or communicating only on a single process. The latter is essential for
models using graphics processing unit (GPU) accelerators, such as
MACE, where splitting the cell is counter-productive. In the future,
extension for supporting further patterns is possible, e.g., one MPI
process per GPU for a multi-GPU model evaluation.

C. Model training extensions

User-definedmodel training logic can be used for training ACE
and MACE models. The import path of the required code can be
specified in the input file of the acceleration program. ACE model
training can be carried out using the ACE1pack Julia library, exe-
cuting a training script similarly to how the gap_fit program is
called for training GAP models. Training is performed from scratch
(no re-use of previous model weights) on the central processing
unit (CPU). The MACE Python package is used directly for training
MACE models on a GPU. Incremental training is possible, where
initially a longer optimization of model weights is used, and later,
only short fine-tuning is carried out with new observations. We note
that while this functionality is provided as part of the current code
implementation, further work is required for an in-depth analysis
of generally applicable and robust settings. All following discussion,
therefore, will be based on the GAP framework, which is more firmly
established at the time of this writing.

IV. NUMERICAL PERFORMANCE

We present example runs to assess the numerical performance
of themethod.We tested the speed of CASTEPMD runs, comparing
standard AIMD with GAP-accelerated runs as described above. We
chose two chemically rather different systems to provide representa-
tive examples of different envisioned use cases: defective crystalline
Al2O3 (ordered structure, primarily ionic–covalent bonding) and
liquid Si (highly disordered structure, primarily metallic bonding).
Both simulations started from scratch with no ML model or data,

TABLE I. Numerical performance of CASTEP + ML runs using the GAP framework.
We show MD tests for Al2O3 and liquid Si model systems (see the text), specifying
the fraction of simulation time spent in self-consistent field (SCF) evaluations (ab initio
forces), model training (gap_fit), and the rest in ML forces and system overhead.
The speedup is shown compared to the number of traditional AIMD steps one can
perform within the same wall time on the same hardware.

Crystalline Liquid
Al2O3 Si

Time in SCF 35.3% 2.5%
Time in gap_fit 1.0% 3.0%
Time in GAP forces 63.7% 94.5%
(Incl. system & hybrid-md)

CASTEP +MLMD steps 100 000

AIMD steps in same time ≈200 ≈5, 400
ML speedup ≈500× ≈20×

and both used the adaptive checking interval scheme described in
Sec. II C. The results are summarized in Table I.

For the example run on Al2O3 characterized in Fig. 2(c), we
examined the timing data to assess the numerical performance of
the method. In this specific simulation, 35.3% of the overall runtime
was required for the CASTEP self-consistent field loop (that is, for
the DFT evaluation), 1.0% for running the external gap_fit pro-
gram, and 63.7% for MD: system, decision making, and GAP model
evaluation. A total of 57 DFT evaluations were carried out, and eight
of those led to gap_fit calls [four of those during the first 1 ps of
the simulation; see the gray horizontal lines in Fig. 2(c)]. Hence, over
a total of 100 k MD steps, we had an average of 1750 GAP-MD steps
per DFT computation. AIMD on the same system and input struc-
ture has been tested (same HPC system and settings): about 200 MD
steps can be done within the same time, which means a speedup of
about 500× with the ML acceleration.

For the equivalent test for liquid Si, a total of 36 DFT evalua-
tions (2.5% of overall runtime) and 12 gap_fit calls (3.0%) were
carried out over 100 k MD steps on a system size of 250 atoms (2563
per DFT computation, 94.5% of total time). ∼5400 AIMD steps can
be carried out within the same walltime using the same basis set
and k-point sampling (250 eV, Γ point only), which amounts to a
speedup of ≈20×. The liquid Si simulation was completed in two
parts of duration 90 and 10 ps (the latter exemplifying the “restart”
functionality). In the final 10 ps, one refit was performed. We note
that for both test systems, only a small fraction of the computational
time was required for the (re-) fitting of the ML models.

V. CASE STUDY: GRAPHITIZATION
OF AMORPHOUS CARBON

We present a case study for a complex, disordered material,
as an example of a simulation that will ultimately require larger
simulation cell sizes than would be amenable to DFT at all. This
section, therefore, exemplifies the second “mode of operation” in
Fig. 1(c): generating a potential with CASTEP + ML, which is then
taken out and used to drive stand-alone simulations. Our applica-
tion case is amorphous carbon (a-C), whose structures can have
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pore radii of several nm, and a-C films can be described in depo-
sition simulations.45,46 The ML-driven computational modeling of
a-C materials is relevant for diverse applications, e.g., in energy
storage: porous carbon structures can host metal ions (for battery
anodes), molecular species (for supercapacitors), and so on.47–51

The thermal annealing of a-C structures is a benchmark chal-
lenge for empirical and ML interatomic potentials.52–54 Starting
from a disordered precursor, these simulations involve the break-
ing and forming of bonds typically over hundreds of thousands of
MD steps, resulting in a gradually more ordered network that tends
toward an sp2-rich, graphitic structure at lower densities (1.5–2.0 g
cm−3) or an sp3-rich, diamond-like structure at higher densities
(3.0–3.5 g cm−3). Meeting this benchmark is challenging for car-
bon potentials because of the diverse atomic environments in the
amorphous state.

Asmentioned above, on-the-fly fitting needs a different strategy
compared to a “typical” GAP fit to an existing database of structures.
Here, rather than starting from the existing C-GAP-17 database,38

we show that it is possible to start with a small amount of fitting data
sampled at relatively few sparse points when fitting on-the-fly and

yet achieve accuracy to within tens of meV for a specific use-case.
While this error would normally be considered relatively high for
ML potentials,55 we note that modeling a-C is challenging due to its
complex configurational space and that C-GAP-17 has been shown
to be a robust model for a-C.54 CASTEP-GAP produces potentials
of comparable quality, but will be less transferable due to the much
smaller training database.

For this test, we took a 200-atom a-C structure generated by
melt-quenching with C-GAP-17 and annealed it at 3000 K for 350 ps
using two different methods: (i) direct MD with C-GAP-17 and (ii)
CASTEP MD accelerated with on-the-fly GAP fitting. We chose
a density of 2.5 g cm−3, slightly higher than that of graphite, but
not high enough to form a dense diamond-like structure—it might,
therefore, be viewed as one of the more challenging cases. The
hybrid-md settings used are those in Listing 1; technical details are
given in the Appendix.

Figure 4(a) shows that the reference C-GAP-17 simulation and
the new CASTEP +ML run exhibit qualitatively similar trends and
physically correct behavior with respect to the fraction of sp2 atoms.
The latter increases rapidly during the first 25 ps, followed by a

FIG. 4. Graphitization of amorphous carbon as a benchmark for ML-accelerated MD. (a) Evolution of the count of sp2 (threefold-connected) atoms at 3000 K for a 200-atom
system at a density of 2.5 g cm−3. Annealing within CASTEP + ML (on-the-fly GAP model fit; blue line) and C-GAP-17 in LAMMPS (gray line) shows similar profiles starting
from the same structure. Blue arrows indicate refitting events within CASTEP + ML. (b) A matrix visualizing annealed carbon structures obtained using C-GAP-17, which
are here used to create a DFT benchmark set. Structures are color-coded by the atomic coordination numbers. Higher-density structures appear more diamond-like in
nature, whereas lower-density structures appear graphitic. The central structure is highlighted in red: this corresponds to the density and temperature settings chosen for the
CASTEP + ML simulation. (c) Energy error matrix comparing potentials with DFT. Top: Energy RMSE of C-GAP-17 on 10 unique structures at 500 ps. Bottom: Same for
the CASTEP-GAP potential. (d) Force error matrix comparing potentials with DFT. Top: Force RMSE of C-GAP-17 on 10 unique structures at 500 ps. Bottom: Same for the
CASTEP-GAP potential.
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slower increase until converging at ∼180 ps, up to numerical fluctua-
tions. The simulation driven by the original C-GAP-17 model shows
a similar profile while reaching convergence faster, at around 60 ps.
Figure 4(a) indicates by arrows when the CASTEP-GAP model was
refit, with a total of 255 refits out of 404 DFT checks throughout the
simulation. Several refitting events occurred near the beginning of
the run; they then gradually spread out according to the adaptive
refitting scheme, up until around 170 ps where an increasing num-
ber of refitting events occurs. After ∼180 ps, the simulation required
restarting, and at that point, refitting was manually disabled due to
the perceived stability of the potential, allowing for the simulation to
continue with the ML potential without further refitting.

To analyze the quality of the resulting potential, we introduce
here a systematic benchmark for disordered carbon across the range
of densities and degrees of ordering [Fig. 4(b)]. These structures
consist of 200 atoms and were generated using C-GAP-17 follow-
ing the same annealing protocol. Ten independent structures were
DFT-labeled per density–temperature run at the end of the anneal-
ing process (500 ps) for a total of 250 uncorrelated cells (50 000
atoms) in this benchmark set. The DFT parameters were adjusted
for the benchmark set to match that used in C-GAP-1738 for direct
comparison; we note that, in future work, we expect to re-label the
dataset at higher levels of DFT. The root mean square error (RMSE)
against DFT for the energies and forces were computed for both the
CASTEP-GAP model [Figs. 4(c) and 4(d), bottom] and for C-GAP-
17 (top). At the chosen temperature and density, the energy accuracy
of the CASTEP-GAPmodel is within 30meV/at., and the force error
is below 1 eV/Å, as highlighted by a square in Fig. 4(c) (bottom).
C-GAP-17 reaches an energy error of ≈20 meV/at. and a force error
below 0.9 eV/at., being fitted with many more SOAP sparse points
and a larger database. As a result of the latter, C-GAP-17 is better
suited to capturing a range of amorphous structures as indicated
by the lower energy errors across most of the structures with no
anomalous results [Fig. 4(c), top]. This is further illustrated by the
force errors observed in C-GAP-17 [Fig. 4(d), top] where the major-
ity of errors are below 1 eV/Å, compared with the CASTEP-GAP
model [Fig. 4(d), top], which has relatively poor force accuracy since
force errors were not accounted for during the refitting criterion (see
Listing 1). Changes in temperature and density have a significant
impact on the numerical accuracy of the CASTEP-GAP potential.
Notably, at densities of 1.5 and 3.5 g cm−3, we observe significant
errors. The reason behind these errors is the absence of higher-
and lower-density structures in the CASTEP-GAP database. Conse-
quently, diamond-like structures are evaluated with poor numerical
accuracy in terms of forces when compared to C-GAP-17. Addition-
ally, structures at lower densities display a greater variety of chemical
environments (e.g., chains, pores, and low-coordination environ-
ments) that are absent from the CASTEP-GAP database. This lack
of representation results in higher energy and force errors.

One centrally important aspect of on-the-fly ML potential fit-
ting is the ability to extract the potential for use in an external MD
engine to run larger simulations.22,23 We exemplify this approach
here: we scaled up the system size to 10 000 atoms [Figs. 5(a) and
5(b)] and generated an a-C precursor at 2.5 g cm−3 using the same
protocol as for the 200-atom one. The CASTEP-GAP potential was
then used in LAMMPS42 to anneal the 10 000-atom structure at
3000 K for 350 ps. The final annealed structure is shown in Fig. 5(b),
color-coded by SOAP similarity to diamond,40 where a value of 1

FIG. 5. Using the on-the-fly generated potential to simulate a 10 000-atom graphi-
tization. (a) 200-atom structure annealed using CASTEP + ML. (b) 10 000-atom
structure generated using the on-the-fly potential within LAMMPS. The struc-
ture is color coded according to per-atom SOAP similarity to bulk diamond. (c)
Shortest-path ring size count as determined using the R.I.N.G.S software.56 (d)
Bond-angle distribution. (e) Radial distribution function. (f) Coordination number
count. The results in (c)–(f) are shown for a C-GAP-17-driven simulation (gray)
and for a comparable simulation driven by the on-the-fly-generated CASTEP +ML
potential (red).

indicates a local chemical environment identical to that in bulk dia-
mond. Qualitatively, the structure in Fig. 5(b) shows the expected
warped graphitic layers at this density, where it is too dense to form
flat, ordered graphitic sheets, but not dense enough to form a bulk
tetrahedral (diamond-like) structure. Notably, there are locally two
regions with that characteristic, highlighted in yellow in Fig. 5(b).
This type of behavior has been observed with C-GAP-17 previously
(along with other empirical potentials)54,57 and ascribed to numer-
ical artifacts arising from interactions between the cutoff function
and the second-neighbor peak in the radial distribution function.57

For comparison, the same 10 000-atom structure was also
annealed using C-GAP-17. The shortest-path ring counts for both
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structures give nearly identical trends, where the structure gener-
ated from the on-the-fly potential has slightly more six-membered
rings [Fig. 5(c)]. Both bond angle distributions [Fig. 5(d)] are cen-
tered around 120○, emphasizing the presence of sp2 environments;
both radial distribution functions [Fig. 5(e)] have a first peak at
≈1.41 Å, consistent with the experimental bond length in graphene
(1.42 Å),58,59 along with a second, slightly broader peak centered
at 2.44 Å, corresponding to next-nearest neighbors, and a smaller
peak at 3.77 Å. Finally, an assessment of coordination numbers
[Fig. 5(f)] shows that both annealed structures have a high percent-
age of sp2 environments (>92%). However, the structure generated
with the on-the-fly potential has fewer sp3 environments compared
to the C-GAP-17 one. Note that there is a very small amount of
five-coordinated atoms in both structures (0.06% and 0.05%, respec-
tively); for a discussion of five-coordinated atoms in simulations of
amorphous carbon, see Ref. 46.

Overall, the on-the-fly ML potential shows good perfor-
mance in a scaled-up simulation using an external MD engine.
As demonstrated in Fig. 5, the potential yields structural met-
rics that are comparable to the predictions of C-GAP-17 while
requiring only a fraction of the fitting cost. Additionally, little
human effort was expended for the construction of the train-
ing database and the fitting procedure itself. Numerical validation
across densities and temperatures [Fig. 4(c)] showed that the gen-
erated potential performs similarly to C-GAP-17 for some config-
urations, but has a higher error for others for which it has not
been “trained.” We emphasize that to be considered fully vali-
dated (for production simulations), the robustness of the poten-
tial would now need to be more comprehensively tested—e.g., by
repeating the same structural validation across various densities and
temperatures.

VI. CONCLUSIONS

Combining DFT-driven molecular dynamics with ML accel-
eration can, in principle, offer the best of two worlds: accurate
and reliable data for chemically complex systems “out of the box”
and fast simulations at the same time. We have here described
the practical implementation of a hybrid AIMD + ML frame-
work, with the aim to provide a link between the CASTEP first-
principles simulation code on one hand and any user-defined fit-
ting method on the other hand. The connection is made using a
standalone Python code to facilitate usability and future modifi-
cations. The developments described herein are implemented in
CASTEP as of version 22.1, which is freely available for academic
research.

One major direction for future work in this area relates to the
choice of error prediction and uncertainty quantification algorithms.
For now, we have focused on using generic energy and force error
criteria to determine at which points of the simulation to refit the
model. This means that the method can, in principle, be interfaced
with any type of ML potential model beyond GAP: one may envi-
sion an extension to fast linear-fitted potentials (e.g., Refs. 60–62) or
to recently developed equivariant neural-network models,44,63 and
interfaces for this purpose have begun to be implemented in the code
(Sec. III C). Beyond this scheme, it would be interesting in future
work to explore the comparison between the direct DFT evalua-
tion, on one hand, and predictive error estimators and uncertainty

quantification, on the other hand—the latter having been success-
fully used in Refs. 17 and 34, for example.

In addition to providing a reference for the implementation
of CASTEP + ML, our work touches on more generally relevant
points about the future development and adaptation of ML potential
models in the wider community. One point is the democratization
of the usage of those models: initially having required substantial
expert knowledge, it is now increasingly possible to investigate a
given material with the same ease that characterizes popular AIMD
codes. A second point is the expected capability of those approaches
not “just” to speed up MD but to provide efficient sampling for
developing more generic and wider-ranging fitting databases. The
ML potentials generated by an on-the-fly scheme can be extracted
and then run on their own, with much more efficient simula-
tions and larger system sizes than if they were integrated in the
AIMD loop directly. We expect that these overarching directions
will be of interest to the materials modeling community in the
years ahead.
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APPENDIX: TECHNICAL DETAILS

In Table II, we list the hyperparameters that define the struc-
tural descriptors and the number of representative points, M (con-
trolled by the keyword n_sparse), for GAP fitting for all three
model systems. The full strings (“descriptor_str” keyword; cf.
Listing 1) are contained in the input files provided (see the Data
availability statement).

In carbon graphitization simulations, for the GAP fitting para-
meters, we set rcut ≙ 3.7 Å for two-body and SOAP descriptors
and additionally included a shorter-ranged three-body descriptor,
in analogy to the settings used for C-GAP-17.38 We emphasize,
however, that we here only used M ≙ 200 for the SOAP kernel—in
strong contrast to C-GAP-17 (M ≙ 4030).38 All DFT computations
for carbon simulations were performed in the local density approx-
imation.64 For CASTEP + ML, a plane wave cutoff of 550 eV was
used with a 2 × 2 × 2 k-point grid and a Gaussian smearing width of
0.1 eV. The SCF halting criterion was ΔE < 10−5 eV at.−1. The DFT
parameters for C-GAP-17 can be found in Ref. 38.

TABLE II. GAP descriptor hyperparameters for the three systems studied in the
present work.

Al2O3 l-Si a-C

Two-body
cutoff (Å) 4.5 10.0 3.7
n_sparse 20 30 15

Three-body
cutoff (Å) 3.0
n_sparse 50

SOAP

cutoff (Å) 3.5 5.0 3.7
atom_sigma (Å) 0.4 0.5 0.5

n_max 8 12 8
l_max 4 4 8

n_sparse 1000 500 200
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