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Abstract— Accurate lane change prediction can reduce potential 

accidents and contribute to higher road safety. Adaptive cruise 

control (ACC), lane departure avoidance (LDA), and lane keeping 

assistance (LKA) are some conventional modules in advanced 

driver assistance systems (ADAS). Thanks to vehicle-to-vehicle 

communication (V2V), vehicles can share traffic information with 

surrounding vehicles, enabling cooperative adaptive cruise control 

(CACC). While ACC relies on the vehicle’s sensors to obtain the 

position and velocity of the leading vehicle, CACC also has access 

to the acceleration of multiple vehicles through V2V 

communication. This paper compares the type of information 

(position, velocity, acceleration) and the number of surrounding 

vehicles for driver lane change prediction. We trained an LSTM 

(Long Short-Term Memory) on the HighD dataset to predict lane 

change intention. Results indicate a significant improvement in 

accuracy with an increase in the number of surrounding vehicles 

and the information received from them. Specifically, the 

proposed model can predict the ego vehicle lane change with 

59.15% and 92.43% accuracy in ACC and CACC scenarios, 

respectively. 

I. INTRODUCTION 

The number of vehicles on roads and highways has soared in 
recent years and we are witnessing more traffic congestion and 

vehicle accidents on the streets. To address these issues, car 

manufacturers have been developing advanced driver assistance 

systems (ADAS) [1]. Currently, ADAS has various modules for 

safe and convenient driving including collision avoidance 

system (CA), adaptive cruise control (ACC), and lane keeping 

assistance (LKA). The next generation of ADAS and automated 

vehicles will rely on advanced sensor technology and leverage 

artificial intelligence to predict the drivers’ behavior and 

readiness and take appropriate measures in advance, to avoid 

accidents [2].  
Lane changing is one of the most important behaviors of 

drivers as it is the main cause of vehicle collisions. Accurate 

lane change (LC) prediction will lead to improved vehicle 

safety and passengers' comfort. Lane change prediction is a 

subset of trajectory prediction in which spatial coordinates of 

vehicles are predicted in the future time. Unlike trajectory 

prediction, lane change prediction aims to predict if the driver 

drives away from the current lane and merges into adjacent 

lanes or keeps the current lane for driving. In this context, the 

vehicle equipped with ADAS and automated driving functions 

is called the ego vehicle  and other vehicles around the ego 

vehicle are referred to as surrounding vehicles. Lane change 
prediction can be divided into two main groups: driver lane 

change prediction [3] and surrounding vehicles’ lane change 
prediction [4]. In other words, driver lane change prediction 

aims to predict the ego vehicle change lane, while surrounding 

vehicles’ lane change prediction tries to forecast when another 

vehicle tries to cut-in in front of the ego vehicle from adjacent 

lanes. 

There are several methods commonly used for lane change 

prediction in autonomous driving systems, including rule-based 

methods [5], machine learning-based methods [6], and sensor 

fusion-based methods [7]. Rule-based methods rely on speed 

difference and spacing between the vehicle and surrounding 

traffic to predict lane changes, while machine learning-based 
methods utilize trajectories of the surrounding vehicles to make 

predictions. Sensor fusion-based methods combine data from 

multiple sensors, such as cameras, lidar, and radar, or multiple 

vehicles information obtained through V2V to predict lane 

changes. 

Agent-based methods, game theory and mixed logic 

programming have been used for rule-based lane change 

prediction [8]. Machine learning-based methods include Bayes 

classifier, support vector machine, hidden Markov model, or 

artificial neural network and deep learning algorithms [9]. 

Vehicle motion parameters such as steering wheel angle, 

driver’s parameters like eye movement and head rotation, and 
surrounding vehicles information such as location, speed, and 

acceleration are combined in sensor fusion-based methods [10].   

This paper focuses on the driver lane change prediction 

scenario and aims to explore the impact of the ego-vehicle's 

status (location, speed, acceleration) and the number of 

surrounding vehicles (ACC and CACC systems) on the lane 

change prediction accuracy. We used multiple long short-term 

memory (multi-LSTM) deep models which were trained and 

evaluated on a real traffic data set (HighD) [11]. 

II. ACC AND CACC SYSTEMS

According to the SAE level 3 (L3) autonomy, lane-changing 
algorithms are the basis of ACC systems in which the vehicle is 

capable of changing lanes under a human driver’s supervision.   
ACC systems typically use one or more sensors, such as 

radar, lidar, or cameras, to detect the distance and speed of the 

vehicle in front. Utilizing this information, the ego vehicle can 

follow the leading vehicle at a safe distance. However, the 

performance of the ACC systems is limited to the on-board 

sensors' range of approximately 150 meters and a field of view 

of approximately 20 degrees. Therefore, the CACC systems 

have emerged to supplant onboard sensors with vehicular 



communication to exchange information between the vehicles 

[12]. Unlike the ACC systems that only rely on distance and 

velocity measurements, the CACC can use extra information 

from adjacent vehicles such as their acceleration profile [13]. 

Therefore, the type of information and number of surrounding 

vehicles are different in ACC and CACC systems. In this paper, 

we assume that the ACC system can measure the position and 

velocity (two parameters) of lead vehicles in the current lane, 

left lane, and right lane (3 vehicles). In the CACC system, on 

the other hand, we assume that the position, velocity, and 
acceleration (three parameters) of lead and lag vehicles in the 

current lane, left lane, and right lane (6 vehicles), as well as 

adjacent vehicles in the left and right lanes (2 vehicles), are 

available.  

III. DATASET  

In this paper, we used HighD which is a large-scale dataset 

containing high-resolution videos recorded by a drone from 

German highways [11]. The dataset contains the trajectories of 

more than 110,000 vehicles recorded at six different locations.  

 For lane change prediction specifically, the HighD dataset 

includes 5,600 complete lane changes performed by the 
drivers, as well as data on the surrounding vehicles and the 

driving environment. Compared to other datasets used for lane 

change prediction, this dataset has a larger size from the lane 

change point of view. For example, the number of lane changes 

in the HighD dataset is two times as much as NGSIM [14]. 

This is mainly due to a lower average traffic density and the 

larger number of lanes result. The data set has metadata which 

provides valuable information for lane change prediction such 

as the assigned ID to each vehicle, its (x,y) position, 

lateral/longitudinal velocity and acceleration of the vehicle, 

lane ID, as well as IDs of eight surrounding vehicles. Figure 1 
shows the location of the ego vehicle, preceding/following 

vehicles (PV, FV) which are in the same lane with the ego 

vehicle, left preceding/ alongside/following (LP, LA, LF) 

vehicles which are in the adjacent lane on the left as well as 

right preceding/ alongside/following (RP, RA, RF) vehicles 

which are in the adjacent lane on the right.    

IV. PROPOSED METHOD 

In the proposed LC prediction method, a LC commences when 
the vehicle’s lane ID changes. After finding the vehicles with 

LC behavior and extracting the required information we train an 

LSTM to predict lane changing (LC) and lane keeping (LK) 

actions. 

 
Figure 1.  Ego vehicle and its surrounding vehicles. 

A. Variables 

To train and test the LSTM, first, we selected the vehicles 

with LC. Then, the corresponding LC frame is detected. After 

finding the LC frame (flc), we select n frames before the event 
and use [flc – n, flc] frames as our training set. In other words, 

parameter n indicates the time length of the data set. Similarly, 

n frames will be used for training the LSTM for LK action.  

Finally, surrounding vehicles’ parameters were extracted from 

the HighD data set which include relative distance, relative 

speed, and relative acceleration between surrounding vehicles 

and the ego vehicle. We will investigate the effect of these 

parameters and the number of surrounding vehicles on the LC 

behavior. Table 1 shows the behavior of vehicle number 48 

which was in the 3rd lane from frame 1137 to frame 1147. At 

frame 1148, the vehicle moved to the 2nd lane. The ego vehicle 
was surrounded by vehicles number 45, 46, and 49. The ID 

value is set to 0, if no vehicle exists in the corresponding 

location. 

The input vector of the LSTM model depends on the 

vehicle’s information, and the type of surrounding vehicles: 

[ ( ), ( ), ( )]x dp i dv i da i
t
                        (1) 

where i shows the type of vehicle which iterates over {LA, LP, 

PV, RP, RA, RF, FV, LF}. Parameters dp(i), dv(i) and da(i) are 

Manhattan distances between position, velocity and acceleration 

of the ego vehicle and the ith vehicle, respectively. The length of 

the input vector also depends on the number of frames before 

LC. 

[ ,..., , ]
1

X x x x
t t n t t
                      (2) 

where t is equal to flc for the car with LC and n is the time 

length. 

B. LSTM Model 

LSTM stands for Long Short-Term Memory, which is a 

variant of Recurrent Neural Networks (RNN). As shown in 

Figure 2, our proposed multi-LSTM network consists of two 

LSTM layers, each consisting of several LSTM cells. The 

output of the second layer goes through a fully connected layer 

(FC) with 32 neurons to predict the binary value of 0 or 1, 

representing LK and LC actions respectively. Table 2 shows 

other parameters of our LSTM model. 

TABLE I.  TIME-DEPENDENT VALUES FOR ONE SAMPLE VEHICLE WITH A 

LANE CHANGE. 

 
  



 
Figure 2.  The architecture of the proposed LSTM network. 

Each cell receives input from the previous cells in the same 

layer as well as the previous layer. After processing the inputs, 
the cell generates an output and propagates it to the next cells. 

Figure 3 shows an LSTM cell which consists of four 

components. Cell state stores information over time. The input 

gate determines how much data should be entered into the 

memory cell. Forget gate indicates what part of data should be 

discarded from going into the memory cell. Finally, the output 

gate controls the output of the memory cell, determining which 

information from the previous time step should be kept or 

forgotten. This allows the network to selectively remember or 

forget information over time. Relationships between LSTM 

cell components are as follows: 

 
where  is sigmoid function, and is element-wise product 

and f
t

, i
t

and o
t

are gating vectors. 

I. EXPERIMENTAL RESULTS 

This section studies the effect of LSTM architecture, type of 

information, number of frames and number of surrounding 

vehicles on the LC prediction. 

A. Evaluation Metrics 

The performance of the LC prediction model can be assessed 

based on accuracy, precision, and recall metrics. These criteria 

are calculated by using false positive (FP), false negative (FN), 

true negative (TN), and true positive (TP) counts. 
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TP TN FP FN
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TP
Recall
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TABLE II.  LSTM PARAMETERS. 

 
 

 
Figure 3.  An LSTM cell. 

B. LSTM Architecture 

In this experiment, we investigate the effect of LSTM cells 

number on the LC prediction. Table 3 shows that increasing the 

number of cells from 8 to 128 leads to an improvement in the 

LSTM performance, achieving an average increase of 2% in 

accuracy across all tested datasets. However, when we used 256 

cells, the accuracy declined to 91.97 due to the overfitting 
problem, when multi-LSTM starts memorizing data. Therefore, 

128 cells were selected for the next experiments.  

C. Vehicles’ Information 

To assess the influence of incorporating diverse information 

regarding surrounding vehicles on our metrics, we conducted 

an analysis of three distinct scenarios: solely dp, both dp and 
dv, and the complete set of available information encompassing 

dp, dv, and da. As illustrated in Table 4, augmenting the  

TABLE III.  EFFECT OF LSTM CELL NUMBERS. 

 

TABLE IV.  EFFECT OF VEHICLE’S INFORMATION. 

             



amount of information improves the LC accuracy. Nonetheless, 

the inclusion of additional data results in a significant surge in 

our execution time, as evidenced by the increase from 540s for 

solely dp to 986s and 1624s for dp, dv, and dp, dv, da, 

respectively. 

D. Frame Set Size 

Time length (frame set size) before lane change that 

determines the input sequence length has a significant effect on 

the accuracy of predictions made by an LSTM network. If the 

frame set size is too short, the network may not have enough 

information to make accurate predictions. On the other hand, if 

the frame set size is too long, the network may suffer from 

irrelevant infromation, high computation, and vanishing 

gradient problem. Figure 4 shows that frame set of size 5 

produces the best results for LC prediction. 

E. ACC and CACC Systems 

The number and location of vehicles with respect to the ego 

vehicle, are critical factors in the design of our system. In this 

regard, we present a comprehensive analysis of the performance 

metrics associated with four different scenarios shown in Table 

5. Experiments demonstrate that the incorporation of 
information regarding the alongside vehicles fails to enhance 

the accuracy of the network, given that the presence of a vehicle 

in this region typically results in a LK. Furthermore, a 

comparison between the first and the last row of Table 5 reveals 

a significant improvement in all the metrics when utilizing all 

surrounding vehicles, in comparison to the scenario of utilizing 

solely three preceding vehicles. 

 

VI. CONCLUSION 

This study explores the impact of vehicle-to-vehicle 

communication and the type of vehicles’ information on the 

prediction accuracy of lane change. Results demonstrate that the 

proposed model, which employs an LSTM trained on the 

HighD dataset, achieves significant improvement in accuracy 

with an increase in the number of surrounding vehicles and their 

information. By changing our scenario from ACC to CACC, a 

33.28% increase in accuracy was seen. Increasing the number of 

LSTM cells to 128 and selecting a frame set size of 5 leads to 

maximum accuracy. Additionally, using more information 

about other vehicles increases lane change prediction accuracy 

at the cost of a higher computation burden. 
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Figure 4.  Effect of frame set size. 
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