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A B S T R A C T   

The goal of this paper was to measure the effect of Human-Machine Interface (HMI) information and guidance on 
drivers’ gaze and takeover behaviour during transitions of control from automation. The motivation for this 
study came from a gap in the literature, where previous research reports improved performance of drivers’ 
takeover based on HMI information, without considering its effect on drivers’ visual attention distribution, and 
how drivers also use the information available in the environment to guide their response. This driving simulator 
study investigated drivers’ lane-changing behaviour after resumption of control from automation. Different 
levels of information were provided on a dash-based HMI, prior to each lane change, to investigate how drivers 
distribute their attention between the surrounding environment and the HMI. The difficulty of the lane change 
was also manipulated by controlling the position of approaching vehicles in drivers’ offside lane. Results indi-
cated that drivers’ decision-making time was sensitive to the presence of nearby vehicles in the offside lane, but 
not directly influenced by the information on the HMI. In terms of gaze behaviour, the closer the position of 
vehicles in the offside lane, the longer drivers looked in that direction. Drivers looked more at the HMI, and less 
towards the road centre, when the HMI presented information about automation status, and included an advisory 
message indicating it was safe to change lane. Machine learning techniques showed a strong relationship be-
tween drivers’ gaze to the information presented on the HMI, and decision-making time (DMT). These results 
contribute to our understanding of HMI design for automated vehicles, by demonstrating the attentional costs of 
an overly-informative HMI, and that drivers still rely on environmental information to perform a lane-change, 
even when the same information can be acquired by the HMI of the vehicle.   

1. Introduction 

Vehicle automation, which partially supplants the moment to 
moment physical control and monitoring of the driving task by humans, 
is an increasing feature in new vehicles. The implementation of such 
systems could bring several benefits (Fagnant & Kockelman, 2015), 
including the extension of driving and personal mobility to impaired or 
older drivers (Young & Bunce, 2011), or reducing driver-workload, for 
example, by taking control of monotonous driving tasks (e.g. engaging 
adaptive cruise control systems in traffic jam and car-following sce-
narios, see Stanton & Young, 1998). 

Despite its promised capabilities, current vehicle automation 

technology still has a limited Operational Design Domain (ODD), which, 
when exceeded, requires the human to take over control (NHTSA, 2016). 
However, there is growing evidence that removing drivers from the 
decision-making and physical control loops (Louw et al., 2015; Merat 
et al., 2019) may lead to a loss of situation awareness (see Endsley, 
1995), and impaired perceptual-motor coordination (Wilkie & Wann, 
2010), which are both required to safely resume control of the driving 
task after automation (Damböck et al., 2013; Mole et al., 2019). 

One example of a manoeuvre that could be coupled with a transition 
of control to manual driving is a lane change manoeuvre, which can be 
challenging, even during manual driving, due to the complexities asso-
ciated with determining the correct time to change lane, especially in 
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heavy traffic (Gipps, 1986). Previous literature presents an extensive list 
of theoretical and mechanistic models that consider a wide range of 
factors that influence a lane-change decision, and its subsequent out-
comes (for more details, see a systematic literature review on this topic 
by Zheng (2014); and the integrated Lane-Change decision modelling 
framework, developed by Ali et al., 2021). For instance, Arbis & Dixit 
(2019) developed a game-theoretical utility model for lane changes, and 
concluded that the probability of decision conflicts (i.e. increased de-
cision uncertainty, as defined by Shaw, 1982) is directly affected by the 
characteristics of the traffic environment, such as the proximity of the 
upcoming vehicles in the adjacent lane. This argument suggests that the 
challenges imposed by the nature of a lane-change task may already 
stress drivers’ cognitive resources, and this process can be aggravated by 
automation, if combined with a transition of control. 

Results from previous empirical studies in automation support the 
idea that the introduction of a transition of control during a lane-change 
scenario can compromise drivers’ ability to change lanes safely, and 
effectively. For example, Madigan et al. (2017) reported that, compared 
to manual driving, drivers in partial automation took longer to overtake 
a lead vehicle, whenever a transition of control was required, resulting 
in shorter minimum headway distances to the lead vehicle. This delayed 
response was considered to be due to the need for drivers to understand 
both system behaviour and road conditions, after a transition of control, 
before overtaking the lead vehicle. 

A large body of literature has investigated how supportive infor-
mation provided by a Human-Machine Interface (HMI) can support 
drivers during a lane-changing task. In the context of vehicle automa-
tion, a number of studies have shown that providing drivers with 
system-related information via the HMI can support their understanding 
of the system’s behaviour, promoting safer transitions of control (Saf-
farian et al., 2012; Gonçalves et al., 2017, Stockert et al., 2015; Banks & 
Stanton, 2016). In-vehicle HMI can be used to provide automation- 
related messages, as well as information about the road environment, 
minimising a driver’s need to scan their surroundings, to aid with situ-
ation awareness recovery, after a transition of control. Several studies 
(Richardson et al., 2018; Seeliger et al., 2014; Naujoks et al., 2017; 
Naujoks et al., 2014) have reported that drivers react faster, and more 
accurately, to takeover requests from automation, when they receive 
guidance from the vehicle HMI about the surrounding traffic conditions, 
prior to a takeover. 

When it comes to manual lane-change scenarios, Hofmann et al. 
(2010) report that providing drivers with information about the direc-
tion of travel, and the number of lanes to be crossed, in advance of a 
lane-changing manoeuvre, reduced reaction time to the lane change, 
accompanied by lower lateral accelerations. Using a linear mixed model 
on driving simulator data, Ali et al. (2020) demonstrated that supportive 
information from connected vehicles in the surrounding environment 
led to safer transitions, with higher time-to-collision and a smoother 
acceleration profile, compared to the non-assisted lane-change ma-
noeuvres. These studies provide strong evidence that supportive infor-
mation from HMI may significantly improve lane-change safety in 
manual driving. However, less is known about how additional infor-
mation assists lane changes that are required after takeover from 
automation. 

The majority of the studies reported above base their conclusions 
either on analyses of drivers’ subjective responses, in terms of accep-
tance/perceived usability of the system (Richardson et al., 2018; Körber 
et al., 2018; Beller et al., 2013), or vehicle-based metrics, such as re-
action time, and time to collision (Seeliger et al., 2014; Naujoks et al., 
2017; Naujoks et al., 2014; Ali et al., 2021; Ali et al., 2020; Arbis & Dixit, 
2019). Regardless of the undeniable contribution of these studies, their 
approach fails to address how decision-making by drivers, in terms of 
the processing and acquisition of visual information, is affected by the 
introduction of additional guidance from an HMI, either with respect to 
automation status, or in terms of the behaviour of surrounding traffic. 
Ali et al. (2020) found that the use of information about the surrounding 

environment in the vehicle’s HMI significantly changes the way drivers 
deal with a lane-change task. Additionally, using a drift–diffusion 
model, Forstmann et al. (2016) demonstrated that the sequence in which 
humans sample visual information significantly affects the way they 
make a decision, in terms of decision time, choice selection, and ratio of 
correct responses. However, it is still unclear how additional visual in-
formation from an HMI affects drivers’ information processing during a 
lane change manoeuvre which follows a transition of control from 
automation. 

Research shows a good correlation between the duration of eye gaze 
to a particular task, and the level of dedicated visual attention (Carrasco, 
2011; Posner, 1980). Studies have found that both covert attention and 
gaze are sensitive to context-specific stimuli, meaning that eye move-
ments are generally drawn towards the visual elements of any stimulus 
demanding one’s attention, at a given moment (Borji & Itti, 2013). 
Longer gaze times towards a given element are, therefore, generally used 
as a proxy for human information processing. 

Using a simulated car-following study, Sullivan et al. (2012) 
demonstrated that, during moments of high uncertainty, drivers looked 
more frequently towards locations with valuable information about the 
task in hand, such as the speedometer. A meta-analytical literature re-
view by Orquin and Mueller Loose (2013), demonstrated that eye 
movements have a co-causal relation with human decision-making, with 
humans fixating more on the information that supports the decision they 
are about to make. This assumption was further supported by the models 
reported in Krajbich et al. (2012), which were able to predict the deci-
sion-maker’s choice, and response time, based on the way they distrib-
uted their gaze between the different sources of visual information. 
Therefore, one can argue that, in order to understand how drivers pro-
cess information when conducting a demanding task immediately after 
resuming control from automation (such as a lane change), it is impor-
tant to understand where they direct their gaze at each stage of this 
process. 

In a previous study (Gonçalves et al., 2020), we observed that, during 
an automated lane change, drivers presented the same general pattern of 
eye movements as those reported in studies involving a manual lane 
change (Tijerina et al., 2005; Salvucci et al., 2001). However, our results 
also showed a significant increase in drivers’ vertical gaze dispersion 
during automated lane changing, with more glances towards the vehi-
cle’s HMI, which was placed in the dashboard area, and displayed the 
automation status (on/off). Our results also indicated that when the 
same information could be obtained by looking at the road, as compared 
to looking at the HMI, drivers tended to look more at the road envi-
ronment, relying less on the HMI. As our previous studies did not sys-
tematically control the information given to drivers during the transition 
of control, it is not currently clear how drivers’ gaze is influenced by the 
information provided by the system’s HMI, in such lane-changing tasks. 

1.1. Current study 

The study reported in this paper was funded by the European project 
AdaptIVe (Grant Agreement No. 610428). Its main objective was to 
evaluate the impact of different types of information, provided by an 
automated vehicle’s HMI, on drivers’ gaze behaviour, and their 
resumption of control in preparation for a lane-change manoeuvre, 
immediately after L3 automation (SAE, 2018). In particular, we inves-
tigated how HMI messages about system status, presence of traffic in the 
adjacent lane, and the presence of a guiding arrow advising drivers 
about whether it was safe to change lane, affected drivers’ gaze 
behaviour and decision-making time during a lane change. The 
following research questions were investigated:  

1. How does the type of information presented on the HMI of an 
automated system affect drivers’ gaze behaviour before changing 
lane, following a request to take over from vehicle automation? 
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2. How does the information provided on an HMI affect when drivers 
begin to change lane?  

3. Does the density of the surrounding traffic (e.g. presence of traffic in 
the adjacent lane) affect drivers’ reliance on the system HMI? 

Based on previous literature (Seeliger et al., 2014; Naujoks et al., 
2017; Naujoks et al., 2014, Stockert et al., 2015), it was hypothesised 
that drivers would react faster in a given scenario, if information about 
the system status and surrounding traffic were available via the HMI 
during the transition. This help from the HMI was expected to be more 
evident for more challenging decision-making scenarios (higher traffic 
density), since it was hypothesised that giving drivers more guidance 
would reduce their uncertainty and decision-making time (Ali et al., 
2020). Based on our previous study (Gonçalves et al., 2020), we ex-
pected that drivers would have increased gaze towards the information 
on the HMI, to check the system status immediately after the transition 
of control (whenever present), but not necessarily rely as much on the 
information about the road environment (a guiding green arrow). The 
presence of vehicles in the adjacent lane was hypothesized to increase 
the frequency of drivers’ gaze to the side mirrors, and to the HMI, 
whenever information about the surrounding traffic was displayed by 
the system (Tijerina et al., 2005). 

2. Method 

2.1. Participants 

Thirty drivers (17 male, 13 female), aged between 21 and 60 years 
(M = 35.53, SD = 11.51) were recruited via the participant database of 
the University of Leeds Driving Simulator (UoLDS), and an invitation 
shared using social media. Participants had normal, or corrected-to- 
normal, vision, and held a U.K. driving licence for at least two years 
(M = 13.51, SD = 11.17). Ethical approval was provided by the Uni-
versity of Leeds Ethics committee (Ethics no. LTTRAN-054), and par-
ticipants received £25 for taking part in the study, which took around 
2.5 h to complete. 

2.2. Materials 

The experiment was conducted at the University of Leeds Driving 
Simulator (UoLDS). The simulator consists of a 4 m projection dome 
with 300◦ projection angle and an 8 degree of freedom motion system. 
Inside the dome, a Jaguar S-Type cabin with fully operational controls is 
installed. The Seeing Machines FaceLab v4.5 eye-tracking device was 
used to record the participants’ eye movements, with an update rate of 
60 Hz. Inside the simulator’s vehicle cabin, a Liliput 7′′ VGA touchscreen 

with 800X480 resolution, was installed near the gear shift, and used for 
a non-driving related, secondary task, described below. See Fig. 1 for a 
representation of the experimental set-up. 

2.3. Experimental design 

Each experimental drive contained six separate scenarios in a 
continuous drive. Each scenario consisted of an automated car-following 
task, where drivers needed to disengage the automation to perform a 
discretionary lane change (as defined by Ali et al., 2020), to overtake 
any slower lead vehicles. A 3X3 repeated measures design was used, 
with HMI design (No HMI, System HMI, Full HMI), and distance of ve-
hicles on the offside lane during the lane-change manoeuvre (100 m, 25 
m, 15 m), as within-participant factors. Each participant completed 
three drives (one for each type of HMI), presented in a counterbalanced 
order. 

2.4. Automated driving system 

The participant’s vehicle was equipped with an automated driving 
system (SAE level 3; SAE, 2018), which kept the vehicle in the middle of 
the centre lane, and at a minimum headway of 2 s from the lead vehicle. 
To activate automation, drivers pulled the right-hand stalk when the 
vehicle reached 70 mph (speed limit) and was positioned in the centre of 
the middle lane. The automation could be deactivated by either braking/ 
accelerating, turning the steering wheel more than 2◦ in either direction, 
or pulling the same stalk used to turn it on. The system was not able to 
change lanes by itself. Therefore, participants needed to disengage the 
automation, perform the manoeuvre manually, and then reengage the 
system. 

2.5. The distance of vehicles in the offside lane 

Each lane change was accompanied by a vehicle in the offside lane, 
which was driving in the same direction as the ego-vehicle (downstream 
direction), positioned at three different distances: 100 m, 25 m, and 15 
m away from the ego vehicle. Each drive contained two repetitions of 
these distances, presented in a randomised order (see Fig. 2). Different 
combinations of offside distance were tested in pilot studies, and the 
most suitable set of variables was selected, to suit the needs of this study. 
Varying the vehicle’s distance in the offside lane was used to simulate 
higher traffic density, and manipulate the challenges associated with 
changing lanes. Previous studies have shown that a reduced gap be-
tween the ego vehicle and the vehicle in the offside lane increases the 
uncertainty associated with the lane-change task (as defined by Shaw, 
1982), and increases task complexity, thus affecting decision-making 
time (Gipps, 1986; Ahmed et al., 1996; Arbis & Dixit, 2019). This set- 
up also allowed us to establish if the provision of guidance informa-
tion by an HMI (that it was safe to change lane) affected drivers’ de-
cisions, and whether this was the same for the three vehicle distances (as 
observed in Ali et al., 2020). 

2.6. HMI configurations 

To understand how drivers’ decision-making processes, and gaze 
behaviours, are affected by information about automation status, and 
the surrounding environment provided by the automation’s HMI, three 
configurations of HMI design were developed. The visual elements of the 
HMIs were designed by a project partner, CRF (Centro Ricerche Fiat, 
FIAT,2021). The No HMI Condition contained a blank central cluster, 
with no information on the system’s HMI. There was just a short audi-
tory “beep” which informed drivers when the system was turned on/off. 
A verbal message, played through the car’s speakers, informed the 
driver when the automation was available. The System HMI Condition, 
outlined in Fig. 3, included four screens, which informed the driver that 
the system was on, off, ready and disengaged. 

Fig. 1. Representation of the experimental set-up in the University of Leeds 
Driving Simulator. In this picture, an anonymous experiment participant is 
driving in automation mode while interacting with the secondary task, pre-
sented on the VGA touchscreen. The cameras near the windshield are part of the 
eye-tracking system. 
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Finally, the Full HMI Condition contained the same information 
presented in Fig. 3. However, when automation was engaged, additional 
information was presented to drivers about the surrounding traffic, 
including the lead vehicle’s presence and the approaching vehicle in the 
adjacent lane (Fig. 4). Here, once the system perceived a vehicle ahead 
(6 s headway), a car symbol appeared on the HMI. When the ego vehicle 

started to brake to match the speed of the lead vehicle (at 2.8 s head-
way), a lane-change suggestion was triggered by displaying a green 
arrow, which was used to inform participants that it was safe to change 
lane, because the offside vehicle was not close enough to trigger a 
collision, if drivers wished to change lanes. The figure also shows a 
situation where there was a vehicle close by in the offside lane; however, 

Fig. 2. Representation of the experimental scenario. The schematic depicts one of the six overtaking events that occurred per run. Letters A-D represent the stages of 
the ego vehicle position and automation state. (A) automated system detects the lead vehicle, (B) automated system starts reducing its speed, to match with the lead 
vehicle, (C) drivers disengage the automation to perform a manual lane change (variable), and (D) drivers’ front tyres crossed the lane markings. 

Fig. 3. Representation of the System HMI Condition (Designed in collaboration with CRF). (A) representation of the system in manual mode, with automation 
unavailable (grey steering wheel); (B) system in manual mode, with the automation available (blue steering wheel); (C) system in automation mode (green steering 
wheel), (D) message displayed after the driver resumes manual control. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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this never happened during the experimental drives. We introduced this 
scenario as an illustration during the briefing session and encouraged 
drivers to judge for themselves whether it was safe to overtake the lead 
vehicle. 

2.7. Non-Driving related task (NDRT) 

Currently, L3 vehicle automation, as described by SAE (SAE, 2018), 
permits drivers to engage in other, non-driving related activities, but 
requires them to be ready to take control, when requested. Therefore, to 
understand how this ability to engage in other tasks during L3 auto-
mation affected lane-changing behaviour during a transition of control, 
drivers were asked to perform a non-driving related task (NDRT) as soon 
as the automated driving system was turned on. This visual secondary 
task, the Arrows task (adapted from Jamson & Merat, 2005), was dis-
played on a touchscreen monitor, placed near the gear selector, and 
involved presenting a series of arrows displayed on a 4 × 4 grid, as 

shown in Fig. 5. Drivers had to locate the one upward-facing arrow for 
each display and touch it as fast as they could. As soon as the up arrow 
was pressed, the next display appeared. If participants did not find an 
arrow within 5 s, a new 4 × 4 grid was displayed. To avoid interference 
with the HMI information, this version of the task was not accompanied 
by any auditory signals. To encourage driver engagement with the task, 
a “score to beat” was displayed on the screen, as shown in Fig. 5. 

2.8. Procedure 

Upon arrival, participants were asked to read a description of the 
experiment and sign a consent form. They were then taken to the 
simulator dome and familiarised with the vehicle and its controls, 
including the HMI, and how to operate the automated system. During 
this briefing session, participants were given the opportunity to practice 
the Arrows task, both independently and during the automated drive. 
They were also informed that there was no takeover request, and that 
the ego vehicle would only brake/decelerate in the presence of a slower 
lead vehicle. Participants were instructed that, as soon as they felt the 
vehicle’s deceleration, and when they felt it was safe to do so, they 
should resume manual control of the vehicle, and try to perform a 
manual lane change to the offside (right) lane. As these were non-critical 
scenarios, there would be no collision if drivers did not resume manual 
control, and the vehicle maintained a maximum headway of 2 s, for as 
long as the automation was engaged. They were also instructed to 
reengage the automation and resume the Arrows task as soon as they 
had returned to the middle lane, after overtaking the lead vehicle. 

After the briefing session, participants completed a 15-minute 
familiarisation drive, supervised by the experimenter. The familiar-
isation drive consisted of a short version of the experimental drives, with 
one lane-change scenario for each HMI. Once familiarised with the task 
and environment, the experimenter left the dome. The participants 
drove the three experimental drives, presented in a counterbalanced 
order, with five-minute breaks between each drive, during which par-
ticipants left the simulator dome to reduce any fatigue effects. 

Fig. 4. Representation of the Full HMI Condition (Designed by: CRF). (A) represents the automation engaged, with a vehicle detected ahead; (B) represents the lane- 
change suggestion, whenever the system reached the designated distance to the vehicle in front; (C) represents the fake condition of the unsafe lane change, which 
was never present on the actual HMI (just on the briefing session) and (D) is the message confirming a successful transition of control. 

Fig. 5. Representation of the Arrows task, as it was displayed on the 
touchscreen near the gear stick. 
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2.9. Research variables 

As described above, the independent variables were the three HMI 
conditions, and the distance of the vehicles in the offside lane during the 
lane-change scenarios (offside distance). 

To measure how quickly drivers initiated a lane-change manoeuvre 
following a resumption of control, their Decision-Making Time (DMT) 
was calculated. This metric has been used in previous eye-tracking 
studies, to model human decision-making and performance (see exam-
ples in Ratcliff et al., 2016; Shaw, 1982; Krajbich et al., 2012, Forstmann 
et al., 2016). For this study, DMT was defined as the time between the 
beginning of drivers’ disengagement from the NDRT to engage in the 
takeover process (tengage) until the point they initiated the lane-change 
manoeuvre (taction). taction was also used during gaze behaviour analysis 
as an anchor point to define the time frame in which the eye movements 
were extracted from the raw experimental data. 

During the data analysis process, we identified that, as it was a non- 
safety–critical scenario, there was a delay between the automated sys-
tem’s brake (signalising the presence of a lead vehicle to be overtaken) 
and drivers’ interruption of the NDRT, since there was no time pressure 
for them to respond. It was also noted that not all drivers disengaged the 
automation in the same way (75% used the steering wheel, while 25% 
used the stalk). We also observed that some drivers disengaged the 
automation, but continued looking at the road environment before 
manually performing the lane-change manoeuvre. For this reason, there 
was no specific point in the experimental condition which could be used 
to measure taction across all trials. Given the reasons presented above, a 
MATLAB (version R2016a, MathWorks, 2017) algorithm was developed 
to calculate drivers’ DMT, based on a set of detection criteria, as follows:  

• tengage was calculated based on the moment drivers moved their head 
up from the arrows task display, immediately after the lead vehicle 

was detected by the automated controller (“A” in Fig. 2). The 
assumption for this detection criterion was that drivers stopped 
interacting with the NDRT after moving their head away from the 
display and started acquiring visual information to decide when to 
overtake the lead vehicle. Detection of drivers’ head position 
(whether looking towards the NDRT or the road/HMI) was based on 
the eye-tracking system’s gaze detection quality, since drivers’ eyes 
were not trackable by the system while they performed the Arrows 
task.  

• As the average steering wheel angle input during the manual sections 
of the experimental drives (outside the lane-change scenarios) was 
lower than 1◦ (M = 0.64, SD = 0.14), we assumed that any extreme 
value of steering wheel angle input after tengage would signify the 
physical engagement with the lane-change manoeuvre. Further 
analysis found no cases in which drivers moved their steering wheel 
over 2◦ without fully committing to the lane-change manoeuvre. 
Based on this observation, taction was calculated as the time as when 
drivers made the first steering wheel input over 2◦, whether the 
automation was already disengaged, or not. Fig. 6 shows an example, 
for one participant, of how the DMT was calculated.  

• The timings for DMT calculation were based on the simulator data 
output for all participants and trials, regardless of the method used to 
disengage automation or the experimental conditions. The sampling 
rate was 60 Hz. 

The metric used to analyse drivers’ gaze behaviour in the different 
test conditions (3xHMI and 3x offside distances) was the percentage of 
drivers’ gazes towards five Areas of Interest (AoIs), during the 3 s that 
preceded taction. This time window of 3 s was selected since not all drivers 
had the same DMT. Using a relative value for different time windows, 
would over/underestimate each individuals’ gaze percentages, 
depending on the length of their DMT. A time window of 3 s was selected 

Fig. 6. Example of how Decision-Making Time (DMT) was calculated for a single participant. The green line (Gaze detection status) represented the detection of 
drivers’ face in the eye-tracking system. We assumed that drivers were not looking to the road whenever the value in this variable was 0 (meaning drivers’ head could 
not be detected). tengage was detected whenever their gaze detection status was >=2 (meaning that the eye tracker could detect the participant’s head, as they were 
looking upwards). The yellow line (steering wheel angle) was used to detect taction, as it indicated when drivers were physically engaged with the driving task. The 
shaded grey area, between the defined points for tengage and taction is the total amount of the participant’s DMT. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

R.C. Gonçalves et al.                                                                                                                                                                                                                           



Accident Analysis and Prevention 174 (2022) 106726

7

as it included a complete DMT for 87% of participants, while minimising 
noise caused by non-trackable eye-tracking data (due to the NDRT). 
Decision-making models, such as those developed by Ali et al. (2019) 
also support our view that a 3 s time window is suitable to capture the 
decision-making process in a lane-change scenario. 

Based on previous studies (Carsten et al., 2012, Louw et al., 2016; 
Louw et al., 2017; Louw & Merat, 2017; Louw et al., 2018), five separate 
regions were defined by the AoIs within the drivers’ field of view 
(Fig. 7). The centre region was defined as a 6◦ circular area, centred on 
the mode of drivers’ fixations (see Victor, 2005), defined during the first 
minute of their experimental drives, which was in manual mode. The 
other four regions were equally split between lateral and vertical sec-
tions of the screen (see Fig. 7 for a schematic representation of the AoI 
layout). The top and bottom of the centre region covered the road area 
beyond the lead vehicle, and the steering wheel/HMI area, respectively, 
and the two lateral regions covered the wing mirrors and adjacent lanes 
to the left and right of the central area. 

A fixation was calculated as the persistence of drivers’ gaze position 
in a 1◦ radial area, for at least 150 ms, consistent with the boundaries 
reported in the literature for dispersion-based fixation identification 
algorithms (see Salvucci & Goldberg, 2000; Nyström and Holmqvist, 
2010). The analysis reported in this paper focused on three specific AoIs, 
as they were considered to be the most relevant for a lane-change 
manoeuvre, according to studies of eye-movements during lane 
changes (Tijerina et al., 2005; Doshi & Trivedi, 2009; Salvucci et al., 
2001; Fitch and Hankey, 2012; Chovan, 1994). These were the centre, 
bottom and right AoIs. 

2.10. Statistical analysis 

The data was compiled and pre-processed using MatlabR2016a 
(MathWorks, 2017) and analysed using IBM SPSS v21 (IBM Corp, 2012). 
Further analyses were performed using the SKlearn tool in a Python 
environment (Python Software Foundation, 2020). A Kolmogorov- 
Smirnov test (Conover, 1999) was used to check for normality and 
showed that parts of the data had a slight positive skew. Whenever the 
data was found not to be normal, a logarithmic transformation was 
applied to rely on parametric tests for the statistical treatment. In cases 
where parametric tests were not possible, Friedman’s test was used as a 
substitute for a two-way ANOVA. All figures presented are based on the 
untransformed data, with results based on tests performed on the 

transformed data. 
To filter out the noise inherent in eye-tracking data, all gaze samples 

containing less than 75% of data points with “good gaze tracking 
quality”, as specified by the eye-tracking software (no gaze estimation 
based on head position or missing data) were discarded. Two partici-
pants did not follow the instruction to perform the Arrows task, and 
spent the experimental drives looking towards the forward scene. 
Therefore, their data was not included in the analysis. To exclude other 
participants who did not adhere to the scenario instructions (e.g. did not 
perform the overtaking manoeuvre during the experimental drives), 
outliers were removed from the sample using a criterion of 3x inter-
quartile range (IQR3). An α-value of 0.05 was used as the criterion for 
statistical significance, and partial eta-squared was computed as an ef-
fect size statistic. Where Mauchly’s test indicated a violation of sphe-
ricity, degrees of freedom were Greenhouse-Geiser corrected. 

2.11. Participants’ Decision-Making time 

To test whether the different information from the HMI, and the 
distance of the vehicles in the offside lane, affected participants’ 
decision-making performance, a Friedman’s test was conducted using 
drivers’ Decision-Making Time (DMT), in seconds, as the dependent 
variable, while HMI condition (No HMI, System HMI, Full HMI) and 
Offside distance (100 m, 25 m, 15 m) were the independent variables. 

Friedman’s test results found significant differences between drivers’ 
DMT, based on the HMI condition, and offside distance, during the 
moment of the takeover [χ2(8) = 15.025, p = 0.05]. Individual Kruskal- 
Wallis post-hoc tests showed a significant effect of offside distance [χ2(2) 
= 0.953, p = 0.0387], with higher mean DMT values associated with 
shorter offside distances (15 m = 3.09 s, 25 m = 2.49 s, 100 m = 1.83 s). 
However, the three HMI conditions were not found to affect this value 
[χ2(2) = 2.65, p = 0.261]. As shown in Fig. 8, drivers’ DMT was longer 
when the vehicle in the offside lane was closer, with a similar pattern 
observed regardless of the level of information from the HMI. 

2.12. Participants’ gaze distribution 

Fig. 9 shows the proportion of drivers’ raw gaze to the different AoIs 
(see Fig. 7), for the 3 s before and 5 s after taction. This visualisation shows 
a similar gaze pattern for the three HMI conditions, after the resumption 
of control. However, many more glances are seen to the HMI (bottom 

Fig. 7. Schematic representation of the division of AoIs used in the analysis of drivers’ eye movements. The red markings represent the AoIs mentioned above. The 
black/white drawings represent the visual elements present in the area covered by each of the AoIs. Note that this is just a schematic representation and is not a 
precise depiction of the elements in the real simulator dome. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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AoI) when the automation was engaged in the Full HMI condition. 
As can be seen in Fig. 9, for all three HMI conditions, there is a sharp 

decrease in “Gaze not Tracked“ data points during the 3 s before taction. 
As drivers’ exact gaze was not trackable during the execution of the 
NDRT, it is assumed that this large grey area represents the percentage 
of drivers looking downwards to the Arrows task display. 

In terms of percentage of gaze distribution, the pattern roughly fol-
lows that observed for manual lane changes (Salvucci et al., 2001; 
Tijerina et al., 2005). During the time before taction, which can be asso-
ciated with what Tijerina et al. (2005) describe as the “decision-making 
phase”, drivers distributed their gaze mainly between the centre (or-
ange) and right (light blue) AoIs, suggesting they were mostly paying 
attention to the offside lane, and the vehicle ahead, probably to judge 
whether or not it was safe to engage in the lane-change manoeuvre. 
After taction (“action phase”, Tijerina et al., 2005) a gradual reduction in 
the percentage of gazes to the right AoI, and an increase in the per-
centage of gazes to the centre is seen for all HMI conditions, suggesting 
that drivers were focusing on the vehicle’s heading, to manually execute 
the desired manoeuvre, and change lanes. 

To measure the effect of the HMI information, and traffic densities, 
on drivers’ gaze behaviour, three 3X3 ANOVAs were conducted, one for 
each of the main AoIs of interest: centre, right and bottom. Each ANOVA 
had HMI condition (no HMI, system HMI, full HMI) and Offside distance 
(100 m, 25 m, 15 m) as independent variables, and the percentage of 
drivers’ gaze to the respective AoI, during the 3 s which preceded taction 
as the dependent variable (Fig. 10). 

There was a main effect of HMI condition on the percentage of gaze 
to the centre AoI [F(2, 258) = 6.886, p =.001, ηp

2=0.051], where post- 
hoc Bonferroni tests showed this value to be significantly lower during 
the full HMI condition, compared to the other two conditions. There was 
also a main effect of offside distance [F(2, 258) = 3.458, p =.033, ηp

2 =

0.026], where drivers’ gaze to the centre AoI was higher during the 
shorter gap condition (15 m). No significant interactions were found F 
(2, 258) = 0.810, p =.520, ηp

2 = 0.012]. 
The ANOVA results for the percentage of gaze to the right AoI 

showed a main effect of offside distance [F(2, 258) = 4.825, p =.009, 
ηp

2=0.036], with a higher proportion of gaze towards the right during 
the shorter gap conditions (mean = 17.4%, 16.5% and 10.8%, 

respectively, for the 15 m, 25 m and 100 m, conditions). However, there 
was no significant effect of HMI condition on gaze to the right, [F 
(2,258) = 0.038, p =.195, ηp

2=013], and no significant interaction 
between HMI condition and offside distance [F(4, 258) = 0.023, p 
=.681, ηp

2= 0.010]. 
Finally, there was a significant effect of HMI condition on gaze to-

wards the bottom AoI [F(2, 258) = 18.852, p <.001,ηp
2 = 0.126], with a 

significantly higher proportion of gaze towards the bottom as the 
amount of information from the HMI increased (Full HMI > System HMI 
> No HMI). There was no significant main effect of offside distance [F(2, 
258) = 0.586, p =.588, ηp

2=0.005], and no interaction effects [F(4, 
258) = 1.587, p =.119, ηp

2=0.028]. 

2.13. Gaze behaviour and DMT correlation 

As previous literature shows a link between gaze behaviour and the 
decision-making process (Orquin and Mueller Loose, 2013), we inves-
tigated how individual differences in gaze concentration to different 
AoIs affected participants’ lane changing DMT, by using a regression 
model to correlate drivers’ DMT with 20 different measures of drivers’ 
gaze behaviour, extracted from the same period of time for which the 
DMT was calculated (from tengage to taction). These included, the per-
centage of raw gaze; fixation count; average fixation duration; and time 
of first fixation, for each AoI. The model also considered the lane-change 
order (1 to 6) as an independent variable, to account for learning effects. 

As the regression contained many predictor variables, and the type of 
correlation between the model’s elements was unknown, we used a 
random forest (see Segal, 2003; James et al., 2000) machine-learning 
algorithm for the data fitting. To identify which measures from 
drivers’ gaze behaviour were correlated with their DMT, separate 
models were created for each of the HMI conditions, and the predictor 
weight values of each variable (measures) were used as a proxy for the 
importance of the information located in the AoI for drivers’ decision- 
making process. The data was split in a 75:25 ratio between training 
and validation of the models, and the input parameters were tested 
repeatedly, aiming to reach a better model accuracy. Variables with less 
than 1% (0.01) predictor weight were discarded. To optimize the model 
output, the hyperparameters (number of variables sampled on each 

Fig. 8. Results of Friedman’s test on drivers’ Decision-Making Time in different test conditions.  
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branch of the tree, and number of trees to grow) of the random forest 
algorithm, were tested using a grid search, and only the combinations of 
hyperparameters that yielded the best accuracy are reported in this 
paper. 

Results showed that the only statistically significant variable as 
predictor of DMT (i.e. above 0.01 predictor weight value) was the per-
centage of raw gaze towards the five different AoIs. As the order in 
which the events were presented to the driver (1–6) had no importance 
as a predictor, we assumed no learning effects in the decision-making 
process. Table 1 contains the three regression model outputs that yiel-
ded the best results, in terms of fitting, for their respective experimental 
conditions. All the regression models had relatively high accuracy 
(approx. 70%) given the dataset’s size, and an average error (ranging 
from 0.27 s to 0.31 s, in a task with an average duration of 2.47 s), within 
the boundaries of expected inherent variance in lane-change behaviour 
data (see Arbis & Dixit, 2019), suggesting that the model is capable of 

predicting drivers’ DMT reliably, based on their gaze. 
For the No HMI, and System HMI conditions, as expected, the most 

important variables extracted from drivers’ gaze behaviour for pre-
dicting their DMT in lane-change scenarios were the percentage of gaze 
to the mirrors and offside lanes (right AoI) and the road centre (centre 
AoI). Our data suggests that drivers who focussed on those two main 
points of the road environment were more likely to make significantly 
quicker decisions and responses, than those who deviated their gaze to 
less important areas, such as the top and bottom AoIs. 

On the other hand, the observed changes in the predictor weight 
values for the Full HMI condition suggest that the addition of the 
advisory green arrows, indicating it was safe to change lanes, affected 
how drivers divided their attention between the different regions, when 
more advice was available from the HMI. In this condition, the per-
centage of gaze towards the bottom AoI gains importance (weight value 
= 0.27, compared to ~ 0.02 for the other two conditions), over the 
percentage of gaze to the centre AoI (weight value = 0.13, compared to 
0.38 for the other two conditions), becoming the second most important 
predictor. 

3. Discussion 

The objective of this study was to measure the effect of different 
types of HMI information, and guidance, on drivers’ gaze behaviour and 
decision-making time, during transitions of control from automation, 
which occurred prior to a lane-change manoeuvre. The level of traffic 
density in the offside lane was also manipulated to understand how 
drivers used different sources of information from an HMI and the road 
environment, to help with more challenging lane-changing decisions, 
when traffic behaviour was more ambigious. A series of regression 
models were also generated to correlate drivers’ gaze behaviour to the 
decision-making time. 

3.1. The effect of dash-based information on drivers’ gaze behaviour 

Results from drivers’ gaze concentration to the different AoIs illus-
trated a higher percentage of gaze towards the bottom AoI, corre-
sponding directly to the amount of information presented on the HMI, at 
the expense of reduced gaze to the road centre (centre AoI). In the Full 
HMI condition, gaze towards the bottom AoI (HMI) increased just before 
drivers’ first steering wheel input (taction), which was immediately before 
drivers started to change lanes, suggesting that drivers used information 
from the HMI to help them decide how to act (at least for the Full HMI 
condition), at the expense of glances to the centre AoI (road centre). This 
finding is supported by core gaze and decision-making theory (Carrasco, 
2011; Orquin and Mueller Loose, 2013; Sullivan et al., 2012), which 
states that humans tend to fixate longer on the information that they are 
processing. This finding highlights one potential issue with the imple-
mentation of overly-informative and complex HMIs, as drivers attend to 
information presented on an HMI, as a trade-off to glances to the road 
centre. This issue must be taken into account when designing future 
vehicle HMIs, because reduced glance time to the road is generally 
associated with higher crash probabilities (see Harbluk et al. 2007). Of 
course, these results may also be affected by the novelty of the messages 
used in this study, and it is important to understand how such gaze 
patterns might change with longer term use of such in-vehicle systems 
and interfaces. 

Drivers’ gaze pattern towards the HMI was not found to be affected 
by the position of vehicles in the offside lane. This result was not ex-
pected, and goes against our initial hypothesis that drivers would rely 
more on the HMI information, when the scenario was associated with 
more difficult decisions, e.g. when the vehicle in the offside lane was 
closer. A look at drivers’ attendance to the side mirrors explains this 
further, showing a significant increase in the percentage of drivers’ gaze 
towards the right AoI, for shorter offside distances. This finding suggests 
that, for safety critical situations, drivers relied also on their own 

Fig. 9. Drivers’ gaze distribution across the five AoIs. The X-axis represents the 
3 s before and 5 s after taction. The Y-axis shows the percentage of drivers gazing 
towards each AoI, in a given point in time. The data was captured at a sampling 
rate of 60 Hz. As participants’ eyes were not trackable during the Arrows task, 
all the data points collected during this time on the task were captured as “Gaze 
not Tracked”. 
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judgement, on top of the HMI advice. The increased proportion of gaze 
towards the mirrors for more difficult decisions was expected, and is in 
line with previous studies (Orquin and Mueller Loose, 2013; Sullivan 
et al., 2012), suggesting that real-time information from the surrounding 
road environment is more valuable to drivers in more safety critical 
situations. Since we did not find any difference in the pattern of drivers’ 
gaze to the right AoI (right mirror), across the three HMI conditions, our 
results suggest that drivers did not use the HMI information as a sub-
stitute for the mirror checks, which is typical for a manual lane-change 
(Tijerina et al., 2005), but rather a complement to it, since both glances 
to the right and to the HMI were constantly present for the events in the 
Full HMI and System HMI conditions. 

In terms of our regression model, “glances to the right AoI” was 
found to be the only predictor variable in the Full HMI condition, 
showing stronger correlation with drivers’ DMT than the “glances to the 
HMI” variable. The suggestion that glances to the side mirrors is the 
most important predictor of drivers’ decision for a lane-change predic-
tion model is consistent with studies on lane changes in manual driving 
(Doshi & Trivedi, 2009; Salvucci et al., 2001), and highlights the rele-
vance of mirror checks for the decision-making process, even in auto-
mated driving scenarios. This similarity in gaze behaviour between 

automated and manual lane changing was also observed in another lane- 
changing study conducted in our lab, which did not include different 
types of information on the HMI (Gonçalves et al., 2020), and supports 
the argument that drivers tend to rely on information from the road 
environment, for their decision-making. 

Of course, it can also be argued that this mirror-checking pattern 
illustrates a potential lack of trust in the automated driving system, and 
our HMI information (Lee & See, 2004), or is due to an automatised, 
well-learnt, behaviour. It is reasonable to assume that such patterns of 
behaviour may change after prolonged exposure to a reliable automated 
system and HMI (i.e. a conditioned learned behaviour, Charlton & 
Starkey, 2011). Further work is, therefore, needed to observe how 
prolonged and sustained interaction with such in-vehicle HMIs changes 
the long-term behaviour of drivers, and their gaze patterns, and how 
different levels of system reliability and traffic scenarios affect this 
behaviour. 

3.2. The effect of dash-based information on drivers’ DMT 

Drivers’ DMT was found to increase in line with the position of the 
vehicle in the offside lane, with higher DMTs for closer vehicles. This 
result was expected, and is supports the large body of literature on 
decision-making theory (Shaw, 1982; Ratcliff et al., 2016), and lane- 
change manoeuvres (Gipps, 1986, Arbis & Dixit, 2019). Here, the un-
certainty associated with a lane-change ahead of a nearby vehicle in the 
adjacent lane caused drivers to spend longer making a lane-change de-
cision, likely associated with the need to look around more at their 
surrounding environment. However, the lack of an effect of HMI con-
dition on drivers’ DMT goes against results from other experiments in 
the field of vehicle automation (Richardson et al., 2018; Seeliger et al., 
2014; Naujoks et al., 2017; Naujoks et al., 2017; Stockert et al., 2015), 
which suggest a significant improvement in drivers’ performance, with 
the help of information from the HMI. 

This observed lack of a difference for the DMT values for different 
HMI conditions in this study may be due to our HMI design, which was 
perhaps not as informative for participants as we had envisaged. On the 
other hand, the output of our regression models showed that, in the Full 
HMI condition, there was a strong correlation between “glances to the 
HMI” and drivers’ DMT. This was not the case for the other two HMI 

Fig. 10. Results for the 3 ANOVA tests performed on drivers’ gaze on each AoI during the 3 s that preceded taction.  

Table 1 
Model performance output and weight values for regression for each HMI con-
dition. The first five lines represent the weight values for the predictor variables 
(all weights were positive values, and their sum should always total 1). The 
model accuracy is based on the training dataset, and the values of the average 
prediction errors are based on the validation dataset. T underlined number in the 
Full HMI column is highlighted to emphasize the significant difference in this 
model’s output when compared to the other two.  

Model variables No HMI System 
HMI 

Full HMI 

Gaze percentage on AoI during 
DMT 

Right  0.5  0.5  0.55 
Centre  0.38  0.38  0.13 
Left  ~0.09  ~0.09  0.05 
Bottom  ~0.02  ~0.02  0.27 
Top  ~0.01  ~0.01  ~0.0 

Model accuracy  59.15 %  72.69 %  75.29 % 
Avg. prediction error  0.27 s  0.3 s  0.31 s  
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conditions, suggesting that the presence of supportive information (i.e. 
the green arrow signalling a safe lane change) is indeed beneficial for the 
decision process (supporting the findings from Richardson et al., 2018; 
Seeliger et al., 2014; Naujoks et al., 2017; Naujoks et al., 2017, Stockert 
et al., 2015). However, the observed correlation was not strong enough 
to generate perceivable changes to the mean DMT, based on the 
experimental conditions alone, as individual differences in drivers’ gaze 
behaviour might have affected the way drivers interacted with the visual 
information, and therefore, masking the potential effects on their DMT. 

The arguments in favour of a more informative/supportive HMI is 
that a clearer and more direct orientation to the situation, as provided by 
the HMI, helps the driver to recover situation awareness, and avoid 
potential accidents caused by delayed or inappropriate responses. 
However, drivers in the current study were not under pressure to 
perform a lane-change as quickly as they could (i.e. they were asked to 
complete a discretionary lane-change). Results from Ali et al. (2020) 
demonstrated that drivers tend to spend more time, and are more careful 
in their lane-changes, when there is more information from a vehicle 
HMI. According to these authors, drivers changed the way they accessed 
the information, not only checking the mirror and the road centre, but 
scanning all the information at their disposal. Regarding the current 
study, this suggests that our drivers may have checked the HMI as a 
routine, as they expected the information to be there, but also checked 
the side mirrors, as they are habitually used to, before a lane-change. 
Therefore, the contributions from the HMI information to drivers’ 
DMT were likely countered by the fact that drivers spent more time to 
check and process the additional information on the HMI, on top of their 
standard gaze check routine, which ultimately increased their DMT. 

4. Conclusion 

The data presented here offers new insights for the design of new in- 
vehicle HMI relevant to automation. Although additional information 
from such HMI should provide potential supporting benefits, results 
from this study suggest that excessive HMI information comes at a cost, 
by attracting drivers’ gaze, at the expense of glances to the road envi-
ronment. Results suggest that although drivers looked at the HMI on the 
run up to a lane change, they ultimately opted to also “believe their own 
eyes” and use information from the driving environment to decide when 
to change lane, looking consistently more at the side mirrors, just before 
the changing lane, regardless of the HMI condition. Therefore, system 
designers must be aware that not all information presented on an HMI is 
a good substitute for that provided by the surrounding environment. 
Further research is needed to understand what type of information from 
an HMI is useful (e.g. indicating system status) versus those that are 
considered superfluous. The value of using other modalities for pre-
sentation of relevant information in such scenarios should also be 
explored. This includes the use of heads-up displays, or spatially 
congruent haptic messages (Ho et al., 2006), which would allow the 
system to provide supportive information, without compromising 
drivers’ visual attendance to the road environment. 

Regarding limitations of this work, and considerations for future 
studies, the accuracy of the regression models’ output (59.15 % – 
75.29%) is clearly limited by the overall sample size of the data, which 
might compromise the takeaway implications of such analysis. This 
work has also not considered the importance of other factors known to 
affect the overall takeover process and decision to change lanes, such as 
driver experience, trust in vehicle automation technology, and fatigue, 
as examples. Finally, the lack of agreement between the results from this 
study, and those of others in this context (e.g. Naujoks et al., 2017), may 
be due to a lack of time pressure for drivers in the current study, or the 
use of rather simple messages from our HMI. Further work should, 
therefore, consider the use of a more informative interface, or a more 
challenging decision task, to assess the value of such information to 
drivers. 
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