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Abstract—Recently, there have been a wide spectrum of ma-
chine learning models developed to model Alzheimer’s disease
(AD) progression. Multi-Task Learning (MTL) approaches has
been commonly used by these studies to address challenges of
missing and insufficient AD data. Typical MTL studies in AD
focuses on obtaining high quality of baselines (MRI features and
cognitive scores) from AD raw data and exploring advanced re-
gression models for exploring their relationship and correlations.
These studies follow a unified regularized MTL framework to
process AD datasets with simple evaluation matrix. But another
easy-ignorable issue here is whether experimental evaluation
strategies are objective and reliable to access MTL performance.
There is little attention on studying how to design feasible
experimental protocols and evaluation matrix for assessment
of regularized MTL models. In this paper, we describe an
empirical study and analysis that investigate above question.
Four typical structural regularization approaches in MTL study
are examined, including (Ridge, Lass, TGL and cFSGL) [1],
[2]. Four issues affecting evaluation process of regularised MTL
models are evaluated by experiments: 1) evaluation indicators,
2) repeated experimental times; 3) size and portion of training
data; 4) number of tasks in MTL. The results demonstrate that
regularized MTL models like cFSGL are capable of predicting
AD progression with high accuracy, in many challenging cases
of data missing, insufficiency or even single MRI data input.
One important finding is the performance gain of cFSGL may
not only from its ability on dealing with sparsity of AD feature
data labels. It is more likely due to existence of a low rank
space inside original AD data features. We also discover and
proof some limitations of regularized MTL in AD study: the
assumption of temporal smoothness in regularized MTL models
for AD study limits their performance improvement of the initial
task. It is a special relationship that fails to accurately capture
certain tasks. Some MTL models like cFSGL have great potential
of improvement at late stage prediction of AD progression.

Index Terms—Multi-task learning, Regression model,
Alzheimer’s disease

I. INTRODUCTION

Alzheimer’s disease (AD), as one of the most common

forms of dementia, is a neurodegenerative disease that causes

problems with progressive cognitive decline and memory loss.

With rates projected to increase by 75% in the next quarter

of a century [3]–[5], AD is a leading contributor to disability

amongst older people and causes significant morbidity as well

as personal family burden. So far, there is no effective cure for

AD where science has not yet identified any treatments that

can slow or halt the progression of this disease. Yet, timely

diagnosis and early intervention in AD can be still useful

and cost-effective. It poses an important research area that

understands how the AD progresses and identify their related

pathological biomarkers for the progression. In order to accel-

erate AD’s research, the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) funded by NHI provided a large boundary

of publicly available neuroimaging data including MRI, PET,

other biomarkers and cognitive measures for scientific study. A

variety of data driven based machine learning techniques [6]–

[8] like deep learning models [6], [9], multi-task modeling [2],

[6], [10],and survival model [7], have been investigated to deal

with these data for better prediction of AD progression.

In traditional machine learning paradigm, an accurate

learner is usually treated as one single learning task (e.g.,

classification, regression) and learnt by a large number of

training samples. For instance, deep learning model can train

an accurate AD prediction model of neural network with

hundreds of layers contacting a great amount of parameters via

massive labelled biomarkers at baseline from ADNI. But one

key challenge here is that sufficient and well-labelled longitu-

dinal AD data at multiple time points are hardly collected from

AD patients. The problem of missing, sparse and insufficient



Fig. 1. Schematic illustration of AD progression model based on regularized multi-task learning

data strongly impacts on learning a fine model. Differing

with traditional ML approaches, Multi-Task Learning (MTL)

[11] considers the prediction of AD progression as multiple

learning tasks each of which can be a general prediction task

at certain time point. Among these prediction tasks, all of

them are assumed to be related to each other in time domain

with relevant temporal features (e.g., biomarkers in MRI). As

shown in Fig. 1, we demonstrate a typical pipeline of lever-

aging MTL algorithms for predicting cognitive functionality

of AD patients from their brain imaging scans [12], where

the predictive information is shared and transferred among

related models to reinforce their generalization performance.

The data sources employed are A (Extracted features from

MRI like Volume of Hippocampus) and B (AD cognitive

scores like MMSE or ADAS-cog [4], [13]) from selected AD

patients repeatedly by multiple time points. By considering

the prediction of cognitive scores at a single time point (like

6, 12 or 18 months) as a regression task. The prediction

of clinical scores at multiple future time points as a multi-

task regression problem. MTL model matrix is trained and

optimized through processing pre-extracted features from MRI

and baseline cognitive scores.

Two important issues affect the progress of applying MTL

in AD modelling problems. First, it is important to obtain

good quality of baselines from AD raw data, where Magnetic

resonance imaging (MRI) reflects changes in brain structure,

such as the cerebral cortex and ventricle; cognitive score

directly shows cognitive functions of AD patients. Sparse rep-

resentation [14] is a popular method in MTL for capturing key

biomarkers in AD, which uses sparseness as a regularization

condition, image blocks with key characteristics. Cognitive

measure can be achieved by using worldwide standard AD

cognitive assessment, such as Mini Mental State Exam score

(MMSE), Alzheimer’s Disease Assessment Scale cognitive

total score (ADAS-cog) and Rey Auditory Verbal Learning

Test (RAVLT) [5], [15]. As the second issue, utilizing and

improving advanced regression models [16]–[19], in MTL are

highly critical, where they could better explore the relation-

ship and correlations between MRI features and cognitive

measures. Here, structural regularization [2] is a common

approach in MTL for minimize the penalized empirical loss

and bundling the correlations between tasks in the assumption.

In the field of MTL in AD, there are many prior work that

model relationships among tasks using novel regularizations

[6], [20], [21]. The addition of kernel method problems allows

the algorithm to fit non-linear relationships [6], [22]. The

benchmark of this paradigm is derived from Zhou et al. [10]

and subsequent achievements are mostly aimed at theoretical

structure, relevance, and fusing the multi-modality data ap-

plications. So far to our best knowledge, above regularized

MTL approaches deliver promising performance in many AD

prediction applications.

Notably, it is worth mentioning that most existing MTL

studies in AD progression only focus on above two re-

search issues, where they follow a unified regularized MTL

framework to process ANDI datasets with simple evaluation

matrix. Another important aspect here is if their experimental

evaluation strategies are objective and reliable to access their

performance. In different settings of dataset and parameters,

MTL algorithms would perform differently in the tasks of

prediction. Current empirical understanding of evaluation and

judgement process in MTL for AD study is very limited.

There is little attention on studying how to design suitable

experimental protocols and evaluation matrix for assessment

of regularized MTL algorithms.

In this paper, we describe an empirical study and analysis



that investigate above question. We examined typical MTL

models via structural regularization approaches in AD study,

and choose two typical single task models (Ridge regression

and Lasso regression) and two state-of-the-art MTL models

(TGL and cFSGL) [8], [10] as targeted methods. Considering

that MTL features shared parameters and representations, we

conduct four important points potentially affecting evaluation

process of regularised MTL models in AD study: 1) evaluation

indicators (e.g. use correlation coefficients and mean square

errors to obtain two different sets of models hyperparameters.)

2) repeated experimental times (e.g., results of 10 repeated ex-

periments and 100 repeated experiments are different results;

3) size and portion of training data; 4) number of tasks in

MTL (e.g., time points in AD progression). For each point, we

design and set up experimental protocols for comparison and

exploration, highlighting following multi-fold contributions:

• We demonstrate that regularized MTL models like cFSGL

are capable of predicting AD progression with high

accuracy, in many cases of data missing, insufficiency or

single MRI data input. This confirms a fact that cFSGL

is under the fused Lasso penalty where selected features

of AD across different time points are similar to each

other, satisfying the temporal smoothness property in AD

progression study.

• We provide a solid evidence verification point on whether

regularized MTL model perform well in complex prac-

tical experimental settings. One important finding is that

the performance gain of cFSGL may not only from its

ability on dealing with sparsity of AD feature data labels.

It is more likely due to existence of a low rank space

inside original AD data features. Collinearity of low rank

sub-spaces implies that the model actually needs fewer

features than the input features at present. This provides

a checkpoint for whether the model works well in more

complex practical applications.

• By leveraging verification in experimental progress, we

also discover and proof that some limitations of regular-

ized MTL models in AD study: 1) mMSE is the best

indicator to evaluate these models due to relatively stable

performance, but other evaluation indicators are not so

reliable to objectively access model performance. 2) cF-

SGL has a great potential for further improvement at late

stage prediction of AD progression. 3) The assumption of

temporal smoothness in regularized MTL models for AD

study limits the performance improvement of the initial

task. This hypothesis is a special relationship that fails to

accurately capture certain tasks.

II. METHODOLOGY

A. Problem formulation of AD Progression

In the longitudinal AD study, the cognitive scores and

MRI of AD patients are repeatedly measured at multiple time

points. MTL approaches usually consider the prediction of

cognitive scores at each single time point as a regression

task, and then formulate the prediction of clinical scores at

multiple future time points as a multi- task regression problem.

Also, the prior knowledge of intrinsic temporal smoothness

information among different tasks can be incorporated into

the MTL model.

Consider a multi-task learning of k tasks with n training

samples of d features. Let x1, x2, ..., xnbe the input data for

the samples, and y1, y2, ..., ynbe the predicted value for each

sample, where each xi ∈ R
d represents the feature data of an

AD patient, and yi ∈ R is the predicted value of cognitive

score of different types of scales.

Then, letX = [x1, ..., xn]
T ∈ R

n×d be the data matrix,

Y = [y1, ..., yn]
T ∈ R

n×k be the predicted matrix, and W =
[w1, ..., wk]

T ∈ R
d×k be the weight matrix. The process of

establishing a MTL model is to estimate the value of W, which

is the parameter to be estimated from the training samples.

In order to solve above problem, many prior works in MTL

that model relationships among tasks using regularization

methods. Normally, they assume the empirical loss to be

square loss and common regularization terms are L1 and

L2 norms, separately named as Lasso regression and ridge

regression models as shown in Eq. 1 and 2. Ridge regression

constrains variables to a smaller range for reducing some

factors with little impacts on model’s prediction. Unfortu-

nately, this reduction means that these variables are still con-

sidered. To solve this problem, Lasso was proposed as a new

sparse representation linear algorithm, which simultaneously

performs feature selection and regression. Some variables are

set to zero directly to achieve sparsity and dimensionality

reduction.

min
w

L(Y,X,W ) + λ||W ||1 (1)

min
w

L(Y,X,W ) + λ||W ||2 (2)

In AD study, the task of predicting AD patient’s cognitive

score at certain time point is strongly associated with other

tasks at adjacent time points. Thus, many recent studies have

focused on designing novel structural regularization methods

to improve their performance in AD study.

B. Structural regularization methods

Structural regularization methods in MTL constrains opti-

mization by using regularization terms and shares information

between tasks. In this article, we mainly considering two state-

of-the-art models proposed by Zhou [29]: Temporal Group

Lasso (TGL) and Convex Fused Sparse Group Lasso (cFSGL).

Specifically, TGL contains a time smoothing term and

a group Lasso term as constraints, which ensures that all

regression models at different time points share a common set

of features. The TGL formulation solves the following convex

optimization problem:

min
w

||XW −Y ||2F + θ1||W ||2F + θ2||WH||2F + δ||W ||2,1 (3)

where the first term measures the empirical error on the

training data, ||W ||F is the Frobenius norm, ||WH||2F is the

temporal smoothness term, which ensures a small deviation

between two regression models at successive time points, and



Fig. 2. Pipeline of empirical protocol design

||W ||2,1 is the group lasso penalty, which ensures that a small

subset of features will be selected for the regression models

at all-time points.

cFSGL involves sparsity between tasks, where it considers

both common features at different points in time and unique

features to each task. This feature is helpful to improve the

overall performance of the model. cFSGL formulation solves

the following convex optimization problem:

min
w

||XW −Y ||2F + θ1||W ||1+ θ2||RWT ||1+ δ||W ||2,1 (4)

where the first term measures the empirical error on the

training data, ||W ||1 is the lasso penalty, ||RWT ||1 is the fused

lasso penalty, and ||W ||2,1 is the group lasso penalty.

C. Empirical protocol design

Our empirical protocol design is based on a pipeline shown

in 2 The complete experimental process mainly includes 5

steps: 1) split the data set; 2) select the hyperparameters; 3)

train the model; 4) evaluate the model using the test set; 5)

iterate the above operations. Different colors donate the source

or generation of different data, arrows indicate the flow of data,

and serial numbers re the steps of the experiment.

Our first goal is to perform quantitative reproducibility

analysis of typical 4 regularized MTL methods (Ridge, Lasso,

TGL and cFSGL) in comparing to Zhou’s [29] experiment

results. Plus, we consider one practical application case with

only MRI data as input data to predict cognitive scores

at baseline and future time points. In many real-world AD

application scenario, it is hard to acquire both precise MRI

and cognitive measures. Then we would set up individual

experimental protocol for exploring four important points of

evaluating MTL models in AD study: 1) evaluation indicators,

2) repeated experimental times; 3) size and portion of training

data; 4) number of tasks in MTL.

The evaluation metric of cross-validation is employed to

evaluate the performance of AD progression model. When a

metric is set in the cross-validation experiment process, a set

of hyperparameters can be obtained. By comparing the pros

and cons of the results, the suitable metric for the model is

finally determined. The regression performance metric often

employed in MTL is normalized mean square error (nMSE)

and root mean square error (rMSE) is employed to measure

the performance of each specific regression task. In particular,

nMSE has been normalized to each task before evaluation,

so it is widely used in multi-task learning methods based on

regression tasks. Also, weighted correlation coefficient (wR) as

employed in the medical literature addressing AD progression

problems[10, 19, 30] nMSE, rMSE and wR are defined as

follows:

nMSE(Y, Ŷ ) =

∑t

i=1

∥

∥

∥
Yi−, Ŷi

∥

∥

∥

2

2

/σ (Yi)
∑t

i=1
ni

(5)

rMSE(y, ŷ) =

√

∥y − ŷ∥2
2

n
(6)

wR(Y, Ŷ ) =

∑t

i=1
Corr

(

Yi, Ŷi

)

ni

∑t

i=1
ni

(7)

As for repeated experimental times, one evaluation consen-

sus in MTL models for AD study is that one experiment result

is usually accidental and unreliable. To reduce experiment

accidental errors, repeated experiments are required. So we

evaluate the performance of four selected regularized MTL

models under different repeated experimental times. Lastly,

we will evaluate typical factors like data size and number of

tasks affecting MTL models.

III. DATA AND IMPLEMENTATION

To verify the effectiveness of disease progression models,

data in Alzheimer’s Disease Neuroimaging Initiative (ADNI)

are used as research. The ADNI is a longitudinal multicenter

study designed to develop clinical, imaging, genetic, and

biochemical biomarkers for the early detection and tracking

of AD. High quality standardized MRI data and cognitive

function measures data available can be acquired on the

website. In this study, image preprocessing was performed

to obtain relevant statistical indicators of relevant regions-of-

interest (ROI) of the subject’s brain in baseline period, such

as average cortical thickness, standard deviation in cortical

thickness, the volumes of cortical parcellations, the volumes

of specific white matter parcellations, and the total surface

area of the cortex. This step was employed the Freesufer [23]

image analysis suite for processing and analyzing brain MRI

images to complete the cortical reconstruction and cortical

segmentation. Furthermore, we performed data cleaning to

remove individuals that failed image processing. The columns

with a small number of missing values were filled with the

average, and the columns with a large number of missing or

completely missing were directly deleted. Moreover, for the

purpose of establishing a longitudinal study, the experiment

will set a baseline for subsequent follow-up observations, and

we define the follow-up observation after the 6th month of



TABLE I
THE VALIDITY OF AD DISEASE PROGRESSION MODEL

Ridge Lasso TGL [12] cFSGL [8]

Target:MMSE

nMSE 1.185±0.286 0.641±0.156 0.562±0.106 0.459±0.095

wR 0.545±0.057 0.694±0.034 0.734±0.057 0.777±0.034

rMSE M06 2.770±0.360 2.044±0.472 1.853±0.225 1.845±0.259

rMSE M12 3.029±0.293 2.226±0.466 1.972±0.244 1.873±0.266

rMSE M24 3.375±0.470 2.690±0.664 2.544±0.535 2.374±0.479

rMSE M36 4.533±0.513 3.287±0.584 3.060±0.437 2.932±0.594

Target:ADAS-cog

nMSE 0.693±0.116 0.417±0.052 0.408±0.073 0.358±0.057

wR 0.660±0.052 0.777±0.034 0.789±0.042 0.809±0.034

rMSE M06 4.517±0.412 3.387±0.496 3.500±0.561 3.319±0.401

rMSE M12 3.387±0.393 3.644±0.462 3.467±0.437 3.485±0.473
rMSE M24 5.519±0.713 4.248±0.828 4.260±0.913 3.553±0.453

rMSE M36 7.655±1.200 6.088±1.077 5.707±0.824 5.739±1.037

TABLE II
THE RESULT OF ONLY USE MRI DATA AS INPUT DATA TO PREDICT

COGNITIVE SCORES AT BASELINE AND FUTURE TIME POINT

Ridge Lasso TGL [12] cFSGL [8]

Target: ADAS-cog

nMSE 1.180±0.140 0.727±0.058 0.537±0.066 0.521±0.081

wR 0.410±0.072 0.541±0.049 0.703±0.040 0.712±0.055

BL rMSE 5.439±0.543 4.138±0.501 3.794±0.389 3.880±0.356
M06 rMSE 6.128±0.906 4.599±0.906 4.125±0.475 3.776±0.427

M12 rMSE 6.225±0.835 4.879±0.835 4.091±0.468 3.965±0.809

M24 rMSE 7.216±1.112 5.857±1.007 4.514±0.790 4.742±0.646

M36 rMSE 9.914±1.242 7.501±1.309 7.091±0.971 7.156±1.054

the baseline period as M06. In terms of cognitive function

scores as dependent (target) of each task, we selected subjects

from baseline to several future time points, such as M06, M12,

M24, and M36, and none of them had missing records. After

the preprocessing procedure, there are a total of 429 subjects

and 327 MRI features, which together with the baseline scores

will be used as input data.

IV. EXPERIMENTS

A. Reproducible analysis

Our first goal is to perform quantitative reproducibility

analysis of typical 4 regularized MTL methods (Ridge, Lasso,

TGL and cFSGL) in comparing to Zhou’s [29] experiment

results. Specifically, dataset was randomly split into training

and testing sets using a ratio 9:1, i.e., models were built on

90% of the data and evaluated on the remaining 10% of

the data. Models parameters were selected by 5-fold cross

validation.

The only difference is that our tasks and samples are slightly

less due to available extracted AD data. There are two different

settings from [29], namely samples and tasks, making sure

that the labels of data are not missing, our data samples are

less than the Zhou et al. [29] which increases the risk of

underfitting to some extent, especially for single task models.

The learning process of multi-task learning models will also

be affected. The number of tasks affecting the performance of

MTL models will be discussed later.

In Table I, it shows that our experimental results under

similar settings are quite close to Zhou’s [12] outcomes. It

implies that four selected structural regularization methods are

all robust. Also, MTL models (TGL and cFSGL) outperforms

single-task learning model (Ridge and Lasso), in terms of

prediction accuracy. This accords with our previous survey

of features of MTL in dealing with data insufficiency cases.

Notably, cFSGL performs the best in all 4 methods. It is

probably because in AD study, the model built by cFSGL has

two levels of sparsity: 1) a small set of features shared across

all tasks, 2) task-specific features for each time point. One

key advantage of fused Lasso in cFSGL is that under the fused

Lasso penalty the selected features across different time points

are similar to each other, satisfying the temporal smoothness

property, while the Laplacian-based penalty focuses on the

smoothing of the prediction models across different time

points.

B. Application with only MRI data input

In many real-world AD application scenario, clinicians

expect the prediction model to be simple and with less input

data required for giving timely early screening. In this case, it

is hard to acquire both precise MRI and cognitive measures.

Normally, doctors need to spend few hours to measure AD

patients’ cognitive scores though some tests. Thus, in this

case, we consider one application with only MRI data as input

data to predict cognitive scores at baseline and future time

points. It is necessary for doctors to perform a cognitive scale

assessment, but time-consuming to complete a set of cognitive

measures. Using baseline cognitive measures as a predictive

target have far-reaching significance. The arrangement of

experimental and results are shown in Table II.

The results in Table II show that cFSGL still performs the

best of prediction in all 4 methods, especially at the later

point time. That proves one assumption in Zhou’s work [29]

of a linear relationship between MRI features and cognitive

scores. We also find out that joint analysis of multiple time

points is capable of improving the predict performance of

MTL approaches.

However, one importantly arguable points in cFSGL we find

out is that many work believes the performance improvement

of cFSGL may gain from its ability on dealing with sparsity

of AD feature data labels. (For various reasons, many values

of AD data are missing at an individual later point time). Our

experimental results show that it may not be the key factor in

improving the performance of MTL model, because the labels

of our dataset are not missing.

Therefore, this may be due to existence of a low rank

space inside original data features. Collinearity of low rank

subspaces implies that the model actually needs fewer fea-

tures than the input features at present. Specifically, since

the features of input data are various statistical indicators of

the subject’s brain area, we can simply draw a conclusion

that the shrinkage of one area (reduction of indicators) may

cause the shrinkage of another area (reduction of indicators

synchronization).



TABLE III
THE RESULT BASED ON DIFFERENT METRIC

Lasso TGL cFSGL

cv: nMSE

nMSE 0.779±0.077 0.718±0.137 0.629±0.077

wR 0.516±0.043 0.630±0.049 0.677±0.049

BL rMSE 1.805±0.232 1.803±0.251 1.816±0.286
M06 rMSE 2.345±0.337 2.132±0.293 1.962±0.182

M12 rMSE 2.393±0.537 2.393±0.385 1.966±0.312

M24 rMSE 3.087±0.633 3.087±0.572 2.345±0.400

M36 rMSE 3.924±0.751 3.924±0.683 3.232±0.550

cv: wR

nMSE 0.783±0.072 0.712±0.192 0.750±0.269
wR 0.514±0.050 0.667±0.043 0.710±0.041

BL rMSE 1.702±0.225 1.813±0.291 2.112±0.329
M06 rMSE 2.293±0.218 2.109±0.312 2.059±0.309

M12 rMSE 2.385±0.425 2.040±0.296 2.092±0.330
M24 rMSE 2.975±0.648 2.570±0.470 2.579±0.809
M36 rMSE 3.635±0.577 3.741±1.118 3.528±0.888

cv: rMSE

nMSE 0.788±0.091 0.684±0.194 0.630±0.007

wR 0.522±0.044 0.648±0.062 0.691±0.042

BL rMSE 1.776±0.229 1.823±0.293 1.879±0.277
M06 rMSE 2.275±0.348 1.996±0.262 1.943±0.208

M12 rMSE 2.523±0.543 2.133±0.272 1.907±0.243

M24 rMSE 3.180±0.411 2.424±0.544 2.563±0.515
M36 rMSE 3.788±0.556 3.345±0.596 3.149±0.584

cv: MSE

nMSE 0.765±0.057 0.650±0.087 0.613±0.132

wR 0.527±0.032 0.658±0.039 0.684±0.039

BL rMSE 1.806±0.218 1.748±0.148 1.738±0.252

M06 rMSE 2.304±0.354 1.952±0.234 2.059±0.267
M12 rMSE 2.338±0.486 2.083±0.261 1.992±0.236

M24 rMSE 3.138±0.759 2.689±0.541 2.472±0.576

M36 rMSE 3.876±0.597 3.391±0.645 3.228±0.579

C. Evaluation indicators

In MTL for AD study, cross-validation with evaluation

metric is widely utilized to select suitable model hyper-

parameters. Good hyperparameters can make MTL models

have better generalization performance. When an evaluation

metric is set in cross-validation experiment process, a set

of hyperparameters can be obtained. By comparing the pros

and cons of the results, the suitable metric for the model is

finally determined. However, different metrics have different

preferences and emphasis on the model. It has become a

consensus to employ metrics to evaluate the pros and cons

of models.

Three models (Lasso, TGL and cFSGL) are selected for

evaluation. Dataset is randomly split into training and testing

sets using a ratio 9:1. Models parameters were selected by 5-

fold cross validation. The mean and standard deviation based

on 20 iterations of experiments. The experimental results in

Table III confirm our concern that selection of evaluation met-

rics significantly affect performance assessment of regularized

MTL models.

As shown in the Table III, we could find out that the 1)

results obtained by metrics such as square error (MSE, rMSE,

nMSE) are basically the same; 2) mMSE is the best indicator

to evaluate these models due to relatively stable performance.

The reason is that data distribution of each task is not the

Fig. 3. Evaluation results of repeated experiments times

same, sharing with each other will have the effect of noise.

Therefore, using the variance of tasks in nMSE will reduce

the impact of task differences, and the results can better take

into account each other’s tasks.

D. Repeated experimental times

In MTL for AD study, one typical evaluation consensus is

that one experiment result is usually accidental and unreliable.

To reduce experiment accidental errors, repeated experiments

are required. So we evaluate the performance of four reg-

ularized MTL models under different repeated experimental

times. We conducted six sets of experiments, and the number

of iterations in each set was 10, 20, 30, 40, 50, 100. Also, in

each set of experiments, other conditions remained the same,

namely: dataset was randomly split into training and testing

sets using a ratio 9:1, data includes tasks at 5 time points,

the final result is shown in 3. The horizontal axis represents

iteration, the vertical axis represents the nMSE value of each

algorithm, and different colors represent algorithm.

In 3, it appears that the effect of different experiments on

four algorithm are visually observed. All 4 MTL models main-

tains good performance in each set of experiments. From the

fluctuation range of the model mean: Ridge not only performs

poorly overall, but also has a large range of fluctuations, which

may be the reason for the underfitting. The average volatility

of Lasso, TGL, cFSGL is 0.06, 0.11, 0.05. As the number of

iterations increased, four algorithms are fluctuating to varying

degrees. The reason may be caused by abnormal information,

for example, the existence of abnormal points during training.

By taking more repeated experimental times, the probability

of anomalous information being hit is also higher, which

more conforms to the realistic scenario. Lasso and cFSGL

are relatively less affected, which implies that sparsity plays

a key role in real-world scenarios.

E. Size and portion of training data

One important advantage of MTL is to deal with the

problem of data missing and insufficiency. In other words,



Fig. 4. nMSE values for predicting MMSE cognitive scores under different
data sizes

Fig. 5. nMSE values for predicting ADAS-cog cognitive scores under
different data sizes

regularized MTL models reduce the risk of underfitting while

improving overall performance. To prove this assumption and

further examine degree of resistance to underfitting risk in the

prediction MTL model of AD disease progression, we would

like to evaluate different portion of training AD data over these

regularized MTL models.

We train four MTL models with datasets of different data

sizes. Nine groups of experiments were performed. When

splitting the training and test sets, we followed 1: 9, 2: 8,

3: 7, 4: 6, 5: 5, 6: 4, 7: 3, 8: 2, 9: 1 operation. In order to

compare the experimental results, the other condition settings

of each group of experiments are kept consistent: two datasets

with MMSE and ADAS-cog scores as learning labels are

conducted, with 429 and 425 samples respectively. The same

data set was used to predict the trend of cognitive scores of

the MMSE and ADAS-cog scales at baseline and in the next

three years. The result based on 20 iterations of experiments

on different splits of data using 5-fold cross validation. Each

group of experiments uses four algorithms (Ridge, Lasso, TGL

and cFSGL) for comparison. The results are shown in the Fig

?? . The finding shows that:

• Ridge and Lasso are underfitting definitely, and multi-

task learning methods represented by TGL and cFSGL

show advantages.

• cFSGL does not play the advantage of spare even 9:1,

which implies that this cFSGL has greater potential to

improve performance.

• From the comparison of the two MTL methods, as the

amount of training data increases, the performance of

cFSGL is gradually better than TGL.

F. Number of tasks in MTL

Another key issue to regularized MTL models is resource

exchange and sharing between multiple tasks. The common

method is to propose an assumption, which can be transformed

into a constraint and put into an optimization function. But

whether this assumption relationship is worth scrutinizing

needs to be paid more attention. Therefore, several sets of

experiments were designed to test the validity of this relation-

ship.

We carried out four sets of experiments using 2-5 tasks

together to build a MTL model. The purpose of the experiment

is to find whether the performance of the model can be

improved under this task relationship. The other condition

settings of each group of experiments are kept consistent: the

same data set is exploited to predict the trend of cognitive

scores of the MMSE. The results are based on 20 iterations

of experiments on different splits of data with 9:1 using 5-

fold cross validation. Four algorithms (Ridge, Lasso, TGL

and cFSGL) are conducted in each group for comparison. The

results are shown in the Fig 6 (a)-(d). The finding shows that:

• On the assumption of temporal smoothness of AD study,

the results of MTL models (TGL and cFSGL) are much

better than single-task models (Ridge and Lasso).

• As the number of tasks in MTL increases, the accuracy

gain of MTL models in AD progression prediction be-

come more obvious.

• At the beginning, the errors of the two MTL models are

small.

• As time goes by, the error of the task increase, this may

be due to a non-linear relationship of MRI features and

cognitive scores in the late stage of AD progression.

Combining (3) and (4), we can observe one key limitation

of the temporal smoothness assumption in regularized MTL

models for AD study, where the performance improvement of

the initial task is limited. The problem may be because the

relationship between MRI and cognitive scores is non-linear,

or the temporal smoothness hypothesis is a special relationship

that fails to accurately capture certain tasks.

V. CONCLUSION

In this paper, we describe an empirical study and analysis of

evaluation and judgement process in MTL for AD study. We

examined four typical MTL models via structural regulariza-

tion approaches in AD study and conduct four important points
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Fig. 6. Schematic diagram of nMSE values under different experiment

potentially affecting evaluation process of regularised MTL

models in AD study. Our finding shows that regularized MTL

models are capable of predicting AD progression with high

accuracy, in many cases of data missing, insufficiency or single

MRI data input. But they also suffer from some limitations:

first concern is that the performance gain of cFSGL may not

only from its ability on dealing with sparsity of AD feature

data labels. It is more likely due to existence of a low rank

space inside original AD data features. Collinearity of low rank

subspaces implies that the model actually needs fewer features

than the input features at present. Secondly, the assumption of

temporal smoothness in regularized MTL models for AD study

limits the performance improvement of the initial task. MTL

like cFSGL has a great potential for further improvement at

late stage prediction of AD progression. Our work could guide

how to design suitable experimental protocols and evaluation

matrix for assessment of regularized MTL algorithms. Also

it highlights the future possible directions of utilising and

improving regularized MTL models in AD progression study.
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