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ABSTRACT This paper presents a fault detection and location identification method for single and double
switch Open Circuit Fault (OCF) in three phase voltage source inverters (VSIs) based on current model
parameter estimation. The proposed method requires the measurement of the inverter currents to build a
dynamic model. A fast recursive algorithm (FRA) is used to estimate the model parameters under either
normal and various fault conditions, hence generating a set of fault diagnosis vectors (FDVs) which form a
base matrix. A simplified K-Nearest Neighbour (KNN) algorithm is designed to detect the nearest distance,
in this case, the Manhattan distance, between the monitored FDV to the normal FDV. When an open-circuit
fault occurs, the distance between the two will be significantly increased than a set threshold, hence the
fault occurrence can be effectively detected. A simple and effective function based on the analysis of the
identified FDV and those in the base matrix is designed to locate the faulty switches. Experimental results
under different fault cases are presented to confirm the effectiveness of the method.

INDEX TERMS Voltage source inverter, open circuit fault, fault diagnosis, parameter estimation.

I. INTRODUCTION
Three-Phase voltage-source inverters (VSIs) are widely used
in industry for their high efficiency and control flexibility.
Inverters convert power from DC sources, such as batteries,
solar cells or fuel cells, to AC voltages at varied frequencies
and magnitudes. They are crucial in a wide range of appli-
cations such as pumps, fans, compressors, electric vehicles,
and railway traction drives. etc. VSIs are also widely used in
power systems for interfacing renewable sourced generators
such as photovoltaic or wind farms to grids, or compensating
reactive power as power conditioners. All these applications
are subject to many types of faults, of which those due
to VSIs are most commonly due to power semiconductor
switch devices which are relatively fragile and highly stressed
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electrically. Inverters in motor drives are used to adjust
the speeds of AC motors [1], [2], by varying frequencies
and waveforms according to command AC voltages. Power
switches used are mostly Metal Oxide Semiconductor Field
Effect Transistors (MOSFETs) and Insulated Gate Bipolar
Transistors (IGBTs) [3], [4]. More recently, technological
advances in the manufacture of power devices based on
wide bandgap materials, such as silicon carbide (SiC) or
gallium nitride (GaN), have led to their applications in
inverters [5]. Power switches become faulty due to ageing,
overloading or unpredictable operating conditions and are
the most vulnerable components in inverters [6]. Switches
in three-phase VSIs can suffer from short-circuit and open-
circuit faults. The short-circuit fault is destructive; it causes
a high current flow, and, in most cases, is detected by
the standard protection system, such as fuses and circuit
breakers, and makes the inverter shutdown immediately [7].
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Unlike short-circuit fault protection, open-circuit fault (OCF)
protection is generally not included as a standard feature
in industrial applications, but open-circuit faults also cause
drive malfunctions and could lead to secondary faults in
other components of a drive system [8], [9]. It is therefore
important to develop fast and accurate switch open-circuit
fault diagnosis methods to prevent faults from propagating
to other parts of the system. Open-circuit diagnosis is also
essential for ensuring stable operation of inverters as it avoids
prolonged operation with a faulty switch, which causes
output current and voltage waveform distortion, abnormal
load operation, overheating and so on [10], [11].

At the present, OCF diagnosis methods can be classified
into four categories; the conventional voltage/current-based
approaches, signal processing-based methods, model-based
and artificial intelligence (AI) technology methods. The
conventional methods, such as those rely on either voltage
and current measurements, have been extensively explored.
Those methods based on measured voltages proposed in
[12], [13], [14], [15], and [16] discover the faults by
comparing the actual measured phase or line voltages with
the corresponding command voltages. The approach is
simple and generally shows good performance and high
detection speed, but requires extra voltage sensors and
associated diagnostic circuits. Current-based methods, on the
other hand, eliminate the need for additional sensors, and
hence save space and cost. In particular the conventional
current-based methods relying on direct analysis of load
currents have been widely applied in fault diagnosis of
three-phase VSI systems. In [17], a diagnostic variable is
set by using phase current summed with its corresponding
semi-periodic phase-difference counterpart and subsequently
normalizing the result by dividing the periodic absolute value
of the phase current. The computation process is simple and
result concise, however it needs to apply a variable parameter
moving average method to improve the diagnostic speed.
In addition it requires using an auxiliary diagnostic variable
for the special cases of double simultaneous faults in the
same phase which may incur inaccurate results. In [18],
a normalized phase current based on Park’s transformation is
used to calculate the average value; it reflects the symmetry
feature of the detected signals. In general phase-current-
based methods are sensitive to load regulation and setting
an appropriate threshold for fault identification can be an
issue. They may misdiagnose the faults when load currents
change rapidly, and hence some optimization methods have
been proposed. In [19] the zero sequence current based
method is proposed which overcomes the load regulation
effects. The disadvantage of this approach is that there are
some limitations in identifying the fault locations of an
inverter, it needs the mutual interference to locate the faults
according to the circuit topologies. In [20] the proposed
method can detect any faults under any circumstances and
identify the origin of them. However, this method does not
perform well in response to load changes and can not deal
with the three-phase inverter system under complex working

conditions. A method which simplifies the calculation is
based on monitoring sustained near-zero output current. This
improves the reliability of the diagnosis [21], [22], but it
is only applicable to three-phase inverters under certain
operating conditions.

Signal processing-based methods have also been applied
the detection and diagnosis of OCFs in voltage source
inverters. In particular wavelet transform(WT) in the fre-
quency domain analysis has been used. In [23], WT is
applied to analyze inverter phase current waveform first,
the integrals of the derived WT coefficients over several
cycles, named as the total energy of each coefficient, are
used to identify the fault features, and changes in these
help to pinpoint the faulty switch. However, the changes of
the load and torque significantly influence the accuracy of
diagnosis. In [24], the wavelet packet transform is applied
to extract a distinguishable electromagnetic signature, but a
primary limitation of the developed diagnostic methodology
is that its applicability is exclusively to motor drives.
Electromagnetic signatures can be used to detect OCFs,
relying on semiconductor device interferences. In [25] and
[26], authors added Electromagnetic Interference (EMI)
filters at the inverter’s output. These filters measure voltages
across resistors and compare them to the expected values
when without faults, hence helping to locate open switch
faults. However, in some cases, EMI signatures can be too
similar to distinguish the fault switch location. To address
this, a complex combination of time domain signals, and
multi-scale wavelet analysis is used for obtaining a higher
accuracy. It is worth noting that adding EMI filters increases
system costs.

In recent years, model-based fault diagnosis for inverter
drive systems has been widely researched. In [27], a fast
diagnosis method for OCFs in inverters without sensors is
studied by analysing the switching function model of the
inverter under both normal and faulty conditions, because
the faulty information is extracted from the switch voltages,
the robust performance of the method is in question. In [28],
a current residual vector-based fault diagnosis method is
presented to eliminate the effects of the load. This method
can quickly and effectively detect the fault of the inverter, but
is not able to identify the location of the faulty switch. In [13]
and [29], a simple method for single and double switch OCF
diagnosis based on three-phase current distortions in VSIs
for vector controlled induction motor drives is studied. The
method depends on the determination of the rotation angle
of the current vector, which is affected by the noises and
complexity of system.

In the realm of artificial intelligence (AI) technology,
various algorithms have been researched and developed
for the classification of OCFs in inverters. In [30], the
authors utilized the Self-Organizing Map (SOM) method for
OCFs detection and showed the simplicity of the method
together with its straightforward training process. However,
the accuracy diminishes when it is applied to complex and
nonlinear systems. In [31], a GreyWolf Optimization Support
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Vector Machine (GWO-SVM) is introduced for fault diag-
nosis in three-phase inverters used with permanent magnet
synchronous motors. While this algorithm offers advantages
such as reduced training time, lower computational com-
plexity, and faster implementation and testing, it exhibits
lower efficiency in complex applications. In [32], a proba-
bility principal component analysis-support vector machine
(PPCA-SVM) was employed as a fault diagnosis tool in both
simulations and experiments, delivering highly reliable fault
diagnosis for cascaded H-bridge multi-level inverters. Never-
theless, additional research is required to adapt this method
for complex scenarios. In [33], a novel 1-D Convolutional
Neural Network (CNN) with an improved stochastic gradient
optimization method is presented for precise and speedy fault
diagnosis in three-level Neutral Point Clamped (NPC) invert-
ers. It performs well in terms of both speed and accuracy,
but it requires a substantial amount of corresponding inverter
fault data for training to maintain effectiveness.

Most of the aforementioned approaches are complicated
and computationally costly for real-time application. This
paper presents a simple, low-cost, model parameter-based
method for OCF diagnosis of a three-phase VSI in real time.
Using a discrete-time current model of a VSI system, the
parameters of this model can be estimated using the Fast
Recursive Algorithm(FRA) [34]. These parameters exhibit
characteristics of different types of open-circuit faults, hence
they form the fault diagnosis vectors (FDVs). A simple
calculation function is developed which uses the FDVs to
identify the fault appearance and locate the fault switch in
a three-phase inverter. Compared with the existing methods,
the distinctive feature of the proposed method are evident
on several aspects; it is more sensitive to detect a fault
and accurate in locating its location and has the feature of
fast diagnosis speed compared with the conventional current
diagnosis method. It can evaluate the parameters in real time
and requires no additional hardware on top of that already
used for normal operation. The method has a wide range of
applications, including traction drive systems in addition to
general machine drive systems.

The rest of this paper is organized as follows. Section II
focuses on inverter topology and fault currents, different fault
cases are described and analyzed. Then, the parametersmodel
based on α-β currents and estimation algorithm are proposed
in Section III. The diagnosis method based on the parameters
estimation model is illustrated and the fault detection and
location functions are introduced in section IV. Consequently,
the experimental platform is introduced to validate the
proposed diagnosis approach, and the experimental results
show the validity and feasibility of the proposed method in
section V. Finally, conclusions are given in section VI.

II. THREE-PHASE VSI AND FAULT ANALYSIS
A. THREE PHASE VSI
Fig. 1 illustrates a typical three-phase voltage source inverter
with six identical switches T1-T6. There are also devices D1-

FIGURE 1. Topology of three phase inverter.

FIGURE 2. Equivalent load circuit for each phase.

D6 which are anti-parallel diodes associated to each switching
device. Gate signals g1-g6 control the ON and OFF state
of T1-T6. When gate signal is 1, the corresponding switch
conducts, and when it is 0, the switch turns off. The gate
signals for two switches on one phase leg are complementary.
Sinusoidal pulse width modulation(SPWM) is a common
technique to generate the gate signals. A VSI may supply
a three-phase R-L load or an ac machine and a three-phase
L-C filter is commonly connected at its output terminals
for suppressing high order harmonics due to switching as
shown in Fig. 1. For ease of analysis and assuming balanced
operation such a load circuit can be simplified to a per phase
equivalent R-L-C circuit as shown in Fig. 2.

Under healthy condition, the three phase output currents
are the sinewaves with equal amplitude, and 120◦ phase
difference between them and expressed as

ip (t) = Im sin
(
ωt +Φp

)
(1)

where p = a, b, c stands for different phases. Im is peak
phase current, ω denotes current angular frequency,Φp is the
phase angle with the reference axis and Φa=0, Φb=−2π /3,
Φc=−4π /3.
Considering R-L-C load circuit in Fig. 2, the voltage Up

and current Ip should be equal to those of the inverter circuit
in Fig. 1. According to the Kirchhoff’s current law, the per
phase current can be defined as

ip =
up
R

+

∫
up
ωL

dt +
1
ωC

dup
dt

(2)

B. FAULT CURRENT ANALYSIS
In three-phase VSIs, single switch or double switches
open-circuit faults are most common in practice. Table 1
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TABLE 1. Fault classification and labels.

FIGURE 3. Currents of each phase. (a) nomal state. (b)OCF in T1. (c) OCFs
in T1 and T2. (d) OCFs in T1 and T3.

shows 22 types of inverter operation conditions. It includes
the normal working condition and 21 fault conditions. The
fault conditions are divided into three categories and each
fault is assigned to a different number as a label. The cases
stand for different fault classifications. Case I: Single OCF.
Case II: Two OCFs in the same inverter leg. Case III: Two
OCFs in two different inverter legs.

Fig. 3 shows the phase current waveforms of an inverter
under four different conditions. Under healthy condition, the
three-phase currents are well-balanced sinusoidal waves with
phase shift of 120 degrees between each other. When a single
switch OCF occurs, the current through the phase where
the OCF occurs is distorted and uni-polar, and three-phase
currents become unbalanced. When the two OCFs occur
in the same inverter phase leg, the current of the faulty
phase becomes 0, while the currents through other two
phases become anti-phased with equal magnitude. When the
heterogeneous double switch OCFs arises, the two OCFs
appeal in two different inverter phase legs, all three phase
currents are distorted, and two become uni-polar as shown
in Fig. 3(d).

To simplify the analysis, three phase currents can be
transformed to their equivalent iα and iβ elements in α-β axes
using Clarke transformation, the equation is defined asiαiβ

i0

 =
2
3

1 −
1
2 −

1
2

0
√
3
2 −

√
3
2

1
2

1
2

1
2


iaib
ic

 (3)

FIGURE 4. α-β axis currents under different condition. (a) nomal state.
(b) OCF in T1. (c) OCFs in T1 and T2. (d) OCFs in T1 and T3.

Under different conditions iα and iβ of VSI have their own
distinctive features and are different from each other. iα and
iβ in normal condition and other three OCF states are shown
in Fig. 4. In normal state, the waveforms of α-β currents
are sinusoidal and balanced with 90 degree phase difference.
However, when OCFs happen, each OCF state generates a
distinctly different current pattern as can be seen in Fig. 3(b)-
(d). Though the frequencies of the two current elements
remain unchanged but their magnitudes and average values
are totally different. In this work α-β currents are used for
the fault diagnosis.

III. PARAMETERS ESTIMATION
A. CURRENT MODEL AND PARAMETERS
According to Equations (2) and (3), under normal condition,
the relationship between α-β voltages and currents can be
expressed as

iαβ =
uαβ
R

+

∫
uαβ
ωL

dt +
1
ωC

duαβ
dt

(4)

Assuming sample time TS is significantly small compared
to the load currents period time, the discrete time expression
of this formula at time instant k is

iαβ (k)− iαβ (k − 1)
TS

=
uαβ (k)− uαβ (k − 1)

TS

+
uαβ (k)
ωL

+
1
ωC

×
uαβ (k)− 2uαβ (k − 1)+ uαβ (k − 2)

T 2
S

(5)

The above equation can be simplified as

iαβ − iαβ (k − 1) = Auαβ (k)

+ Buαβ (k − 1)+ Cuαβ (k − 2) (6)
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where A, B, C are model parameters expressed as

A =
1
R

+
1

ωCTS
+

TS
ωL

(7)

B = −
2

ωCTS
(8)

C =
1

ωCTS
(9)

Thus, for a three-phase inverter, a linear relationship
between its current and voltage under normal condition at the
kth time instant can be written as

Y (k) =
[
uαβ uαβ (k − 1) uαβ (k − 2)

] A
B
C

+ ε (k) (10)

where Y (k) = iαβ (k) − iαβ (k − 1) and ε (k) is the model
mismatched disturbance, and it is a bounded disturbance with
a very small value, making it negligible. The parameters A, B,
C of the system can be evaluated by an algorithm, named the
fast recursive algorithm (FRA), its principle and application
to the inverter model parameter estimation are discussed as
follows.

B. CURRENT MODEL AND PARAMETERS
In the system identification field, there are the possibili-
ties that models identified can have excessive number of
parameters which may lead to over-fitting and enormous
computational burden. The fast recursive algorithm is
featured by identifying only the dominant parameters in
a nonlinear dynamic system using linear-in-the-parameter
model. FRA can both select the model structure and estimate
the model parameters. Its merit lies in that it requires much
less computational effort and also numerically more stable
than orthogonal least squares approach which is a common
method used in linear parameter identification. Consider a
nonlinear discrete-time dynamic system with N input and
output data samples {x (i) , y (i)}Ni=1 and have the expression
given as

y = 82+4 (11)

where the system output8 = [ϕ (1) , . . . , ϕ (j) , . . . ϕ (N )]T ∈

ℜ
N×S is the regression matrix that contains all parameter

terms, each term ϕ (j)∈ ℜ
N×1 represents a nonlinear function

of N input samples ϕ (j) =
[
ϕj (x (1)) , . . . , ϕj (x (N ))

]T
(j = 1, . . . , S) are the unknown parameters to be identified,
and 2 = [θ1, . . . , θs] is the model residual vector. Two
recursive matrixesMk andRk are predefined in FRA to fulfill
the forward model selection procedure as

Mk = 9T
k 9k (12)

Rk = I −9T
k M

−1
k 9k (13)

where 9k ∈ ℜ
N×k includes the first k columns of the

full regression matrix 9, additionally, k=1,. . . ,S, and R0 =

I. Thus, when the first k columns in 8 are selected, the

estimation of parameters that minimizes the cost function and
the associated minimal cost function can be formulated as

2̂k = M−1
k 9ky (14)

Ek = yT y − 2̂T
k ψ

T
k y = yT y (15)

To simplify the formulas and decrease the computational
complexity, three quantities are consequently defined as

ϕ
(k)
j ≜ Rkϕj, ϕ

(0)
j ≜ R0ϕj = ϕj (16)

ak,j ≜
(
ϕk−1
k

)T
ϕ
(k−1)
j , a1,j ≜ ϕT1 ϕj (17)

bk ≜
(
ϕk−1
k

)
y, b1 ≜

(
ϕ01

)T
y = ϕT1 y (18)

where j=1,. . . ,S, and k=1,. . . ,S. According to the properties
of Rk , the net contribution of a new model term ϕk+1 to the
cost function can be explicitly calculated as

i
Ek+1 = −

(
yTϕkk+1

)2((
ϕ
(k)
k+1

)T
ϕ
(k)
k+1

)
=

(
bTk+1

)
ak+1,k+1

, k = 0, 1, . . . , S − 1 (19)

By calculating the net contribution of each term, the model
terms with maximum contributions will be selected one
by one. Finally, after all important model terms have been
selected, the parameter for each selected term is calculated as

θ̂j =
bj −Σk

i=j+1θ̂jaj,i

aj,i
, j = k, k − 1, . . . , 1 (20)

Equations (14) and (15) constitute the main steps of the
FRA, which selects model terms one by one based on (19)
and calculates the model parameters for the resultant model
based on (20).

C. MODEL PARAMETER ESTIMATION BY FRA
Load variations change α-β currents, hence affect estimated
parameter values. To eliminate this influence, the values
of the measured α-β currents need to be normalized after
the Clarke transformation. The normalization formula is as
follows

Unorm = Uref /Uαβm (21)

Inorm = Iref /Iαβm (22)

whereUnorm, Inorm is the normalized value.Uαβm and Iαβm are
the amplitude of the α-β voltages and currents under normal
rated condition. Applying FRA for parameter estimation, the
first step establishes the output and input data vectors given
by (10) using sampled data as

y = iαβ (k)− iαβ (k − 1) (23)

8 =
[
uαβ uαβ (k − 1) uαβ (k − 2)

]
(24)

Then the linear formula (11) can be formed with vector
containing the parameters A, B, and C to be estimated. These
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are evaluated by applying formula (20). The contribution of
the acquired parameters to the linear system’s error can be
calculated by (19).

The detailed procedure for identifying the parameters of
the three-phase inverter by means of FRA is as follows:

1)The sampled current signal of the inverter and the
corresponding reference voltage signal are fed into (11) for
estimating model parameters by formula (20).
2) For accurate and fast fault tracking in real-time,

a moving data window with a time width of a half-sinusoidal
cycle is used for data logging.

3) The current and voltage samples are logged into this data
window by first-in and first-out (FIFO) when it is filled, while
FRA uses updated data set to perform parameter estimation
at each sample step. Thus real-time monitoring of the inverter
parameters is achieved.

IV. FAULT DIAGNOSIS BY ESTIMATED PARAMETER
VECTORS
A. FAULT DIAGNOSIS VECTORS
Consider all operation cases listed in Table 1, each corre-
sponds to a unique model parameter set, by aggregating the
parameter sets for all these cases, a database can be formed
which can be used for fault identification. The proposed
fault diagnosis scheme builds such a database by taking a
three-phase inverter drive as a black box and simulating it
under all operation conditions. The input of the black box
is the three-phase voltage which are the inverter reference
voltageUref with known constant amplitude and phase angles
under the normal case. The output of the black box is the
measured current signals. Both input and output signals are
sampled and then transformed to their equivalent α-β values
using Clark transformation. For both α and β currents two
model equations (Equ(6)) are derived, and they have in total
six model parameters, (Aα , Bα , Cα , Aβ , Bβ , Cβ ) forming a
vector with 6 elements. Applying FRA, all the elements in
a vector can be estimated. For different fault cases listed in
Table 1, the estimated vectors are different representing the
characteristic feature of each case. This fact enables fault
diagnosis and location identification be performed accurately.
so the parameter vector is named the fault diagnosis vector
(FDV) defined as

FDV ≜
[
Aα Bα Cα Aβ Bβ Cβ

]T (25)

Since there are 22 different operation states including
normal one, 22 FDVs are derived to cover the inverter for all
operation states, they form a base matrix written as

FDVbasei ≜
[
Aαi Bαi Cαi Aβi Bβi Cβi

]T (26)

where i = 0-21, stands for all 22 parameter sets for inverter
at normal and OCF conditions. This base matrix is the most
crucial for the fault detection and location identification of
the inverter OCFs.

Fig. 5 summarizes the procedure for estimating the
parameter vectors of a three-phase VSI model. It includes

FIGURE 5. Procedure for fault diagnosis vector derivation.

current and voltage sampling, their transformation to α-
β elements(Equ(3)) and normalization (Equ (21,22)), then
combining them to build the linear model (Equ (23,24)), the
parameters can be obtained by equation(20). Subsequently
FRA is applied to derive the parameter set of the inverter
corresponding to the set cases. The above process is repeated
for deriving FDVs of all possible fault cases (Equ (25,26)),
the resultant FDVs are stored to form a base matrix which
is used for fault detection of the corresponding inverter drive
system.

B. FAULT DIAGNOSIS BY SIMPLIFIED KNN ALGORITHM
The K-Nearest Neighbour (KNN) algorithm is a simple but
effective classificationmethod that utilizes proximity tomake
predictions about grouping a dataset around a point [35].
Specifically, it is a method that uses a training dataset of k
samples to classify new input instances. When faced with
a new input instance, the algorithm identifies the K closest
instances in the training dataset using a distance metric
of choice. It then assigns the input instance to the class
that is most frequently represented among these K nearest
neighbors.

This paper describes an approach to detecting faults in
inverters using a simplified K-Nearest Neighbors (KNN)
algorithm. To streamline the approach, the K value is set to 1,
resulting in a training set that consists of only one sample.
This streamlined approach allows us to focus on the most
critical distinctions in the data, while still achieving accurate
and reliable fault detection.

The distance in the KNN (K-Nearest Neighbors) algorithm
is a metric used to calculate the similarity or distance between
samples. Let x and y be n-dimensional vectors in the real
vector space Rn, the distance between x and y is defined as
follows:

Lp (x, y) =

(
n∑
i=1

|xi − yi|p
) 1

p

(27)

When p = 2, it is the Euclidean distance, and when p=1,
it is the Manhattan distance. A higher value of parameter p
requires more computational power. Due to the significant
distinctions among the FDVs corresponding to each VSI
condition, in this paper, we assess and measure classification
using the Manhattan distance, which requires the least
computation and is also competent for the task. The formula
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for the Manhattan distance is as follows.

L1 (x, y) =

n∑
i=1

|xi − yi| (28)

With base matrix established, each FDV in it corresponds
to a unique faulty state, one can distinguish them by
evaluating Manhattan distance. Applying this to FDVs in the
base matrix, the Manhattan distance between two FDVs can
be calculated as VMan.

VMan = L1 (FDVest − FDVnormal) (29)

where the FDVest is the estimated FDV of the system and the
FDVnormal is the parameter vector of the normal condition.

During normal operation under different loads, the inverter
current waveforms change only in magnitude, the corre-
sponding parameter vector does not change much. So VMan
should ideally be small. However if VMan is large, it indicates
a fault is present. Thus the occurrence of an OCF is detected
as

Fdetection =

{
1 if K ∗ VMan ⩾ 1
0 if K ∗ VMan < 1

(30)

where K is a parameter used to make it easier to observe
VMan values. In this paper, it is set to 10. By multiplying this
parameter, one can determine whether a fault has occurred by
checking whether the Manhattan distance exceeds the critical
value of 1. If the Fdetection = 1, it indicates that an OCF
happens in the inverter. If the Fdetection = 0, inverter is
operating under normal condition.

Once the existence of an OCF in confirmed through the
above process, identification of fault location or fault state
out of 21 listed in Table 1 is followed. This is performed
by comparing the estimated FDV with all other 21 fault
parameter vectors in the base matrix (26) and equation (31)
is gained and applied.

VMani = L1 (FDVest − FDVbasei)i=1 21 (31)

The VMani giving the lowest value gives the OCF identified
and is assigned to the corresponding fault label number.
In this case the fault location function is defined as

Flocation = min {VMani}i=1−21 (32)

Fig. 6 displays the flowchart of the three-phase VSI OCF
diagnosis process which is also summarized below.

1) The first step is to obtain the FDVest of the three-phase
inverter real-time system via FRA estimation, the detailed
procedure for the FDV generation has been provided in fig.
5.

2) The next step is to use the FDVest to perform a fault
diagnosis on the three-phase VSI. The Manhattan distance
between the FDVest and the FDVnomal is calculated (Equ
(29)) and the VMan is substituted into the fault detection
function Fdetection (Equ (30)) to detecte the occurrence of a
fault. If Fdetection = 0, no faults occur and system monitoring

FIGURE 6. Flowchart of three-phase VSI diagnosis.

continues. If Fdetection = 1, a fault has occurred and fault
location is required.

3) Fault location requires the calculation of the Man-
hattan distance value VMani between the FDVest and the
other 21 FDVs in the basematrix (Equ (31)), then use the fault
location function Flocation (Equ (32)) to compare all VMani
values to obtain the smallest VMani value, and the smallest
VMani corresponding number imin is the OCF number label.
4) Finally, the faulty switching device of the OCF can be

located by lookuping Table 1 of OCF number label.

V. RESULT AND DISCUSSION
A. EXPERIMENT SETUP
An experimental inverter system, as shown in Fig. 7,
is setup to validate the proposed fault diagnose scheme.
This comprises an IGBT three-phase inverter cabinet with
its associated hardware equipment, along with a dSPACE
system. The dSPACE system includes DS1007, DS2002A/D
Board and DS4004 I/O Board, current sensors and supporting
software development tools for control, communication, fault
simulation and fault diagnosis algorithm operation. The
inverter cabinet contains 6 IGBTs and the corresponding
dSPACE system interface; the main circuit can interact
with the dSPACE system for real-time communication. The
current sensors detect the values of the VSI three-phase
currents, and these values are transmitted to the dSPACE
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FIGURE 7. Experimental setup.

TABLE 2. Main parameters of the experimental setup.

system. The dSPACE system is connected to a computer,
where fault detection and location can be performed using
the diagnosis method described.

The main parameters of the inverter drive system are listed
in Table 2. It should be noted that the machine drive is a
variable load system, variations of the load and rotating speed
are correlated. The experiments are performed to validate
the model parameter-based fault diagnosis method at three
rotor speeds. These are 1460 rpm, 1095 rpm and 730 rpm for
load setting at 100% full power, 75% power and 50% power
respectively.

B. ANALYSIS OF RESULTS
The experiments are firstly performed using three different
sets of loads under three different speeds at normal operation
conditions, hence three FDVs are estimated. Note the
proposed fault diagnosis scheme must have the base matrix
for the inverter drive system under test established, and it
consists of two stages as shown in Fig. 6; namely, the inverter
fault detection, and then the fault location identification.

1) FAULT DETECTION
Fig. 8 presents the three-phase current waveforms of VSI
operating normally at speeds of 1460 rpm, 1095 rpm, and

FIGURE 8. Experimental waveform of normal condition.

FIGURE 9. Detection of OCFs.

730 rpm. Three FDVs were obtained by subjecting the
measured current values to FRA generation as illustrated in
Fig. 6. The estimated three FDVs are applied to evaluate the
corresponding VMan according to equation (31). The results
are displayed in Fig. 9. The X-axis gives the fault label
numbers and the Y-axis is for the VMan values used for fault
diagnosis. As can be seen, for the normal condition, the three
VMan values obtained are all smaller than 1. However for
the rest of 21 different fault cases, the VMan values obtained
corresponding to different loads are all greater than 1. It is
evident that the method is effective in detecting fault free
conditions under different load.

2) FAULT LOCATION IDENTIFICATION
According to the fault classification shown in Table 1,
different types of faults are labeled to perform fault location
identification. For single-switch OCF, for example, either
T1, or T3, or T5, the fault numbers are respectively 1,
3, 5 respectively in Table 1. Under each of these three
fault cases, inverter phase currents are measured and their
corresponding FDVest are derived. They are used for fault
detection first using equation (30). Then to locate the fault
switches, equation (32) is applied, and the three VMan are
obtained.

Fig. 10 depicts the experimental waveform of three-phase
currents in the VSI under the rated speed of 1460 rpm when
faults T1, T3, and T5 occur. The corresponding VMan curves
can be obtained using the methods presented in this paper,
as shown in Fig. 11.

From the VMan curves shown in Fig. 11, the values of those
below 1 are fault cases with VMan values precisely at the
point corresponding to the faulty switch numbers. In Fig. 11,
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FIGURE 10. Experimental waveform of single-phase OCFs.

FIGURE 11. Fault location of single-phase OCFs.

FIGURE 12. Experimental waveform of same phase double switch OCFs.

FIGURE 13. Fault location of heterogeneous double switch OCFs.

the red curve, which is for detecting T1 fault, its minimum
VMan value is less than 1, and is located at point 1 on X-axis
indicating that the faulty switch is T1, and the fault location is
successfully found. Similarly VMan values at number 3 (blue)
and 5 (green) are also smaller than 1, on the contrary VMan at
other 19 points are larger than 1, indicating clearly T3 and T5
are faulty.

Similarly, the method is applied to identify double switch
faults, such as T1-T2, T3-T4, T5-T6, and the experimental

FIGURE 14. Experimental waveform of heterogeneous double switches.

FIGURE 15. Fault location of heterogeneous double switch OCFs.

waveform plots and the corresponding VMan results are
shown separately in Fig. 12 and Fig. 13. VMan values at
numbers 7, 8, 9 are near zero, but above 1 at other case
numbers. Thus faulty switches are located. For locating
faults occurring simultaneous on two switches of different
phases, for example, T1-T3, T2-T5, T3-T6, they correspond
faults numbers are 10, 16, 19 respectively. The experimental
waveform plot is as shown in Fig. 14. The VMan results
displayed in Fig. 15 show that very small VMan values are
observed at just these three case numbers, while the values
are significantly larger for the other case numbers, therefore
the fault locations are easily identified.

C. FAULT DIAGNOSIS UNDER VARIABLE LOADS
The proposed method is further validated for fault operation
with different loads. For testing a single-phase single-switch
OCF, switch T4 is selected. For a single-phase double-
switch fault, switches T2-T4 are chosen, and finally for a
heterogeneous double-switch case, T3-T5 are considered.

The experimental waveform plots are shown in Fig 16,
18, and 20, respectively. The VMan results are shown in
Fig. 17, 19 and 21. The three curves in each figure represent,
respectively, the VMan variations for the corresponding faults
at load speeds of 1460 rpm, 1095 rpm and 730 rpm. The
lowest value ofVMan for all three localization curves shown in
Fig. 17 is 4, indicating that the fault is located in the inverter
switch corresponding to the label 4, which is T4 switch. The
fault location is accurately identified. The same analysis can
be applied to check results depicted in both Fig. 19 and
Fig. 21. In Fig. 19 three VMan curves are displayed, their
minimum VMan all locate at x-axis point 8, which gives OCFs
on T3 and T4 according to Table 1. VMan variations for three
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FIGURE 16. Experimental waveform of T4 under different load.

FIGURE 17. Fault location of T4 under different load.

FIGURE 18. Experimental waveform of T3T4 under different load.

different loads shown in Fig. 21 give the minimum values all
at point 18, which presents OCFs occur at switches T3 and T5.
These results confirm that the lowest points of VMan curves
for the same fault but with different loads fall correctly on the
corresponding fault label. Thus themethod based onVMan can
accurately locate the faulty switches and is not affected by the
load variations.

D. DISCUSSION
The fault diagnosis method presented in this paper is based on
a three-phase VSI model, which offers numerous advantages.
Compared to traditional voltage-based diagnostic methods,
the method does not require additional measurement and
processing equipment, and it overcomes the drawback of
current-based methods, which suffer from reduced accuracy
during load variations. The method offers fast diagnosis
and high reliability compared to fault diagnosis methods
utilizing deep learning algorithms. It places less demand
on computational resources, including memory and reduces
computational complexity significantly. Additionally, the
method is highly efficient, requiring minimal training and
demonstrating excellent transferability. This sets it apart from

FIGURE 19. Fault location of T3T4 under different load.

FIGURE 20. Experimental waveform of T3T5 under different load.

FIGURE 21. Fault location of T3T5 under different load.

numerous deep learning techniques, which typically demand
extensive fault data for training purposes. It also requires
fewer data samples due to the limited FDV variations after
normalizing the 22 potential inverter conditions in the three-
phase VSI. In the method, we apply the simplest K-Nearest
Neighbors (KNN) algorithm, but the unique feature is that
it relies on parameter model identification. After obtaining
basic FDVs matix, we use KNN for fault diagnosis, and the
FDVest exhibits clear fault data characteristics, eliminating
the need for further optimization of the KNN algorithm.

Generally, fault diagnosis methods based on Support
Vector Machine (SVM) for inverters involve extracting fault
information and then training and processing it using the
SVM module. The SVM-based approach requires consid-
eration of SVM optimization issues, as it may be affected
by some disturbance data. In the proposed method for
three-phase inverter fault diagnosis, the process is simple, and
the diagnosis is precise.

However, the method has its limitations. Firstly, it relies
on a linear three-phase VSI model. If the system exhibits
high nonlinearity, parameter estimation may experience
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significant variations, leading to reduced diagnostic accuracy.
Furthermore, the method can be adapted for single-phase
inverter fault diagnosis, but for multi-level inverter fault
diagnosis, further research is needed. With an increase in the
number of switches in multi-level inverters, the differences
betweenmultiple FDVs, as observed in the approach, may not
be as pronounced, resulting in reduced diagnostic accuracy.

For future research plans, we will explore more efficient
applications of the proposed method, such as enhancing the
speed and accuracy of parameter estimation and assessing its
applicability to various VSI systems.

VI. CONCLUSION
This paper has proposed a new model-based fault diagnosis
method for three-phase inverters with variable loads. Based
on the inverter current model, the Fast Recursive Algo-
rithm(FRA) was applied to estimate the model parameters
which vary under different switch OCF fault conditions.
The diagnosis time for different types of OCFs is less than
the phase current fundamental period. The whole diagnosis
process consists of fault detection and location which
are implemented by a simple decision making function.
An experimental inverter drive platform with different loads
was tested to validate the effectiveness of the proposed
method. The experimental results of fault detection and
location identification verify that the proposed diagnosis
method can accurately detect and locate single switch and
double switch OCFs. The diagnosis results for the same fault
under different loads showed that the method is robust against
load variations.
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