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Solving optimal control problems with non-smooth solutions using an

integrated residual method and flexible mesh

Lucian Nita1, Eric C. Kerrigan1, Eduardo M. G. Vila1 and Yuanbo Nie2

Abstract— Solutions to optimal control problems can be
discontinuous, even if all the functionals defining the problem
are smooth. This can cause difficulties when numerically
computing solutions to these problems. While conventional
numerical methods assume state and input trajectories are
continuous and differentiable or smooth, our method is able to
capture discontinuities in the solution by introducing time-mesh
nodes as decision variables. This allows one to obtain a higher
accuracy solution for the same number of mesh nodes compared
to a fixed time-mesh approach. Furthermore, we propose to
first solve a sequence of suitably-defined least-squares problems
to ensure that the error in the dynamic equation is below a
given tolerance. The cost functional is then minimized subject
to an inequality constraint on the dynamic equation residual.
We demonstrate our implementation on an optimal control
problem that has a chattering solution. Solving such a problem
is difficult, since the solution involves infinitely many switches
of decreasing duration. This simulation shows how the flexible
mesh is able to capture discontinuities present in the solution
and achieve superlinear convergence as the number of mesh
intervals is increased.

I. INTRODUCTION

Solving a sequence of constrained optimal control prob-

lems (OCPs) in real-time is a very powerful technique

typically used in model predictive control (MPC). However,

it can also be challenging in practice to reliably compute

a solution since the continuous-time, infinite-dimensional

OCP is solved using finite-dimensional numerical solvers.

Since we are solving a discretized version of the original

problem, the obtained solution is not guaranteed to be

feasible for the original continuous-time OCP. Additionally,

it can also be difficult to preserve the accuracy of the solution

and obtain superlinear convergence as the number of mesh

nodes is increased, especially in problems with discontinuous

solutions.

The most commonly used direct transcription method

for solving optimal control problems is direct collocation,

which is considered to be the current state of the art [13].

While collocation has the advantage of being able to handle

complex dynamical models, collocation has the fundamental

drawback of not guaranteeing an acceptable accuracy in

between the collocation points.
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The idea of using integrated residuals as part of the

transcription process overcomes some of the limitations of

collocation [9], [10]. Compared to classical time-marching

schemes (shooting methods) or point-wise residual minimi-

sation (collocation), integrated residual methods have the

benefit of producing a solution with a more uniform error

over the whole time domain.

State-of-the-art mesh refinement methods are hp-adaptive

methods [7], [12]. Some advanced methods have discontinu-

ity detection schemes, but most current refinement strategies

rely on knowing beforehand whether the solution will be

discontinuous and cannot provide an efficiency comparable

to the continuous case for general problems. By adding a

flexible mesh, as in this paper, it is possible to develop a

method that has similar convergence properties for problems

with discontinuous or continuous solutions.

This paper extends the work in [11], which used the

integrated residual method for solving differential equations,

feasibility problems and constraint satisfaction problems with

a flexible mesh. The central contribution of this paper is to

extend such integrated residual methods to the solution of

OCPs. In the transcription process, a flexible time-mesh will

be introduced in order to achieve superlinear convergence for

discontinuous problems during the mesh refinement phase.

Moreover, the proposed algorithm is able to solve difficult

problems to a user-defined accuracy. A numerical example

shows how our method performs on a control problem with

an optimal chattering solution.

In Section II, we introduce the optimal control problem

formulation. In Section III-A we present the integrated resid-

ual method for transcribing the constrained optimal control

problem. Section III-B describes the concept of a flexible

time mesh and how this method can improve convergence.

Section III-C presents an algorithm for solving an OCP to

a user-specified accuracy. Section IV demonstrates how the

proposed algorithm from Section III-C can be used jointly

with a flexible mesh scheme to solve an optimal control prob-

lem and construct a Pareto front between solution accuracy

and a lower bound on the optimal cost. Section V provides

a summary of the main findings presented in this paper and

discusses potential improvements and future works.

II. PROBLEM DEFINITION

The objective functional of many optimal control and

estimation problems can be written in the general Bolza form
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min
x(·),u(·)

φ(x(t0), x(tf ), t0, tf ) +

∫ tf

t0

L(x(t), u(t), t) dt

(1a)

s.t. F (ẋ(t), x(t), u(t), t) = 0 ∀t ∈ [t0, tf ], (1b)

G(ẋ(t), x(t), u(t), t) ≤ 0 ∀t ∈ [t0, tf ], (1c)

where x : R → R
Nx are the state variables and constrained

to be continuous, ẋ : R → R
Nx are the time derivatives

of the state x, and u : R → R
Nu are the control inputs.

The function F : RNx × R
Nx × R

Nu × R → R
NF , which

contains the dynamical model of the system, defines a set

of NF equality constraints that have to be satisfied by the

controlled system. G : RNx×RNx×RNu×R→ R
Ng defines

Ng path inequality constraints. φ : RNx×R
Nx×R×R→ R

is the Mayer cost functional, also called the boundary cost,

with t0 ∈ R and tf ∈ R being the initial and final times,

respectively. L : R
Nx × R

Nu × R → R is the Lagrange

cost functional, also known as the path cost. Additionally,

the problem may have one or more boundary constraints of

the form

ΨE(x(t0), x(tf ), t0, tf ) = 0, (1d)

ΨI(x(t0), x(tf ), t0, tf ) ≤ 0, (1e)

where ΨE : RNx ×R
Nx ×R×R→ R

NE are the boundary

equality constraints, and ΨI : RNx × R
Nx × R× R→ R

NI

are the boundary inequality constraints.

III. SOLUTION METHOD

In most real-time control applications we are heavily

constrained by the computational time. As a result, solving

the entire problem (1) using direct collocation has two

fundamental drawbacks. Firstly, the designer is not able to

control the solution accuracy over the entire time interval

without a posteriori computing the error and conducting

mesh refinement procedures. Consequently, existing state-

of-the-art methods may fail to ensure constraint satisfaction.

Secondly, existing schemes cannot terminate early and return

the best feasible solution that was achieved in the given

amount of computational time. Since one often wants to

focus on fast constraint satisfaction, we propose to initially

solve a feasibility problem and refine the mesh until the

dynamic constraints are satisfied to a given accuracy. We

will then use the obtained solution as an initial guess to the

optimal control solver, which optimizes a transcribed version

of the original problem (1).

A. Integrated residual transcription

In the transcription process the infinite-dimensional

OCP (1) has to be converted into a finite-dimensional nonlin-

ear programming problem (NLP). In order to achieve this, the

state x(·) and input u(·) trajectories need to be parametrized

by a finite number of decision variables s
j
i and c

j
i where the

subscript i denotes the interval number and j denotes the

index of the nodal point in interval i, as will be described

later. Using a linear combination of these decision variables,

approximating functions x̃ : R → R
Nx and ũ : R → R

Nu

can be constructed.

Before aiming to minimize the objective, in most applica-

tions it is critical to ensure the constraints are satisfied to a

user-defined accuracy. For this purpose we will introduce an

error metric ǫR ∈ R defined as

ǫR :=
1

(tf − t0) ·NF

∫ tf

t0

∥

∥F ( ˙̃x(t), x̃(t), ũ(t), t)
∥

∥

2

2
dt (2)

based on the integral of the 2-norm squared of the dynamic

equation residual. The residual
∥

∥F ( ˙̃x(t), x̃(t), ũ(t), t)
∥

∥

2

2
in-

dicates how well the numerical solution (x̃(·), ũ(·)) satisfies

the dynamic constraint (1b) over the whole time interval. In

contrast with direct collocation that enforces constraint (1b)

exactly, but only at a finite number of nodes called colloca-

tion points, our method uses quadrature rules to integrate the

residual over the whole interval [t0, tf ], thus guaranteeing a

certain level of accuracy in between the collocation points.

Note also that the above error metric is a scaled version of

the integrated residual where the scaling factor 1
(tf−t0)·NF

is

introduced to average out the residual over the interval [t0, tf ]
and over all components of the dynamics function F .

Lagrange polynomial basis functions are often used to

express the approximating functions x̃ and ũ [2, Sect. 1.17.1].

The possible solution space is defined by the basis functions

used to represent approximation functions (x̃(·), ũ(·)). As a

consequence, the exact solution (x(·), u(·)) may not be rep-

resentable in that solution space, which implies that an exact

representation of the constraint (1b) can never be achieved

in finite time (the integrated residual ǫR can asymptotically

converge to zero only in the limit as the time-mesh is refined

and the number of discretization points is increased).

To reduce the approximation error (as quantified by ǫR)

there are two fundamental refinement strategies:

• h-refinement involves splitting the entire time domain

[t0, tf ] into N subdomains, i.e. subintervals [ti, ti+1]
such that

Ti := [ti, ti+1] ⊂ [t0, tf ], ∀i ∈ {0, . . . , N − 1}, (3a)

∪N−1
i=0 [ti, ti+1] = [t0, tf ], (3b)

ti < ti+1, ∀i ∈ {0, . . . , N − 1} (3c)

where tN = tf . The refinement variable is therefore the

number of subdomains N .

• p-refinement relies on constructing a polynomial ap-

proximation χi of degree a inside each subdomain

[ti, ti+1] such that for all i ∈ {0, . . . , N − 1}:

x̃(t) := χi(t), ∀t ∈ [ti, ti+1] (4a)

χi(t) =

∑a

j=0
w

j
i

t−τ
j
i

· sji
∑a

j=0
w

j
i

t−τ
j
i

, (4b)

where s
j
i = χi(τ

j
i ) = x̃(τ ji ) are NLP decision variables,

w
j
i are polynomial weights and τ

j
i are polynomial

nodes [1]. In this case, polynomial refinement means

increasing the polynomial degree a. Note a similar



expression for ũ(·) can be derived with b denoting the

polynomial degree of ũ(·).

Note that these elementary methods can both be used during

the mesh refinement process leading to the so-called hp-type

refinement method.

To enforce state continuity at mesh nodes ti, the additional

constraints

χ̃i(ti+1) = χ̃i+1(ti+1), ∀i ∈ {0, . . . , N − 2}, (5)

are enforced by using the same variable sai = s0i+1 to

represent both χ̃i(ti+1) and χ̃i+1(ti+1), ∀i ∈ {0, . . . , N−2}.

B. Residual minimization problem: Improving accuracy to

ensure feasibility

To efficiently solve feasibility and control problems with

discontinuous solutions, which are otherwise difficult to

solve, we will use an integrated residual method to tackle

the dynamic constraints. The idea is similar to what [3], [8]

have proposed for solving differential equations and what has

been used in [11] for solving dynamic feasibility problems.

The first step of our approach is to solve a feasibility

problem that aims to satisfy constraints (1b)–(1e) to a

given tolerance. This feasibility problem is converted into a

minimisation problem that minimizes the integrated residual

of the dynamics model ǫR below a user-specified value.

In numerical simulations, integrals from (1a) and (2) have

to be approximated using a Q-point Gaussian quadrature

rule. Since F is a general nonlinear function, the approxima-

tion of the above integrals will not be exact. Apart from the

residual error ǫR appearing as a result of the discretization,

another numerical error is introduced, namely the quadrature

error

ǫQ :=
∣

∣

∣
ǫR −

N−1
∑

i=0

Q
∑

k=1

σk
i ·

∥

∥F ( ˙̃x(ρki ), x̃(ρ
k
i ), ũ(ρ

k
i ), ρ

k
i )
∥

∥

2

2

∣

∣

∣

(6)

where σk
i for k ∈ {1, . . . , Q} are the Q quadrature weights

associated with the integration interval [ti, ti+1], appropri-

ately scaled by NF and interval length to include the initial

factors in (2), while ρki are the quadrature nodes for the

interval [ti, ti+1].
In order to validate the obtained solution, we need to check

whether ǫQ is sufficiently small by recomputing the integrals

with a higher quadrature order. If the difference between the

new value and the solution obtained from the optimization

problem is above a certain tolerance εquad,tol, the problem

needs to be resolved using a higher value for Q.

We rely on mesh refinement to select appropriate values

for N , a and b. Note however that conventional mesh

refinement strategies applied to a fixed time-mesh with nodes

at predefined locations may not always achieve superlinear

converge to the solution as the number of nodes is increased.

Consider for example the case when a discontinuity in the

solution u(·) is located in the interval (ti, ti+1). In this case,

a numerical approximation of this discontinuous function is

obtained using a continuous polynomial basis (as described

in Section III-A). In general, unless a mesh node is located

exactly at the point of discontinuity, a Gibbs phenomenon

can occur when interpolating a discontinuous function with

a continuous one. This leads to interpolation overshoots that

cannot be eliminated in general by mesh refinement schemes

and will cause the error to plateau and not decrease beyond

a certain level.

In order to achieve superlinear convergence in cases where

discontinuities are present and produce an accurate solution,

we propose including mesh points ti as decision variables in

the NLP formulation. As a result, time nodes are allowed to

move towards regions non-smoothness.

Recall that standard direct collocation methods compute

an integral of the residual only after the NLP has been

solved [2]; they do not directly constrain the integral of the

residual while computing a solution to the NLP. It follows

that introducing mesh nodes as decision variables in standard

collocation methods can result in less accurate solutions

than those with fixed nodes, unless care is taken. This

argument also motivates the interdependence between the use

of a flexible mesh and the integrated residual transcription

method proposed here.

In an ideal scenario where no quadrature error is present,

nodes can be allowed to move freely in the domain according

to (3). However, since quadrature error increases as the

intervals expand, we still need to constrain the allowed

flexibility of the nodes. For a fixed parameter φ ∈ [0, 1)
we impose upper and lower bounds on the interval length

ti+1 − ti ≤ (1 + φ) ·
tf − t0

N
, ∀i ∈ {1, . . . , N − 1}, (7a)

ti+1 − ti ≥ (1− φ) ·
tf − t0

N
, ∀i ∈ {1, . . . , N − 1}. (7b)

Since φ ∈ [0, 1) by definition, the order of nodes is preserved

and intervals do not overlap, as required by (3c).

For a better sparsity structure of the Hessian along with

the ease of implementing continuity constraints (5) and

boundary constraints (1d), (1e) the decision vector z ∈
R

N ·(Nx·(a)+Nu·(b+1)+1)+Nx+1 is ordered as

z := (s00, t0, s
1
0, . . . , s

a−1
0 , c00, . . . , c

b
0, s

a
0 , t1, s

1
1 . . . , s

a
N−1, tN ).

(8)

Hence, the minimum residual solution along with the op-

timal node locations can be computed from the optimization

problem

min
z

N−1
∑

i=0

Q
∑

k=1

σk
i ·

∥

∥F ( ˙̃x(ρki ), x̃(ρ
k
i ), ũ(ρ

k
i ), ρ

k
i )
∥

∥

2

2
(9a)

s.t. G( ˙̃x(τ ji ), x̃(τ
j
i ), ũ(τ

j
i ), τ

j
i ) ≤ 0 ∀τ ji ∈ τ, (9b)

ΨE(s
0
0, s

a
N−1, t0, tf ) = 0, (9c)

ΨI(s
0
0, s

a
N−1, t0, tf ) ≤ 0, (9d)

(1− φ)
tf − t0

N
≤ ti+1 − ti ≤ (1 + φ)

tf − t0

N
, (9e)

χ̃i(ti+1) = χ̃i+1(ti+1) ∀i ∈ {0, . . . , N − 2}, (9f)

where path inequality constraints (9b) are implemented at

the support time points τ
j
i . Note that, since time-mesh nodes

are added in the decision vector, quadrature points ρki and



Algorithm 1: Algorithm for solving OCPs in

form (1)

Require: ǫtol, εquad,tol and initial values for N , a, b, Q

and z∗.

1: repeat

2: z0 ← z∗

3: z∗ ← argminz (9a) s.t. (9b), (9c), (9d), (9e), (9f)

4: if ǫQ ≤ εquad,tol then

5: ǫR ← minz (9a) s.t. (9b), (9c), (9d), (9e), (9f)

6: increase N

7: else

8: increase Q

9: end if

10: until ǫR ≤ ǫtol
11: z0 ← z∗

12: z∗ ← minz (10a) s.t. (10b), (10c)

13: x̃, ũ← interpolate(z∗)

internal supports τ
j
i become functions of ti and ti+1. Hence,

these values need to be shifted and scaled accordingly.

C. Cost minimization problem: From constrained control to

optimal control

In this paper we will focus on h-refinement. Starting from

a coarse mesh (small N ) problem (9) is solved repeatedly

until a desirable user-defined tolerance ǫtol on (2) has been

reached. Even if the convergence is superlinear with respect

to the number of subdomains N , the performance can further

be improved by providing a good initial guess obtained from

interpolating the solution obtained from the previous solution

with a coarser mesh.

After the desired tolerance has been reached, the mesh

parameters N and a are fixed and the cost functional is

minimized by solving

min
z

φ(x(t0), x(tf ), t0, tf ) +

N−1
∑

i=0

Q
∑

k=1

σk
i L(x(ρ

k
i ), u(ρ

k
i ), ρ

k
i )

(10a)

s.t.

N−1
∑

i=0

Q
∑

k=1

σk
i ·

∥

∥F ( ˙̃x(ρki ), x̃(ρ
k
i ), ũ(ρ

k
i ), ρ

k
i )
∥

∥

2

2
≤ ǫtol

(10b)

(9b), (9c), (9d), (9e), (9f), (10c)

Since we have successfully solved (9), we know the

dynamics constraint (10b) should be feasible. We also have

an upper bound on the cost and a sufficiently good initial

guess needed to efficiently warm-start problem (10).

The proposed algorithm for solving optimal control prob-

lems using integrated residual transcription method is out-

lined in Algorithm 1. In the initialization phase, mesh

variables N , a and b are set to small values. The integrated

residual minimization problem (9) is then solved using warm

starting and the solution checked if the obtained residual

is below the threshold tolerance ǫtol. Note on line 2 of

Algorithm 1 the pseudo-code notation is simplistic, but the

initial guess z0 is not directly set to z∗ since the size of

z increases as the mesh is refined. However, z0 will be

an expanded and interpolated version of z∗ as previously

explained. Any suitable method can be used for increasing

Q and N ; we chose to double N and Q every time in

our example in Section IV. Once problem (9) has been

solved and the residual minimized, problem (10), which is a

transcribed version of problem (1), is solved using available

NLP solvers.

IV. NUMERICAL RESULTS

An optimal control problem solver based on the integrated

residual method was developed in the Julia v1.6 program-

ming language. The package makes use of barycentric inter-

polation routines as described in [1] to parametrize the state

and input variables. Numerical integration was performed

using Gaussian quadrature as detailed in [6]. Derivative

information was obtained using automatic differentiation

(AD) tools [5] and supplied to the solver as the gradient and

Hessian of the Lagrangian function. The solver includes an

implementation of the flexible mesh scheme of Section III-

A along with a fixed mesh version, where time nodes ti
are chosen to be in predefined locations and not included as

decision variables. In our implementation, Chebyshev type 2

interpolation nodes and weights were used, since we want

internal supports τ0i , τai to coincide with interval boundaries

ti and ti+1 ∀i ∈ {0, . . . , N − 1}. The default values for the

number of intervals, state and input polynomial degree and

quadrature order are N = 5, a = 2, b = 1 and Q = 3.

In order to demonstrate the effectiveness of our method,

we showcase the two main features of our proposed method,

namely superlinear convergence and the ability to control

the accuracy of state and input trajectories, on an optimal

control problem with a chattering solution. While solving

optimal control problems is the main focus of our work, the

capabilities of the implemented method can be used to solve

feasibility problems and complex differential equations as

well (such as high index DAEs and differential inclusions).

Algorithm 1 was implemented using the interior point NLP

solver Ipopt [14] with a relative convergence tolerance set to

10−10. All tests were performed on a laptop with an Intel®

Core™ i7-4600U CPU at 2.10 GHz with 16 GB of RAM.

A. Fuller problem description

We propose the numerical experiment to be an optimal

control problem with a discontinuous solution at non-trivial

times in order to underline the capability of our flexible-

mesh optimal control solver to capture these discontinuities.

Additionally, we will analyse the impact of the desired

accuracy on the cost value for the numerically computed

solution (which is a lower bound for the exact optimal

solution cost).

The chosen problem is a variation of the Fuller problem [4]



Fig. 1. Numerically computed control solution to Fuller problem using
flexible meshes with N = 20 intervals, polynomial degrees a = 2 , b = 1,
flexibility parameter φ = 0.5 and desired accuracy ǫtol = 10

−8. Blue dots
indicate the location of mesh points.

min
p(·),u(·)

∫ T

0

p2(t) dt (11a)

s.t. p̈(t) = u(t), ∀t ∈ [0, T ] (11b)

u(t) ∈ [−0.01, 0.01], ∀t ∈ [0, T ] (11c)

p(0) = p(T ) = ṗ(T ) = 0, ṗ(0) = 1, (11d)

with T = 300 seconds, where p(t) ∈ R is the position and

u(t) ∈ R the control input at time t.

Since the chosen time T was sufficiently large, the optimal

control input trajectory has a bang-bang structure with values

alternating between −0.01 and 0.01 and then reaching the

steady state with u(T ) = 0. These switching times are

difficult to be captured by a numerical solver. Figure 1

displays the state components p, ṗ and the control input u

as obtained by implementing Algorithm 1. Another relevant

feature to observe is how the mesh automatically becomes

denser in the regions of sudden changes near the switches

and coarser where the solution is smoother.

Another aspect which motivates this choice of illustrative

example is the chattering phenomenon. As can be observed,

instead of getting infinitely many switches, we only capture

a finite number of switches between values that are not all

on the input bounds. This behaviour is due to the specified

tolerances, as explained in Section IV-C below. The lower the

tolerance, the more accurate the numerical solution becomes.

B. Superlinear convergence for discontinuous solutions

Note that in this problem the solution can be represented

by piecewise polynomials of a sufficiently high degree.

As a result, when setting a ≥ 2 the minimum in (9)

converges to 1.8729 · 10−15. In general, solutions cannot be

represented exactly using piecewise polynomials, hence we

set the polynomial degree to a = b = 1 in order to reproduce

the convergence behaviour generally encountered for most

practical problems.

Fig. 2. Convergence of the Fuller problem as the mesh is refined with N

between 5 and 60 intervals, first order polynomial approximation a = b = 1

and flexibility parameter φ = 0.5.

Fig. 3. Impact of the desired accuracy on the cost value for the numerically
computed solution of the Fuller problem using flexible meshes with φ =

0.5. Green dots denote solutions to problem (9) for different N and when
the cost is not minimized. Blue dots represent the solutions to problem (10)
for fixed parameters N = 60, a = b = 1 as the tolerance ǫtol is varied.

Figure 2 presents the performance of our flexible mesh

idea and compared to a fixed mesh refinement procedure. The

plot shows the variation of the minimum integrated residual

attainable for a certain number of mesh intervals N . Note the

scale is logarithmic and on the horizontal axis is plotted the

inverse of N . The slope of the blue line is approximately 2
which is an indicator of superlinear convergence. In contrast

with our flexible mesh, the red dots form a line of slope

approximately equal to one for low values of N and then

start to plateau at a certain value.

C. Between accuracy and optimality

Figure 3 presents in green the solution for problem (9)

using an increasing number of mesh nodes N . Blue denotes

the solution for (10) using an increasing tolerance ǫtol.

The green dots represent what happens to the minimized

integrated residual as the number of intervals is changed.

As can be observed, the cost does not change significantly

as the mesh is refined. However this is not always the case



Fig. 4. Impact of the desired accuracy on the cost value for the numerically
computed solution for the Fuller problem using flexible meshes with φ =

0.5. The green dot shows the solution to (9) for N = 20, a = 2, b = 1.
Blue dots represent the solutions to problem (10) as the tolerance ǫtol is
varied.

and there can be situations where the solution of problem

(9) is very far away from the numerical solution computed

from (10). Such an example is shown in Figure 4. The blue

dots are points on the Pareto front between numerical lower

bounds on the optimal cost value and discretization error for

a fixed number of intervals N = 20.

Having an integrated residual based transcription allows

the user to generate an approximate numerical solution using

a finite number of discretization intervals N and visualize the

impact of different ǫtol tolerance values on the computed

solution. As one would expect, the objective value increases

as the tolerance is decreased, since the solution is captured

more accurately by our numerical scheme and a tighter lower

bound to the exact solution can be produced.

The Pareto front shown in Figure 4 uses a logarithmic

scale for the y-axis and a linear scale for the x-axis. In this

example, decreasing the tolerance ǫtol means that more full

switches will be captured in the region t ≈ 280 seconds, thus

improving the solution accuracy. However, reducing ǫtol will

increase the computational time. As can be noticed, below a

certain accuracy threshold the cost value no longer changes

significantly, meaning that the gap between the numerical

and exact optimal cost cannot be further reduced without

increasing the number of mesh nodes N . In general, we aim

to find a value for ǫtol that can maintain a good balance

between solution accuracy and computational time.

V. CONCLUSIONS AND FUTURE WORKS

Numerically solving optimal control problems for a given

discretization mesh involves a trade-off between computa-

tional time and solution accuracy. In our example, we can

use the change in cost value as a function of the residual

tolerance ǫtol as a metric to determine whether a satisfactory

solution has been found. While in most transcription methods

this trade-off cannot be easily ensured a priori, our proposed

algorithm explicitly includes the residual tolerance ǫtol as a

parameter and is able to construct the Pareto front between

the cost value and residual tolerance ǫtol. This opens up the

possibility for early termination in real-time control appli-

cations. As discussed, it is important to use a transcription

method that relies on error measures that are integrated along

the entire solution trajectory to assess convergence, instead

of measured error at a finite number of sampled locations.

In this way, the error between mesh nodes can be accounted

for.

When discontinuities are present in the solution, nu-

merically approximating state and input trajectories to an

acceptable tolerance is especially challenging. Our method

proposes the use of a flexible mesh for capturing disconti-

nuities by including time mesh nodes in the decision vector.

The efficiency of this method was demonstrated through an

illustrative example.

The implementation of the method is in an early devel-

opment stage and many improvements are possible in order

to demonstrate its full capabilities. Further research could

be conducted on improving the mesh refinement process

by including early termination procedures, thus increasing

the computational efficiency of the overall solution process.

Other future work could aim at automatically increasing the

quadrature order such that the constraints in (7) can be re-

moved. Theoretical convergence and performance guarantees

also need to be investigated.
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