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Abstract
The future of human–robot collaboration relies on people’s ability to understand and predict robots’ actions. The machine-like
appearance of robots, as well as contextual information, may influence people’s ability to anticipate the behaviour of robots.
We conducted six separate experiments to investigate how spatial cues and task instructions modulate people’s ability to
understand what a robot is doing. Participants observed goal-directed and non-goal directed gaze shifts made by human and
robot agents, as well as directional cues displayed by a triangle. We report that biasing an observer’s attention, by showing
just one object an agent can interact with, can improve people’s ability to understand what humanoid robots will do. Crucially,
this cue had no impact on people’s ability to predict the upcoming behaviour of the triangle. Moreover, task instructions that
focus on the visual and motor consequences of the observed gaze were found to influence mentalising abilities. We suggest
that the human-like shape of an agent and its physical capabilities facilitate the prediction of an upcoming action. The reported
findings expand current models of gaze perception and may have important implications for human–human and human–robot
collaboration.
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1 Introduction

Inferring people’s mental states from observing their gaze
requires the ability to detect where they are looking and
interpret the observed gaze as an expression of a desire or
goal-directed behaviour [1, 2]. The engagement of higher-
order social-cognitive representations during gaze-based
interactions is necessary given that unlike other, more
spatially-precise and unambiguous non-verbal spatial cues
(e.g., hand pointing or object grasping), the communicative
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intent and significance of gaze shifts can be highly ambigu-
ous [3]. A person seemingly gazing towards an apple may
be signalling admiration for the apple, an intention to grasp
and eat it, or may actually be looking into the space beyond
the apple while they are distracted or contemplating their
day. Despite the high degree of variability in the meaningful-
ness and communicative nature of gaze shifts, humans have a
remarkable sensitivity to parse the gaze information of others
so as to make predictions about a social partner’s behaviour
and effectively interact with them [4].

Current socialmodels ofmental state attribution fromgaze
perception [5] suggest a bidirectional relationship between
processing visual sensory information (e.g., processing oth-
ers’ eyemovements) and top-down cognitive influences (e.g.,
assuming an agent has a mind, [6, 7]). For example, the
tendency to anthropomorphise non-human objects like cars
predicts the activation of brain areas associated with human
face processing [8]. Personal beliefs also modulate how we
perceive non-human behaviour. Observing the incongruent
movements of a dot or an avatar’s hand when participants
believe them to be controlled by a human interferesmore than
when participants believe the dot or virtual hand movements
were programmed by a computer [9, 10]. Similarly, several
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studies have now demonstrated that subjective experiences,
behavioural strategies for coordination, and the neural pro-
cessing of gaze differs when participants interact with virtual
avatars or robots believed to be either human- or computer-
controlled [7, 11, 12].

Recently, it has been suggested that processing the bod-
ily appearance of an agent is also fundamental for social
interactions, and it can inform an observer about their per-
sonality and mental states [13]. For example, Morales-Bader
et al. [14] showed that people attribute more intentional-
ity to randomly moving objects when they have a human
shape compared to a triangle figure and when triangles are
labelled as persons rather than mere figures. However, when
we observe a directional cue that does not predict the location
of a target, the form of the observed cue (e.g., eyes embed-
ded in a human face, an apple, or a glove [15]; or an agent’s
tongue, [16]) does not influence the orienting of the partici-
pant’s attention towards the gazed-at location.

It was originally suggested that the ability to detect an
agent, that is, the identification of an entity capable of
goal-directed behaviours, should not be separated from the
perception of volitional actions ([1, 17]). Thismay imply that
when detecting an agent (as defined above), its goal-directed
actions should be perceived as intentional or, in other words,
the observed actions should be interpreted as being guided by
the intentional state of the agent. For example, when we see
a friend grasp a bottle of water, we automatically perceive
this behaviour as intentional, and that our friend’s handmove-
ments arewillingly controlled by them.However, robotsmay
be perceived as an agent unable to intentionally act as humans
do. This implies that inferring the intentions of a human may
be easier compared to reading the behaviour of a different
agent (say, a robot). Moreover, such advantage should not
be affected by the scenario where the two agents are acting
or by changing the agent’s internal state participants have to
identify. In other words, the difference in the ability to read
the intentions of two agents should not change as a func-
tion of contextual information (i.e., new scenarios or new
task instructions) if the behaviours of the observed agents
are identical across both contexts.

We recently have suggested that detecting where a
humanoid robot is gazing may rely on visually processing
the direction of the observed gaze (e.g., right) rather than
engaging the observer’s the motor system responsible for
anticipating other’s actions [18]. Furthermore, although par-
ticipantswere slower in attributingmental states to humanoid
robots than to humans, we showed that the human-like
appearance of non-human agents may engage processes
responsible for ascribing intentions to others.

Here, we expand and replicate our previous study showing
that it is easier to attribute intention to humans rather than
non-human agents from the observation of non-predictive
gazes in two novels laboratory and online experiments

(Experiments 1 and 3 respectively). Furthermore, we inves-
tigate how what the agents gazed at (looking at a graspable
object or to an empty space; Experiment 2) and task instruc-
tions (predicting what the agent is going to do vs what
the agent is looking at; Experiments 4, 5, and 6) affect
people’s ability to interpret non-human agents with a human-
like body. If the physical form of the agent is not relevant
for attributing intentions to others, then changing contex-
tual information (i.e., scenarios and task instructions) should
not affect participants’ ability to interpret non-human gaze
behaviour. Hence, we should expect people to always be
faster in attributing intentions to a human than a robot actor
[18]. In contrast, if the physical form of the agent does indeed
interact with contextual information, we should expect peo-
ple being equally fast to attribute an intention to robots and
humans in a new scenario, and an integrative account taking
into consideration how an agent’s bodily form may sup-
port human ability to infer others mental states through gaze
observation should be considered.

2 Materials andMethods

2.1 Experiments Overview

We provide here a summary of each experiment’s aims.
Methodological information are in the next sections. For fur-
ther details about the instructions, statistical results and data
interpretation, the reader can refer to each experiment’s ded-
icated section.

Experiment 1 was laboratory-based. The goal was to test
how people infer human and robot intentions when the agent
can gaze at two objects individually and randomly placed to
the right or left of the agent.

Experiment 2 was conducted online and aimed at replicat-
ing Experiment 1 with only one object displayed next to the
agent. We reasoned that if others’ gaze is the only relevant
cue to attribute intentions, we should observe similar results
between Experiments 1 and 2.

Experiment 3 was conducted online and aimed at replicat-
ing the methods and results of Experiment 1 (i.e., two objects
presented simultaneously, each object randomly placed to the
agent’s right or left).

Experiment 4 was conducted online and aimed at repli-
cating Experiment 2. In particular, we reasoned that if
participants in Experiment 2 were interpreting the agent’s
gaze in terms of motor goals, we should find similar results
in Experiment 4 when task instructions focused on the motor
consequences of the observed gaze.

Experiment 5 was conducted online and aimed at repli-
cating Experiment 2. In particular, we reasoned that if
participants in Experiment 2 were interpreting the observed
gaze in terms of what the agent was perceiving, we should
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Fig. 1 The set of agents and trial timeline,Note.AAgents are displayed
side by side for graphical purposes.During the experiments, agentswere
always centred to screen. The triangle-shaped object was presentedwith
a set of speakers to suggest its capacity to emit sounds.BAn example of
the trial timeline: after a variable interval, the scenario is displayed and

followed by the agent looking straight for 400ms before gazing towards
one direction (in the image, an example of the agent looking towards the
speech bubble). C In Experiments 2, 4, 5, and 6, the graspable objects
were the only object visible on the table. SeeMethod section andMovie
S1 for further details

find similar results in Experiment 5 when task instructions
focused on the perceptual experience of the agent.

Experiment 6 was conducted online and aimed at repli-
cating Experiment 5 findings and understanding results from
Experiment 4. Specifically, we reasoned that providing par-
ticipants with instructions that better define the motor and
non-motor intentions guiding an agent’s gaze, we should
obtain similar results between Experiments 2 and 6.

2.2 General Methodology

In six separate experiments, participants observed an agent
appearing behind a table and gazing towards different
objects, up or down (see Apparatus and Task and Movie
S1 for further details). Participants indicated either what the
agent was going to do (Experiments 1–4 and 6) or what
the agent was looking at (Experiment 5). Agents were two
human actors (one male, one female), two humanoid robots

(NAO, Softbank Robotics; Baxter, Rethink Robotics), and a
triangle-shaped object with realistic visual texture (a portable
lectern). Humans and humanoid robots had their trunks and
upper arms visible. We edited stimuli to give the impression
that their upper limbs were resting on the table (Fig. 1A). The
faces of Baxter were created from an open-source database
[19]. Experiments 1–3 were pre-registered, which included
the fixing of sample sizes and the statistical approach taken to
evaluate the data ahead of data collection for Experiments1–3
(please find the links to the online pre-registration files in the
footnote1). Experiments 4, 5, and 6 were not pre-registered
as we tried to replicate results obtained in Experiment 2 with
a smaller sample size and slightly different task instructions.
We adopted the same statistical approach of our previous

1 Experiment 1: https://aspredicted.org/SUV_JQF.
Experiment 2: https://aspredicted.org/DLN_ZEK.
Experiment 3: https://aspredicted.org/MDC_LKC.
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Table 1 .

Experiment Sample Mean age ± S.E.M.,
Range

1 n = 24 [female = 14,
male = 10, prefer not
to say = 0]

23.46 ± 1.51, [18–39]

2 n = 100 [female = 51,
male = 48, prefer not
to say = 1]

29.20 ± 1.08, [18–73]

3 n = 100 [female = 46,
male = 53, prefer not
to say = 1]

26.68 ± 0.79, [18–56]

4 n = 81 [female = 25,
male = 54, prefer not
to say = 2]

25.06 ± 0.83, [18–65]

5 n = 80 [female = 24,
male = 55, prefer not
to say = 1]

24.39 ± 0.55, [18–44]

6 n = 81 [female = 28,
male = 53, prefer not
to say = 0]

25.44 ± 0.75, [18–53]

Descriptive measures of the sample for each experiment

work [18] to facilitate comparison across all experiments and
studies.

2.3 Participants

We recruited adult English-speaking participants from the
University of Hull (Experiment 1) and via the online research
participation platform Prolific Academic [20] (Experiments
2–6) in exchange for course credits and monetary compen-
sation, respectively. The task, procedure, and methodology
were reviewed and approved by the institutional review
boards of the University of Hull (protocol number: FHS150)
and carried out following the standards set by theDeclaration
ofHelsinki (2013). All participants were naïve to the task and
purpose of the experiment. Each participant completed a sin-
gle experiment, and informed consent was obtained before
starting the task. Participants were free to withdraw from the
experiment any time without having to give any reason (for
online experiments participants were informed they could
withdraw by pressing the ‘escape’ key).

A total of 465 participants completed different experi-
ments (see Table 1). Sample sizes were selected (G*Power,
[21]) so that we had sufficient power to detect medium to
large effect sizes for Experiments 1 (dz = 0.6, Alpha =
0.05, Beta = 0.80), small to large effects for Experiments
2 and 3 (dz = 0.3, Alpha = 0.05, Beta = 0.80). We slightly
reduced sample sizes for Experiments 4, 5, and 6 due to lim-
ited resources. However, our sample sizes were nonetheless

sufficient to detect small to large effect sizes (dz = 0.35,
Alpha = 0.05, Beta = 0.80).

2.4 Procedure

Participants were invited to read the information sheet
and communicate any questions to the experimenter if
needed. After providing informed consent, participants were
explained the experimental task in the laboratory Experiment
1 and read the experimental instructions in the other online
experiments. Three agents were presented and described as
humans, robots, and a triangle capable of performing three
actions (i.e., a total of 9 experimental conditions), and the
trial timeline was explained (see Movie S1 for instructions
and trial timeline). After that, participants performed a quick
practice sessionof 18 trials to ensure participants couldmatch
the observed action with the corresponding key. Since online
data collection was performed without the direct supervi-
sion of the experimenter, the online practice session provided
accuracy feedback to participants after their response for
the first 12 practice trials (see Movie S1). After the prac-
tice session, participants started four experimental blocks.
We decided to split the experimental session into four blocks
to allow participants to take some breaks. Each block com-
prised 54 trials for Experiment 1 (a total of 216 trials; 24 trials
per condition) and 45 trials for Experiments 2–6 (a total of
180 trials; 20 trials per condition). Agents’ presentation was
pseudorandomised across the four experimental blocks (i.e.,
each trial may have displayed a different agent). After the
main task, participants rated their exposure to media robotic
content ("How often do you watch movies, TV series, or
play videogames where robots are involved?") using a nom-
inal scale (1= Never, 2= Once every Year, 3= Once every
6 months, 4=Once every 3 months, 5=Once every month,
6=More than once every month). After the experiment, par-
ticipants were debriefed as to the purpose of the experiment.

In Experiment 1, participants also completed a com-
puterised series of questionnaires related to attitudes and
perception of robots. In particular, they reported their level of
agreement along a horizontal bar to the items of the Negative
Attitudes towards Robots Scale (NARS; [22]) and the Robot
Anxiety Scale (RAS, [22]). Moreover, participants answered
to some items of the anthropomorphism, animacy, and intel-
ligence subscales of the Godspeed questionnaire [23] by
indicating their position on a scale between twobipolarwords
(e.g., human-like, machine-like). Finally, we assessed partic-
ipants’ opinions about how close they perceive themselves
and other humans to robots using a modified and comput-
erised version of the Inclusion of the Other in the Self [24].
Questionnaires (see Supplementary Table 1) were collected
to have insights about the perception of robots within the
sample and were not analysed further.
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2.5 Apparatus and Task

We used 3D printed geometrical shapes as graspable objects
(i.e., a cube, a cylinder, a sphere, and a rectangle). In the labo-
ratory Experiment 1, participantswere allowed tomanipulate
the graspable objects as long as they liked before the task
(naturally, this was not possible for online experiments). The
task for Experiment 1 was designed usingMatlab 2018R and
Psychotoolbox 3 [25]. Stimuli were presented on a 21.5-inch
screen (resolution: 1920 × 1080 pixels; refresh frequency,
60 Hz) at a distance of 70 cm from the participant. For online
experiments, the scriptswere designed using Psychopy 3 [26]
and hosted on Pavlovia (Pavlovia.org) to run within the par-
ticipants’ browser.

In Experiments 1 and 3, each agent could gaze towards
a graspable object, a text bubble, or up and down (Fig. 1B).
We displayed only one of the four graspable objects in each
trial and the text bubble could contain one of ten short self-
descriptive sentences (i.e., I think, I plan, I desire, I judge, I
worry, I believe, I imagine, I relax, I feel, I like). These short
sentences were selected to facilitate both physical and men-
tal states attribution to the observed agent [27]. Graspable
objects and sentences were not associated with a specific
agent and were randomly presented each trial. In Experi-
ments 2, 4, 5, and 6, the text bubble was removed, and the
agent appeared to gaze at the empty table (Fig. 1C). The loca-
tionof the graspable object and text bubble (or the empty table
for Experiments 2, 4, 5, and 6) was randomly generated for
each trial. Participants were asked to place their right index,
middle, and ring fingers over three keys (‘n’, ‘j’, ‘i’). These
kyes were chosen because they allow a normal and relaxed
position of the right arm and fingers. Keys were randomly
assigned to one action across participants. In all Experiments,
the up and down gaze movements were associated with the
same (randomised across participants) key.

The trial timeline was identical in all Experiments, with
few differences between laboratory and online experiments.
Participants observed the scenario for 1500 ms in Experi-
ments 1 and 1100 ms in all other online Experiments. Then,
one of the three agents could appear, and 400 ms later they
turned their heads and gazed right or left (towards the gras-
pable object and text bubble for Experiments 1–3; towards
the graspable object and the empty table for Experiments 2,
4, 5, and 6) or either up or down (for all Experiments). This
rapid succession of the agents’ images created the impres-
sion of an apparent motion [28, 29]. Finally, the agent and
the environment remained visible until response. In Experi-
ment 1, the intertrial interval randomly ranged between 750
and 1000ms. In the online experiments, the intertrial interval
randomly ranged between 400 and 600 ms.

2.6 Measures, Data Processing, and Statistical
Approach

We collected task Accuracy and Response Time (RT;
expressed in seconds) as performance measures, and we
specified how data would be processed in the online
pre-registration files. Specifically, for all experiments, we
excluded trials < 0.150 s and > 1.500 s. Then, we excluded
trials whose RTs fell above or below 2.5SDs of the overall
mean within each block for each participant. At this stage
of data processing, we excluded participants whose overall
accuracy was below 65%. Finally, we excluded participants
whose performance (in RTs or Accuracy) fell above or below
2.5SDs of the overall mean across conditions of the remain-
ing participants.

Statistics were performed using R 3.5.1 [30] run on the
University of Hull High-Performance facility VIPER (http://
hpc.wordpress.hull.ac.uk/home/). We used the lme4 pack-
age (v1.1.27.1; [31]) to performMLMwith fixed effects and
complex random intercepts (CRIs) as randomeffects.2 Model
reduction started from the full-CRIs MLM3. For MLMs on
RT of correct answers, we also report the partial eta-squared
as a measure of effect size (effectsize v0.4.5; [32]). For all
MLMs, we computed the conditional R2 (for lme4::lmer per-
formance v0.7.3, [33]; for lme4::glmer MuMIn v1.43.17,
[34]). Throughout the paper,we report the p-values computed
on the estimates of the simplified MLM. For each multiple
comparison, we report the individual Bonferroni corrected
p-value computed from the final MLM using emmeans
(v1.6.2-1; [35]). Furthermore, we performed confirmatory
ANOVAs on Accuracy and mean-aggregated RT data to sup-
port the main analyses. For each confirmatory analysis, we
ran multiple comparisons3 and reported the absolute value
of the Cohen’s d (|d|) and the Bayes Factor (BF10; default
Cauchy prior of 0.707; JASP Team, 2021, Version 0.14)
to further facilitate the reader in assessing the strength of
the evidence. Classically, BF10 is interpreted as showing
very strong evidence towards the alternative hypothesiswhen
greater than 150, strong evidence when equal or greater than
20, positive evidence when equal or greater than 3, and with
weak or negligible evidence when between 1 and 3 [36]. The
inverse of these values (1/150, 1/20, 1/3) can be interpreted
as BF10 showing very strong, strong, or positive evidence
towards the null hypothesis.

We considered as non-conclusive discordant findings
obtained from the MLM and the analyses on mean-
aggregated data. If not stated otherwise, the ANOVAs and

2 Scandola, M., Tidoni, E., (Preprint). The development of a standard
procedure for the optimal reliability-feasibility trade-off in Multi-
level Linear Models analyses in Psychology and Neuroscience. https://
psyarxiv.com/kfhgv.
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Fig. 2 Results of experiment 1, Note. Participants’ performance (Accu-
racy percentage on the left, Response Times expressed in seconds on
the right) in Experiment 1 for each experimental condition. To pro-
vide a comprehensive overview of collected data, raw data from each
experimental condition are visualised as raincloud plots, median bar
plots (with lower and upper hinges corresponding to the 25th and 75th
percentile and whiskers extending no further than 1.5 * “Inter Quartile
Range” from the hinge), and probability density. The circles inside each
median bar plot indicate the average of the by-subject mean-aggregated

data for that condition. Error bars represent 95% confidence intervals
of the mean based on subject-aggregated data. Data visualisation has
been possible by adapting the open-source R code “RainCloudPlots”
[37]. Asterisks denote the significant differences (p < 0.05) for both
the MLM and the ANOVA on mean-aggregated data as reported in the
main text. Section sign symbol (§) denotes a tendency (i.e., a significant
p-value for the MLM but a p-value comprised between 0.05 and 0.10
in the ANOVA on mean-aggregated data)

multiple comparisons confirmed the results obtained from
the MLM model.

3 Experiment 1

Participants (n = 24) were instructed that each agent could
look towards the graspable object to grasp it (gaze to grasp:
“is going to grasp the object”), towards the text bubble to
speak (gaze to speak: “is going to speak”), up or down to do
nothing (non-goal directed action as control: “is looking up
or down”). Participants were asked to indicate what the agent
was going to do (i.e., the agent is going to grasp the object,
going to speak, or is looking up or down). If inferring what
an agent is going to do is easier when we observe human
agents, we should expect faster RT when humans but not the
other agents look towards an object. No differences across
agents are expected when they perform a non-goal directed
gaze.

We removed trials with RTs deemed too fast or too slow
(0.39%). Then, trials with RTs falling above or below 2.5SD
of the overallmeanwithin eachblockof eachparticipantwere
removed (1.78%). No participants’ performance was < 65%.
Finally, oneparticipant had aperformance above2.5SDof the
overall mean across conditions of the remaining participants
and was excluded from the final sample (n = 23).

3.1 Results

We analysed performance measures (see Fig. 2) with Agent
(human, robot, triangle) and Action (to grasp, to speak, look
up|down) as within-subject fixed effects of a multilevel lin-
ear model (MLM; see Table S2 in Supplementary Materials
for details on the fixed and random effects structure of all
the MLMs). In the case of a two-way Agent by Action inter-
action, we performed eighteen multiple paired comparisons
of interest. Specifically, we compared the three Action lev-
els within each Agent (e.g., graspable object—human agent
vs text bubble—human agent; 9 comparisons), and each
Action level across the three agents (e.g., text bubble—hu-
man agent vs text bubble—robot agent; 9 comparisons).
We also performed a confirmatory ANOVA on Accuracy
and mean-aggregated RT data to support the main analyses.
Non-conclusive findings (i.e., less robust, more fragile) are
highlighted whenever the MLM and the confirmatory anal-
yses yield discordant results (see Method section for further
details).

For Accuracy, we observed a main effect of Action, χ2(2)
= 7.836, p = 0.020. This was not confirmed by the confir-
matory ANOVA (F = 3.430, p = 0.054, ηp2 = 0.135). We
observed no main effect of Agent, χ2(2)= 3.671, p= 0.160,
and no significant Gaze by Agent interaction,χ2(4)= 0.844,
p = 0.932.
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For RT, we removed incorrect answers (3.53%) from the
final dataset. We observed a main effect of Agent, F(2,44)
= 11.668, p < 0.001, ηp2 = 0.349, a main effect of Action,
F(2,44) = 6.787, p = 0.003, ηp2 = 0.236, and a significant
Action byAgent interaction, F(4, 88)= 8.703, p< 0.001,ηp2
= 0.286. Interested readers can find supplementary descrip-
tive statistics and statistical comparisons of the main effects
for all experiments via the Open Science Framework (https://
osf.io/bd6h3/). The latter suggested that participants were
faster in detecting the triangle looking up|down (0.568 ±
0.020 s) compared to attributing the intention to speak (0.658
± 0.019 s; p < 0.001, |d|= 1.207, BF10 = 2.659e + 03) and
to grasp (0.633 ± 0.021 s; p = 0.006). However, the latter
did not survive Bonferroni correction using pairwise t-tests
on aggregated data (p = 0.167, |d|= 0.595, BF10 = 5.222).
Participants tended to be faster in detecting the robot look-
ing up|down (0.588 ± 0.019 s) compared to attributing the
intention to speak (0.641 ± 0.019 s; MLM p = 0.060, Con-
firmatory ANOVA p = 0.028, |d|= 0.752, BF10 = 24.031).

Furthermore, participants were faster in attributing to
humans the intention to grasp (0.583± 0.017 s) compared to
the triangle (p < 0.001, |d|= 1.232, BF10 = 3.456e + 03). A
similar tendency was observed comparing the attribution of
the intention to grasp to humans and robots (0.609± 0.019 s;
MLM p = 0.079, Confirmatory ANOVA p = 0.040, |d|=
0.722, BF10 = 17.745). Finally, RT was faster in attributing
the intention to speak to humans (0.615± 0.017 s) compared
to the triangle (0.658± 0.019 s; p<0.001, |d|= 0.734,BF10=
19.992). No other Bonferroni corrected p-values were lower
than 0.05 for both multiple comparisons computed on the
estimates of the simplified MLM and confirmatory multiple
comparisons using pairwise t-tests (p > 0.132, |d|< 0.529,
BF10 < 2.915; see Methods for data analysis approach).

3.2 Discussion Experiment 1

We observed that people are faster to infer the next action
of an agent when observing humans compared to non-
humanlike agents. Participants were faster to attribute the
intention to grasp and speak to humans compared to the tri-
angle. Moreover, participants tended to be faster at detecting
the intention to grasp among humans compared to robots.We
observed no difference when the agents did not look towards
an object (up|down condition).

Notably, we observed that attributing the intention to
speak took longer for the triangle and robots compared to the
simple detection of up|down movements. Such differences
were absent for humans. This pattern of findings may sug-
gest that participants implicitly or explicitly considered the
nature of the observed agent, and reflected upon their mental
states rather than using a visual-only strategy to solve the
task. Moreover, while RTs in attributing a motor and a social
intention to humanswere faster compared to the triangle, RTs

in attributing motor and social intentions to robots did not
differ from humans and the triangle. This may suggest that
robots were perceived as neither human nor as non-human
agents. However, we observed a bigger difference between
humans and robots for attributing the intention to grasp com-
pared to the intention to speak, as inferred by the effect sizes,
and by the fact that the BF10 for the speak intention was
non-conclusive (grasp: |d|= 0.722, BF10 = 17.745; speak:
|d|= 0.529, BF10 = 2.915). This result may indicate that
participants have processed motor and communicative inten-
tions differently or that the prediction of hand motor actions
favoured faster manual responses for the grasping rather than
the speaking intention.However, such potential contributions
of the motor system in predicting a manual action compared
to a non-manual one facilitated only the participants’ inter-
pretation of the human gaze, and did not extend to robotic
gaze (i.e., robots did not differ from the triangle).

Overall, the findings fromExperiment 1 suggest that when
participants are asked to reflect upon others’ mental content,
the interpretation of the observed action is faster for humans
compared to non-humanlike agents. Interestingly, RTs per-
formance suggests that robots may have been perceived as
hybrid agents, part human, part non-human.

4 Experiment 2

The first experiment showed that attributing intentions to
humans required less effort than attributing the same inten-
tion to robots and inanimate objects. In Experiment 2, we
tested if a similar pattern of results is observed after remov-
ing the text bubble from the table and biasing participants’
attention towards the graspable object. If attributing inten-
tions varies exclusively based on the cues provided by the
new scenario, then we should expect a change in the general
performance from Experiment 1 (i.e., faster RT when agents
gaze towards the graspable object than the empty table) but
no changes depending on the observed agent (i.e., triangle
and robots should still not differ).

Participants (n = 100) were instructed that each agent
could look towards the graspable object to grasp it (“is look-
ing at the object to grasp”), towards the empty table (“is
looking at the empty table”), up or down (“is looking up
or down”). Note that we slightly changed how we phrased
the instructions for the gaze towards the graspable object
from Experiment 1 (Experiment 1 instruction: “is going to
grasp the object”) to match the new non-motor condition
when agents looked at the empty table. Participants were
asked to indicate what the agent was going to do (i.e., the
agent is looking at the object to grasp, at the empty table,
up or down). We removed trials with RTs deemed too fast
or too slow (8.53%). Then, trials with RTs falling above or
below 2.5SD of the overall mean within each block of each
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participant were removed (1.97%). Three participants’ per-
formance was < 65%. Seven participants with a performance
above 2.5SD of the overall mean across conditions of the
remaining participants were excluded. Despite this dataman-
agement approach, one participant had 0%accuracywhen the
human looked to the graspable object, suggesting a misun-
derstanding of the task. Thus, we removed that participant
(final sample n = 89).

4.1 Results

We analysed performance measures (see Fig. 3) with Agent
(human, robot, triangle) and Action (to grasp, to look at the
table, look up|down) as within-subject fixed effects of the
MLM. In the case of a two-way Agent by Action interac-
tion, we performed eighteen multiple paired comparisons of
interest as indicated in Experiment 1.

For accuracy, we observed a main effect of Action, χ2(2)
= 20.798, p < 0.001. Participants were less accurate in
attributing the intention to look at the empty table (95.23
± 0.56%) compared to detecting a non-goal directed action
(97.48 ± 0.42%; p < 0.001, |d|= 0.438, BF10 = 230.804).
The difference between the non-goal-directed action and
the intention to grasp (96.18 ± 0.44%; p = 0.004) was
not confirmed using Bonferroni corrected pairwise t-tests on
aggregated data (p = 0.102, |d|= 0.228, BF10 = 1.050). We
observed no main effect of Agent, χ2(2)= 1.057, p= 0.589,
and no significant Gaze by Agent interaction,χ2(4)= 3.252,
p = 0.517.

For RT, we removed incorrect answers (3.67%) from the
final dataset. We observed a main effect of Agent, F(2524)
= 32.071, p < 0.001, ηp2 = 0.113, a main effect of Action,
F(2176)= 56.187, p < 0.001, ηp2= 0.389, and a significant
Action by Agent interaction, F(4523) = 4.962, p < 0.001,
ηp2 = 0.038. The latter suggested that participants were
faster in detecting the triangle looking up|down (0.709 ±
0.014 s) compared to attributing the intention to grasp (0.752
± 0.015 s; p < 0.001, |d|= 0.380, BF10 = 39.483) and to look
at the table (0.796 ± 0.013 s; p < 0.001, |d|= 0.976, BF10
= 4.624e + 11). Participants were also slower in detecting
the triangle looking at the table compared to attributing the
intention to grasp (p < 0.001, |d|= 0.475, BF10 = 782.991).
Participants were slower in detecting the human looking at
the table (0.766 ± 0.014 s) compared to the human looking
up|down (0.692 ± 0.012 s; p < 0.001, |d|= 0.866, BF10 =
3.906e + 09) and gazing at the graspable object (0.694 ±
0.015 s; p < 0.001, |d|= 0.822, BF10 = 6.064e + 08). Par-
ticipants were also slower in detecting the robot looking at
the table (0.784 ± 0.014 s) compared to the robot looking
up|down (0.705 ± 0.013 s; p < 0.001, |d|= 0.885, BF10 =
9.015e + 09) and gazing at the graspable object (0.714 ±
0.014 s; p < 0.001, |d|= 0.797, BF10 = 2.031e + 08).

Furthermore, participants were slower to attribute the
intention to grasp to the triangle compared to humans (p <
0.001, |d|=0.725,BF10=1.022e+07) and robots (p<0.001,
|d|= 0.561, BF10 = 1.600e + 04). Finally, participants were
faster to attribute the intention to look at the table to humans
compared to the triangle (p = 0.003, |d|= 0.344, BF10 =
14.744). No other Bonferroni-corrected p-values were lower
than 0.05 for both multiple comparisons computed on the
estimates of the simplified MLM and multiple comparisons
using pairwise t-tests on aggregated data (p > 0.150, |d|<
0.312, BF10 < 6.467).

4.2 Discussion Experiment 2

We observed that participants were slower to predict goal-
directed actions compared to non-goal directed actions when
observing the triangle. Contrary, RTs for attributing the inten-
tion to grasp did not differ from RTs of the control condition
for human and robotic agents.Moreover, we observed slower
RTs for the triangle when pointing towards the graspable
objects. These results cannot be explained by a participants’
attentional bias towards the side of the screen where gras-
pable objects were displayed [38]. Contrary, these findings
may suggest that the motor acts evoked by the simple obser-
vation of the graspable objects [39, 40] had to match the
observed agent’s motor capabilities. This leads to the idea
that human and robotic physical appearance may have facili-
tated the perception of those agents as capable of performing
grasping actions or increased the perception of human-like
agency traits (e.g., the ability to think, plan, see). In this sense,
both humans and robots differed from the triangle in attribut-
ing the intention to grasp, but only the human differed from
the triangle in attributing the intention to look at the table.
This may suggest that perceptual information derived from
analysing the shape and visual texture of the agent, like its
physical and mental capabilities, may have played a major
role. In other words, both robots and humans can move, and
theymay be expected to act on an object. However, observing
a gaze towards the table might have implied the ability of the
agent to see and represent the external world. That is, asking
participants what an agent is looking at may have facilitated
the mental state attribution of seeing [6, 41, 42] to humans
more than robots.

However, based on the findings from Experiment 1, some
of the results fromExperiment 2were unexpected. For exam-
ple, we expected a difference between humans and robots in
attributing the intention to grasp and no difference between
the robot and the triangle. For this reason, we wanted to
ensure that the findings of Experiment 1 were not due to dif-
ferences between laboratory and online settings or due to the
different sample size between Experiment 1 and Experiment
2. Hence, our next step was to replicate Experiment 1 online.
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Fig. 3 Results of experiment 2, Note. Participants’ performance in
Experiment 2. The labels “Grasp” and “Look” indicate the conditions
where participants attributed to the observed agent the intention to grasp

and look at the empty table, respectively. See Fig. 2 for a detailed expla-
nation of our data visualisation approach

5 Experiment 3

Experiment 2 showed that attributing motor intentions to
humans and robots required less effort than attributing the
intention to grasp to the triangle. In Experiment 3, we showed
both the graspable objects and the text bubble on the table to
replicate Experiment 1 online.

Participants (n = 100) were instructed that each agent
could look towards the graspable object to grasp it (“is going
to grasp the object”), towards the speech bubble (“is going to
speak”), up or down (“is looking up or down”). Participants
were asked to indicate what the agent was going to do (i.e.,
the agent is going to grasp the object, going to speak, or is
looking up or down).

We removed trials with RTs deemed too fast or too slow
(5.92%). Then, trials with RTs falling above or below 2.5SD
of the overall mean within each block of each participant
were removed (2.03%). Four participants’ performance was
< 65%. Five participants with a performance above 2.5SD
of the overall mean across conditions of the remaining
participants were excluded. Despite this data management
approach, one participant had 0% accuracy when the trian-
gle looked up or down, suggesting a misunderstanding of the
task. Thus, we removed that participant (final sample n =
90).

5.1 Results

We analysed performance measures (see Fig. 4) with Agent
(human, robot, triangle) and Action (to grasp, to speak,
up|down) as within-subject fixed effects of an MLM. In the
case of a two-wayAgent byAction interaction,we performed

eighteen multiple paired comparisons of interest as indicated
in Experiment 1.

For accuracy, we observed a main effect of Action, χ2(2)
= 25.918, p < 0.001. Participants were more accurate in
detecting a non-goal directed action (97.82 ± 0.42%) than
attributing the intention to speak (95.53± 0.61%; p < 0.001,
|d|= 0.390, BF10 = 56.367) and grasp (96.09 ± 0.46%; p
< 0.001, |d|= 0.323, BF10 = 8.876). We observed no main
effect of Agent, χ2(2)= 0.092, p= 0.955, and no significant
Action by Agent interaction, χ2(4) = 0.332, p = 0.988.

For RT, we removed incorrect answers (3.44%) from the
final dataset. We observed a main effect of Agent, F(2,531)
= 43.794, p < 0.001, ηp2 = 0.146, a main effect of Action,
F(2,178) = 77.608, p < 0.001, ηp2 = 0.472, and a signif-
icant Action by Agent interaction, F(4,530) = 6.620, p <
0.001, ηp2 = 0.049. The latter suggested that participants
were faster to recognise the triangle looking up|down (0.658
± 0.011 s) compared to attributing the intention to grasp
(0.748 ± 0.012 s; p < 0.001, |d|= 0.988, BF10 = 1.098e +
12) and speak (0.751 ± 0.013 s; p < 0.001, |d|= 0.858, BF10
= 3.718e + 09). Participants were also faster to recognise
the humans looking up|down (0.650± 0.010 s) compared to
attributing the intention to grasp (0.701± 0.011 s; p < 0.001,
|d|= 0.648, BF10 = 5.370e+ 05) and speak (0.708± 0.013 s;
p < 0.001, |d|= 0.724, BF10 = 1.211e + 07). Participants
were faster to recognise robots looking up|down (0.659 ±
0.010 s) compared to attributing the intention to grasp (0.742
± 0.013 s; p < 0.001, |d|= 0.995, BF10 = 1.466e + 12) and
speak (0.739± 0.013 s; p < 0.001, |d|= 0.943, BF10 = 1.514e
+ 11).

Furthermore, participants were faster in attributing the
intention to grasp to the human compared to the triangle
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Fig. 4 Results of experiment 3, Note. Participants’ performance in
Experiment 3. The labels “Grasp” and “Speak” indicate the conditions
where participants attributed to the observed agent the intention to grasp

and speak, respectively. See Fig. 2 for a detailed explanation of our data
visualisation approach

(p < 0.001, |d|= 0.898, BF10 = 2.065e + 10) and robots
(p < 0.001, |d|= 0.728, BF10 = 1.441e + 07). Participants
were also faster in attributing the intention to speak to the
human compared to the triangle (p < 0.001, |d|= 0.576, BF10
= 3.289e + 04) and robots (p < 0.001, |d|= 0.481, BF10 =
1.038e + 03).

No other Bonferroni corrected p-values were lower than
0.05 for both multiple comparisons computed on the esti-
mates of the simplifiedMLMandmultiple comparisons using
pairwise t-tests on aggregated data (p > 0.900, |d|< 0.182,
BF10 < 0.486).

5.2 Discussion Experiment 3

We replicated the findings fromExperiment 1with faster RTs
when participants attribute intentions to humans rather than
the triangle and robots.Moreover, these results expand previ-
ous reports where online participants were asked to infer the
agents’ intentions, and the graspable objects and text bubble
were in a fixed position (Experiment 4 in [18]). The findings
from Experiment 3 also enable us to exclude the possibility
that the results in Experiment 2 were driven by a difference
between laboratory and online samples.

However, Experiments 1–3 had slightly different instruc-
tions compared to Experiment 2, and may have favoured a
motor interpretation of the observed gaze: instructions asked
participants to indicate whether the agent was going to grasp
or speak. On the contrary, in Experiment 2, instructions may
have favoured also the use of a visual strategy: participants
indicated whether the agent looked at the object to grasp or
looked at the empty table.Hence,wemanipulated the instruc-
tions in three additional experiments to investigate further the

extent to which participants adopt a visual-only or motor-
only strategy to solve the task.

6 Experiment 4

The previous experiments showed that attributing motor
intentions to humans requires less effort than attributing
intentions to non-human agents. However, when only the
graspable objects were displayed (Experiment 2), no differ-
ence was observed between humans and robots. Here, we
tried to replicate the findings of Experiment 2 by showing
only the graspable objects and by focusing on motor instruc-
tions to solve the task. If in Experiment 2 participants adopt
a motor strategy, we should expect similar results.

Participants (n= 81)were instructed that each agent could
look towards the graspable object to grasp it (“is going to
grasp the object”), towards the empty table (“is going to do
nothing”), up or down (“is looking up or down”). Participants
were asked to indicate what the agent was going to do (i.e.,
the agent is going to grasp the object, do nothing, or is looking
up or down).

We removed trials with RTs deemed too fast or too slow
(7.24%). Then, trials with RTs falling above or below 2.5SD
of the overallmeanwithin eachblockof eachparticipantwere
removed (2.03%). Three participants with a performance <
65% were removed. Five participants with a performance
above 2.5SD of the overall mean across conditions of the
remaining participants were excluded (final sample n= 73).

6.1 Results

We analysed performance measures (see Fig. 5) with Agent
(human, robot, triangle) and Action (to grasp, to do nothing,
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Fig. 5 Results of experiment 4, Note. Participants’ performance in
Experiment 4. No interaction between the agents and the observed
action was observed. For consistency across the figures of all exper-
iments, we display all experimental conditions. For RT, we display the
main effect of Action. We invite the reader to refer to the main text for

the main effect of Agent in the RTs. The labels “Grasp” and “Nothing”
indicate the conditions where participants attributed to the observed
agent the intention to grasp and do nothing, respectively. See Fig. 2 for
a detailed explanation of our data visualisation approach

up|down) as within-subject fixed effects of an MLM. In the
case of a two-wayAgent byAction interaction,we performed
eighteen multiple paired comparisons of interest as indicated
in Experiment 1.

For accuracy, we observed a main effect of Action, χ2(2)
= 14.186, p < 0.001. Participants were more accurate in
detecting the agent looking up|down (96.19 ± 0.56%) than
attributing the intention to do nothing (94.31 ± 0.54%; p
= 0.001, |d|= 0.350, BF10 = 7.510) and to grasp (95.02
± 0.54%; p = 0.036). The latter was not confirmed using
Bonferroni corrected pairwise t-tests on aggregated data (p
= 0.276, |d|= 0.200, BF10 = 0.511). We observed no main
effect of Agent, χ2(2)= 0.167, p= 0.920, and no significant
Action by Agent interaction, χ2(4) = 1.999, p = 0.736.

For RT, we removed incorrect answers (4.73%) from the
final dataset. We observed a main effect of Agent, F(2430)=
13.219, p < 0.001, ηp2 = 0.061, a main effect of Action,
F(2144) = 55.201, p < 0.001, ηp2 = 0.435, and a non-
significant Action by Agent interaction, F(4430) = 1.701,
p = 0.149, ηp2 = 0.016.

The main effect of Action revealed that participants were
slower in attributing the intention to do nothing (0.735 ±
0.014 s) compared to the intention to grasp (0.667± 0.014 s;
p < 0.001, |d|= 1.204, BF10 = 7.500e+ 12) or look up|down
(0.666 ± 0.012 s; p = 0.025, |d|= 1.121, BF10 = 4.010e +
11).We observed no difference between attributing the inten-
tion to grasp and to look up|down (p = 1.000, |d|= 0.022,
BF10 = 0.131). This result may confirm that displaying only

one objectmay have captured participants attention and facil-
itated the processing of the gaze directed towards a graspable
object.

The main effect of Agent revealed that participants were
faster in discriminating the different gaze behaviour for
humans (0.677 ± 0.013 s) compared to robots (0.690 ±
0.013 s; p= 0.019, |d|= 0.315, BF10= 3.611) and the triangle
(0.701± 0.013 s; p<0.001, |d|= 0.528, BF10= 754.594).We
observed a tendency for RT to be faster for robots compared
to the triangle (p = 0.051, |d|= 0.262, BF10 = 1.325).

A closer inspection to the experimental conditions sug-
gests that these differences were mainly driven by faster RTs
when the humans and robots gazed towards the graspable
object. Indeed, exploratory Bonferroni-corrected compar-
isons suggested responses to the triangle gaze tended to be
slower (0.685± 0.015 s) than responses to humans (0.656±
0.015 s; MLM p= 0.002, Confirmatory ANOVA p= 0.059,
|d|= 0.356, BF10 = 8.631) and robots (0.661 ± 0.016 s; p =
0.025, Confirmatory ANOVA p= 0.127, |d|= 0.325, BF10 =
4.387; see Supplementary Table S3).

6.2 Discussion Experiment 4

Although the numerical trend of the findings was similar to
results observed in Experiment 2, we did not fully replicate
Experiment 2. Using motor instructions (doing vs not-doing)
may have changed the way participants interpreted the
agents’ behaviour. For this reason, the next experiment we
performed had instructions that focused on the non-motor
aspects of gazing.
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7 Experiment 5

Here, we aimed to replicate the findings of Experiment 2 by
showing only the graspable objects and by focusing on visual
instructions to solve the task. If in Experiment 2 participants
adopted a visual strategy, we should expect similar results.

Participants (n= 80)were instructed that each agent could
look towards the object (“is looking at the object”), towards
the table (“is looking at the table”), look up or look down (“is
looking up or down”). Participants were asked to indicate
what the agent was looking at (i.e., the agent is looking at
the object, at the table, or is looking up or down). Graspable
objects were labelled as ‘objects’, and terms like ‘grasping’
or ‘graspable objects’ were not mentioned.

We removed trials with RTs deemed too fast or too slow
(9.08%). Then, trials with RTs falling above or below 2.5SD
of the overall mean within each block of each participant
were removed (2.18%). Two participants’ performance was
< 65%. Seven participants with a performance above 2.5SD
of the overall mean across conditions of the remaining par-
ticipants were also excluded (final sample n = 71).

7.1 Results

We analysed performance measures (see Fig. 6) with Agent
(human, robot, triangle) and Action (to look at the object, to
look at the table, lookup|down) aswithin-subject fixed effects
of an MLM. In the case of a two-way Agent by Action inter-
action, we performed eighteen multiple paired comparisons
of interest as indicated in Experiment 1.

For accuracy, we observed a main effect of Action, χ2(2)
= 12.487, p = 0.002. This was not confirmed on the confir-
matory ANOVA on aggregated data (F = 3.277, p = 0.056,
ηp2= 0.045).We observed nomain effect of Agent,χ2(2)=
2.084, p = 0.353, and no significant Action by Agent inter-
action, χ2(4) = 2.554, p = 0.635.

For RT, we removed incorrect answers (3.97%) from the
final dataset. We observed a main effect of Agent, F(2139)
= 24.526, p < 0.001, ηp2 = 0.268, a main effect of Action,
F(2140)= 48.307, p < 0.001, ηp2= 0.409, and a significant
Action by Agent interaction, F(4277) = 3.311, p = 0.011,
ηp2 = 0.049. The latter suggested that participants were
faster in detecting the triangle looking up|down (0.693 ±
0.014 s) compared to looking at the graspable objects (0.738
± 0.017 s; p < 0.001, |d|= 0.439, BF10 = 54.749) and to look
at the table (0.785 ± 0.016 s; p < 0.001, |d|= 1.086, BF10 =
5.479e + 10). Participants were faster in detecting the trian-
gle looking at the graspable objects compared to the empty
table (p < 0.001, |d|= 0.614, BF10 = 7.686e + 03). Partici-
pants were slower in detecting the human looking at the table
(0.757 ± 0.016 s) compared to the human looking up|down
(0.678± 0.014 s; p < 0.001, |d|= 0.791, BF10 = 2.267e+ 06)
and at the graspable objects (0.686± 0.017 s; p < 0.001, |d|=

0.785, BF10 = 1.833e + 06). Participants were also slower
in detecting the robot looking at the table (0.768 ± 0.017 s)
compared looking up|down (0.690± 0.014 s; p < 0.001, |d|=
0.872, BF10 = 3.466e+ 07) and the graspable objects (0.710
± 0.016 s; p < 0.001, |d|= 0.635, BF10 = 1.426e + 04).

Furthermore, participants were slower in detecting when
the triangle looked at the graspable objects compared to
humans (p < 0.001, |d|= 0.735, BF10 = 3.563e + 05) and
robots (p = 0.002, |d|= 0.345, BF10 = 6.110). The latter
emerged as a trend on aggregated data, but still did not reach
our predefined threshold of significance (p= 0.088). Finally,
we observed faster RTs when humans looked at the table
compared to the triangle (p = 0.004, |d|= 0.359, BF10 =
8.374). This difference revealed to be a tendency on aggre-
gated data (p = 0.062).

No other Bonferroni-corrected p-values were lower than
0.05 for both multiple comparisons computed on the esti-
mates of the simplifiedMLMandmultiple comparisons using
pairwise t-tests on aggregated data (p > 0.091, |d|< 0.332,
BF10 < 4.640).

7.2 Discussion Experiment 5

Participants were faster to attribute a mental state to humans
compared to the triangle. Although we observed only ten-
dencies for robots to be faster than the triangle when gazing
at the graspable object and for humans to be faster than the
triangle when gazing at the table, these results are in line with
Experiment 2 findings.

It is of note that responses to humans and robots look-
ing at the graspable objects did not differ despite the visual
instructions. This may appear to contradict our previous
study, where we showed that participants are faster to recog-
nise what a human compared to a robot agent is looking at
(Experiment 3 in [18]). However, in Experiment 5 of the
present study, the motor affordances evoked by the gras-
pable object, or the participants’ attention biased towards the
side where the graspable object appeared in each trial, may
explain the current results. Interestingly, this biaswas present
for agentswith the capacity tomove (robots and humans have
arms) and to see (humans and robots have eyes). Such results
rule out that these findings were only due to a mere atten-
tional bias towards a hemispace of the screen. Moreover,
only RTs for humans were faster than RTs for the triangle
when they looked at the graspable object and tended to be
fasterwhen looking at the table. This suggests that the agent’s
capacity to see and form a visual representation of the sur-
rounding (through eyes for humans and computer vision for
robots) may have affected action identification differently for
humans and robots.

Nonetheless, askingour participants to adopt a visual strat-
egy may have provided two clear responses (the object and
the table). Contrary, asking participants to focus on themotor
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Fig. 6 Results of experiment 5, Note. Participants’ performance in
Experiment 5. The labels “Object” and “Table” indicate the conditions
where participants detected the observed agent looking at the graspable

object and the empty table, respectively. See Fig. 2 for a detailed expla-
nation of our data visualisation approach

aspect (doing vs doing nothing; Experiment 4) may not have
favoured the representation of two clear alternatives. Hence,
we decided to perform one final experiment and change the
instructions to favour a more evident non-motor alternative
to the grasping condition.

8 Experiment 6

Participants (n = 81) were instructed that each agent could
look towards the graspable object to grasp it (“is going to
grasp the object”), towards the empty table and think about
something else (“is thinking about something”), look up or
look down (“is looking up or down”). Participantswere asked
to indicate what the agent was going to do (i.e., the agent
is going to grasp the object, to think about something, or
is looking up or down). Hence, we aimed to replicate the
findings of Experiment 5 by providing a clearer alternative
to a motor intention than we did in Experiment 4.

We removed trials with RTs deemed too fast or too slow
(9.62%). Then, trials with RTs falling above or below 2.5SD
of the overall mean within each block of each participant
were removed (1.92%). Five participants with a performance
< 65%were removed. Three participants with a performance
above 2.5SD of the overall mean across conditions of the
remaining participants were excluded. Despite this dataman-
agement approach, three participants had 0% accuracy when
the triangle looked either to the graspable object or at the
empty table, and one participant had 0% accuracy when the
robot looked at the empty table, suggesting a misunderstand-
ing of the task. These participants were removed from the
final sample (n = 69).

8.1 Results

We analysed performance measures (see Fig. 7) with Agent
(human, robot, triangle) and Action (to grasp, to do nothing,
up|down) as within-subject fixed effects of an MLM. In the
case of a two-wayAgent byAction interaction,we performed
eighteen multiple paired comparisons of interest as indicated
in Experiment 1.

For accuracy, we observed a main effect of Action, χ2(2)
= 17.421, p < 0.001. This was not supported by the confir-
matory ANOVA on aggregated data (F = 2.832, p = 0.062,
ηp2= 0.040).We observed nomain effect of Agent,χ2(2)=
0.871, p = 0.647, and no significant Action by Agent inter-
action, χ2(4) = 1.738, p = 0.784.

For RT, we removed incorrect answers (4.91%) from the
final dataset. We observed a main effect of Action, F(2136)
= 43.804, p < 0.001, ηp2 = 0.395, a main effect of Agent,
F(2135) = 11.370, p < 0.001, ηp2 = 0.153, and a non-
significant Action by Agent interaction, F(4268) = 2.106,
p = 0.080, ηp2 = 0.032.

The main effect of Action revealed that participants were
slower in attributing the intention to think (0.776 ± 0.018 s)
compared to the intention to grasp (0.701 ± 0.018 s; p <
0.001, |d|= 1.052, BF10 = 8.232e + 09) or look up|down
(0.694 ± 0.016 s; p < 0.001, |d|= 1.093, BF10 = 3.189e +
10).We observed no difference between attributing the inten-
tion to grasp and to look up|down (p = 1.000, |d|= 0.072,
BF10 = 0.157). This result may again confirm that display-
ing only one object may have captured participants attention
and facilitated the processing of the gaze directed towards a
graspable object.
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Fig. 7 Results of experiment 6, Note. Participants’ performance in
Experiment 6. No interaction between the agents and the observed
action was observed for the accuracy measure. For consistency across
the figures of all experiments, we display all experimental conditions.
For RT, we display the main effect of Action. We invite the reader to

refer to the main text for the main effect of Agent. The labels “Grasp”
and “Think” indicate the conditions where participants attributed to the
observed agent the intention to grasp and think, respectively. See Fig. 2
for a detailed explanation of our data visualisation approach

The main effect of Agent revealed that participants were
slower in discriminating the gaze behaviour of the triangle
(0.737 ± 0.018 s) compared to humans (0.713 ± 0.016 s; p
< 0.001, |d|= 0.509, BF10 = 279.605) and robots (0.720 ±
0.016 s; p= 0.006, |d|= 0.341, BF10 = 5.084). We observed
no difference between humans and robots (p = 0.389, |d|=
0.173, BF10 = 0.352).

A closer inspection to the nine experimental conditions
suggests that these differences were mainly driven by a faster
RTwhen the humans and robots gazed towards the graspable
objects. Indeed, exploratory Bonferroni-corrected compar-
isons suggested responses to the triangle gaze were slower
(0.725± 0.019 s) than responses to humans (0.684± 0.019 s;
MLM p < 0.001, Confirmatory ANOVA p = 0.002, |d|=
0.495, BF10 = 193.469) and robots (0.694 ± 0.019 s; MLM
p = 0.007, Confirmatory ANOVA p = 0.059, |d|= 0.367,
BF10 = 8.813).

8.2 Discussion Experiment 6

Although the numerical trend was similar to the findings in
Experiment 2, the change in the instructions did not provide
a clearer alternative to a motor intention as we expected.
In other words, we did not observe an interaction, and
exploratory analyses showed not differences across agents
when they looked towards the empty table. The fact that the
overall RT for robots and humans did not differ (after they
differed in Experiment 4) may reflect fluctuations in the data
unrelated to people’s general ability to attribute intentions to
humans and robots (i.e., up|down condition). Similarly, RTs

for robots resulted to be generally faster than the triangle (in
Experiment 4 did not differ) because participants were faster
in attributing to robots the intention to grasp (see Figs. 5 and
7 and Tables S3 and S4 listing all multiple comparisons for
Experiments 4 and 6).

When considering the findings from Experiments 4, 5,
and 6 collectively, it seems reasonable to conclude that par-
ticipants used a visual strategy to solve Experiment 2. This
challenges the assumption that participants were using a
motor or visuo-motor strategy to attribute intentions to oth-
ers. Given the high degree of concordance across the results
reported in Experiments 2, 4, 5, and 6, if participants used a
visual-only strategy, then the effect sizes and RTs differences
computed by comparing an agent gazing at the graspable
objects and towards the table should not differ across the
experiments and should be similar to Experiments 5 where
task instructions suggested the use of a visual-only strategy.
In contrast, if a visuo-motor strategy was used, then effect
sizes and RTs differences in Experiments 2, 4, and 6 should
be similar to each other and differ from Experiment 5. Table
2 shows the comparison between the two highlighted condi-
tions across the four experiments by listing several effect
sizes (unstandardised β of the MLM model, the Cohen’d
and BF10 computed on mean-aggregated data), and the RT
difference between the two conditions based on mean- and
median-aggregated data.

We note that all indexes for the triangle in Experiment 2
are the lowest, with mean and median RT differences similar
to Experiment 5. Moreover, we observed that all indexes for
humans and robots in Experiment 5 are lower than those in
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Table 2 Comparisons between looking towards a graspable object or in the opposite direction for each observed agent

Agent Experiment Task instructions: "The Agent
is…"

MLM Mean-aggregated data Average (in ms) of
individual
differences
between
conditions based
on

|β| Cohen’s |d| Bayes Factor Mean Median

Triangle Exp.5 "…looking at the object" vs
"…looking at the empty
table"

0.047 0.614 7.686E + 03 48 42

Exp.2 "…looking at the object to
grasp" vs "looking at the
empty table"

0.043 0.475 782.991 44 41

Exp.4 "…going to grasp the object"
vs "going to do nothing"

0.060 0.801 5.113E + 06 61 71

Exp.6 "…going to grasp the object"
vs "thinking about
something"

0.062 0.727 1.803E + 05 61 65

Human Exp.5 "…looking at the object" vs
"…looking at the empty
table"

0.069 0.785 1.833E + 06 70 58

Exp.2 "…looking at the object to
grasp" vs "looking at the
empty table"

0.074 0.822 6.064E + 08 72 75

Exp.4 "…going to grasp the object"
vs "going to do nothing"

0.071 0.945 7.946E + 08 70 68

Exp.6 "…going to grasp the object"
vs "thinking about
something"

0.083 0.841 7.203E + 06 81 73

Robot Exp.5 "…looking at the object" vs
"…looking at the empty
table"

0.058 0.635 1.426E + 04 58 58

Exp.2 "…looking at the object to
grasp" vs "looking at the
empty table"

0.071 0.797 2.031E + 08 70 75

Exp.4 "…going to grasp the object"
vs "going to do nothing"

0.075 0.907 2.103E + 08 74 68

Exp.6 "…going to grasp the object"
vs "thinking about
something"

0.085 0.822 3.883E + 06 83 73

Comparisons between conditions where the agents looked towards the graspable objects or away from them. We present Experiment 5 at the top as
it was the only experiment with instructions not evoking a motor action. We report the module of the unstandardised β derived from the MLM. We
also present the module of the Cohen’s d and the BF10 based on individual mean-aggregated data. The unstandardised β and the Cohen’s d had all
the same sign. Furthermore, we report the average (in milliseconds) of the individual differences between the two conditions based on mean- and
median-aggregated data

the other experiments (except for the mean-based difference
of humans in Experiment 4). These numerical trends sug-
gest that participants were faster when they observed agents
capable of grasping objects looking at graspable objects
than looking at the table, but only when a motor instruction
was given. These numerical observations also suggest that
task instructions may have affected the strategy participants
adopted. The fact that the indexes for humans and robots

in Experiment 4 and 6 are similar to the indexes in Experi-
ment 2 and higher than indexes in Experiment 5 (while the
triangle’s indexes in Experiment 5 are numerically similar
to Experiment 2) may indicate that participants adopted a
visuo-motor strategy for humans and robots only. Contrary,
participants may have adopted a visual-only strategy for the
triangle. However, future studies should try to disentangle
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the role of visual and visuo-motor strategies when observing
other people and agents gazing towards graspable objects.

8.3 Summary of all findings

Experiments 1 and 3 showed that people are faster to infer
human than non-humanlike agents’ intentions and suggested
that humanoid robots may be perceived as part human, part
non-human. Experiment 2 suggested that contextual infor-
mationmay facilitate recognising human-like agents’ actions
but not the behaviour of non-human-like agents. Experiments
4, 5, and 6 corroborated Experiment 2 and further suggested
that interpreting the intention of an agent gazing toward an
object may require both visual- and motor-related processes.

9 General Discussion

We investigated the ability to infer motor and communicative
intentions in humans, robots, and a triangle-shaped object.
Previous studies suggested that processing movements of
non-human entities and attributing them human-like quali-
ties are affectedby their visual appearance [14, 43], kinematic
behaviour [44], and prior assumptions [9, 45]. In all experi-
ments, the observed kinematics did not differ across agents.
Moreover, the three agents were labelled as ’human’, ’robot’,
and ’triangle-shaped object’ and described as ‘agents’ who
could look towards different objects to perform specific
actions. In particular, they could look towards an object to
grasp it, look opposite to the object to self-describe (Exper-
iments 1 and 3) or for other non-communicative purposes
(Experiments 2, 4, 5, 6), and look up or down as a control con-
dition. Such an approach ensured that we could investigate
the human ability to understand the behaviour of different
agents varying in their visual appearance.

We observed that when both the graspable objects and text
bubble were displayed (Experiments 1 and 3), participants
were faster in attributing an intention to humans compared
to the robots and the triangle. Such results expand previous
findings [18] and suggest that robots are perceived differently
from humans when people have to infer their intentions. On
the contrary, participants interpreted human and robotic gaze
faster than the triangle directional changes only when the
graspable object was presented alone on the table (Experi-
ments 2, 4, 5, and 6). These findings may indicate that people
can equally predict the subsequent behaviour of humans and
robots from their gaze when one object prompt the location
where they more likely may interact.

Results cannot be explained by participants changing the
allocation of their attention and do not reflect a mere congru-
ency effect. That is, the object on one side of the screen may
have cued participants to attend and expect a gaze towards

that location, andwhen such gazewas observed, thiswas con-
sidered a valid or congruent behaviour. While the graspable
objects presented in isolation may have biased the attention
towards one side of the screen, the faster RTs of humans and
robots compared to the triangle suggest that the graspable
objects may have biased not only participants’ attention but
may also have generated an expectation about the potential
actions the agent could perform. An alternative account may
suggest that the perceivedobjects automatically evoked affor-
dances [40]. Thus, participants’ performance may have been
biased by analysing the evoked affordances rather than pro-
cessing what the agent would do. However, the graspable
objects may have evoked the same affordances when the tri-
angle was the observed agent. The fact that we observed
differences between human-like and non-human-like agents
suggests the possibility that both the affordances evoked by
the graspable objects and the capacity of the agent to act have
together influenced participants’ responsiveness. Hence, par-
ticipants may have matched the motor possibilities of the
observed agent with the evoked object’s affordances while
being biased towards one part of the space. It is also impor-
tant to note that we observed faster RTs for humans than the
triangle when the agent in question looked at the table oppo-
site to the graspable objects (Experiments 2 and 5). Thus,
participants appeared to have a behavioural advantage in
recognising the goals of agents capable of acting and see-
ing (i.e., having a mental representation of the world). This
may indicate that participants actively considered the agent’s
physical and mental capabilities (acting and having a repre-
sentation of the table). The results across all the experiments
also rule out the possibility that findings from Experiments
1 and 3 were due to differences between robot and human
stimuli or that robot’s stimuli may have affected human per-
formance negatively [46].

For all these reasons, it seems evident that an integrated
account is necessary to explain our results. The follow-
ing sections will first discuss how our findings cannot be
explained using non-inferential accounts and how results
align with current theories on inferring intentions through
action observation. We will also provide critical theoretical
considerations and practical implications for future stud-
ies to unravel the cognitive and neural underpinnings of
human–robot interactions.

9.1 Non-mentalistic Accounts do not Explain Current
Results

Experiments 1 and 3 presented two objects simultaneously,
and participants may have spread their attention to both
sides of the screen. Consequently, the task may have been
perceivedmore demanding than the other experiments. How-
ever, task complexity would predict a general decrease in
performance with no RT differences across agents gazing
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towards the graspable objects or the text bubble. Instead,
we observed no differences across agents only in the non-
goal directed actions. However, it may be still argued that
Experiments 2, 4, 5, and 6 were more straightforward as they
displayed only the graspable objects. Again, this would pre-
dict no differences in RTs across agents in all conditions.
This is not supported by the observed differences between
the triangle and human-like agents (humans and robots)when
gazing at graspable objects.

Nevertheless, participants may not have represented oth-
ers’ actions in Experiments 1 and 3. Participants may have
categorisedwhat the agentwas looking at despite instructions
asking participants to guess what the agent would do. This
explanation does not justify the different statistical results
obtained across Experiments 4–5–6 and the observed dif-
ferences across agents. Specifically, if instructions had no
effect, it is difficult to explain why humans and the triangle
differed when gazing at the table in Experiments 2 and 5
and not in Experiments 4 and 6. Therefore, given such dif-
ferences across experiments, agents, and goal and non-goal
directed actions, non-social and non-mentalistic strategies
cannot explain our results unless considering the (human)
nature of the observed agent.

9.2 Social Attention to Gaze Cues

We usually tend to follow others’ gaze even when doing
so is uninformative [47, 48]. From such findings, it fol-
lows that participants might infer others’ attention from their
gaze without engaging in other cognitive processes. In other
words, participants could solve the tasks by detecting where
the agent’s attention was directed (i.e., towards the graspable
object, the text bubble or opposite to the graspable object, up
or down).A social attention accountwould then predict faster
reaction times for humans than the triangle in all experimen-
tal conditions. However, we did not observe this advantage
in non-goal-directed actions (up|down gaze, and when the
triangle and humans looked away from the graspable objects
in Experiments 4 and 6; see Table S3 and S4).

Another account may suggest that the labels ’human’,
’robot’, and ’triangle’ may have favoured the perception of
all non-human agents as less intentional [49]. If this were the
case, we should have expected differences between humans
and robots when looking at the graspable objects in Exper-
iments 2–4–5–6 and when performing non-goal-directed
gazes. We did not observe such results. However, it may be
proposed that the triangle did not engage with participants as
it has no eyes. Resultsmay thus reveal a lack of social engage-
ment [48] of the triangle compared to humans and robotswho
directly stared at participants. However, we exclude this pos-
sibility as participants had comparable RTs across all agents
in the control condition (up|down gaze). Moreover, we found
no differences between the triangle and the robots (which had

eyes) in the look-away conditions in Experiments 2–4–5–6.
In a similar vein, results from Experiments 1 and 3 cannot
be explained by a social attention account alone, as we did
not find an advantage (faster RTs) in detecting humans com-
pared to other agents’ non-goal-directed actions. Finally, if
our description may have helped the perception of robots as
intentional agents, we should have observed no difference
between humans and robots when gazing towards the gras-
pable objects in Experiments 1 and 3.

Given the current findings, it is clear that the non-human
nature and non-human-like appearance of the observed
agents modulated the readiness to predict their actions fol-
lowing an observed gaze.

9.3 Evidence for an Integrated Account

Across all experiments, participants first saw the environ-
ment (table, objects, and text bubble for Experiments 1 and
3), then the agent, and only after a short interval the agent’s
gaze. Thus, participants had time to process the objects on the
table and their affordances, social information like the (non-
) human nature of the agent and its visual shape, and motor
information from the agents’ gaze separately.Hence, it is pos-
sible that the observer’s motor and visual system analysing
the agent’s action and bodily form interacted during task
completion. In particular, participants may have integrated
what the agent was looking at, its ability to act based on its
human-like shape, and its mental content based on its human
and non-human nature.

In Experiment 2, participants were faster when humans
and robots gazed towards the graspable objects compared to
when the triangle directed attention to these graspable objects
(a similar trend was observed in Experiments 4 and 6). This
suggests that the visual form of the agent modulated the abil-
ity to anticipate what the agent was going to do, and that their
gaze was perceived as a plausible goal-directed action (i.e.,
humans and humanoid robots can grasp an object while a
triangle without effectors cannot). Furthermore, the slow RT
when the agents looked opposite to the graspable objects in
Experiments 2, 4, 5, and 6 may indicate that looking away
from a graspable object was unexpected (i.e., people may
have directed their attention more on one side of the screen).
Importantly, we found that when task instructions may have
emphasised a visual strategy and focused on what the agent
was looking at (Experiments 2 and 5), participants had faster
RTs for humans than the triangle. This confirms that it is
more challenging to indicate what a non-human rather than
a human agent sees. However, we also observed that RTs in
Experiment 5 were slightly faster for robots than the triangle
when looking at the graspable objects. This result does not
contradict the findings from our previous study (Experiment
3 [18]) where we observed no RT differences between robots
and the triangle. However, in that experiment, the graspable
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objects and text bubble were displayed simultaneously and
participants indicated what the agents were looking at (i.e.,
at the object, at the text bubble). Therefore, this apparently
contradictory results may indicate an interaction between
attentional processes, the analysis of the body form of the
agent, and the processing of the affordances evoked by the
graspable object. In Experiment 5, participants’ attentionwas
biased towards the graspable object, and a gaze towards it
may have been perceived more plausible for agents possess-
ing hand effectors (i.e., humans and robots) than the triangle.
Hence, the faster RT of robots compared to the triangle when
gazing towards the graspable objects suggests that partici-
pants might have predicted such gaze [50] given the robots’
psychical capabilities and the fact that only one object was
shown. However, when participant’s attention is not biased,
such an advantage is not present (see Experiment 3 in [18]).

Overall, we observed differences across agents in experi-
mental conditions evoking goal-directed behaviours (gazing
at the graspable objects and text bubble in Experiments 1–3;
gazing at the graspable objects in Experiments 2–4–6), men-
tal representations of the surrounding (looking at the table in
Experiments 2 and 5). On the contrary, we observed no dif-
ferences for non-goal-directed actions (looking at the table
described as a non-motor and non-visual action in Exper-
iments 4 and 6; up|down gaze in all Experiments). These
results suggest that participantswere notmerely detecting the
focus of the agent’s attention butwere also inferring themoti-
vation guiding the agent’s gaze (grasp, speak, look). Hence,
our experiments as a whole confirm that differences in under-
standing others’ gazes are more likely to emerge during the
observation of goal-directed rather than non-goal-directed
actions and when actively thinking about the agent’s mental
state [18].

For all these reasons, it is plausible to consider that the
processes analysing the agents’ body form and the ten-
dency to attribute high-level social skills to humans rather
than non-human agents contributed to participants’ ability
to understand their gaze. In particular, the findings reported
in this study suggest that processing an agent’s bodily form
and considering its motor abilities, together with the goal-
directedness of the observed behaviour, may contribute to
how observers explicitly predict what the agent is doing from
their gaze. As such, this work extends current models of gaze
perception that establish a role for gaze motion and men-
talising processes (thought to be supported by brain regions
including the superior temporal sulcus,medial prefrontal cor-
tex), attentional mechanisms (supported by parietal lobe),
and top-down processes (i.e., adopting an intentional stance
or not; [6, 7, 51]) to infer others’ mental states.

9.4 Is Predicting Action from Gaze Equivalent
to Intention Reading?

We can identify three processes supporting the ability to infer
others’ intentions and goals from action observation. When
observing others behaviour, we may identify what the per-
son is doing (e.g., grasping), how the action is performed
(e.g., using a whole or precision grasp), and why (e.g., to eat
or to give). Across the six experiments, participants had to
predict the intentions the observed gaze served (e.g., gazing
rightwards to grasp). Specifically, we asked participants to
observe an agent who averted their gaze (’What’) by look-
ing towards four directions (’How’: right, left, up, down)
with different final goals (’Why’: grasping, speaking, look-
ing, thinking, doing nothing).

A motor action is defined as a sequence of motor acts
directed towards a distal goal (e.g., reaching for a piece of
food, grasping it, holding it, and bringing it to the mouth).
Hence, the look-to-grasp and look-to-speak actions showed
in our experiments are comparable to the typical grasp-to-
eat and grasp-to-drink action chain. This interpretation may
be criticised as grasping and talking may be considered the
’what’ an agent is doing. It is important to note that while
others gaze contributes to action prediction abilities [52,
53], action observation studies typically focus the observer’s
attention on the actor’s upper limb without displaying the
actor’s gaze and face [54–58]. Studying the temporal order
of action is a relatively new area of inquiry [59], which one
day may refine the criteria defining the ’what’ and the ’why’
of the observed action.

Some critiques have also been raised to such a hierarchi-
cal view of intention reading from action observation (how
< what < why), suggesting that the question participants
should answer to investigate the hidden ‘why’ of an observed
behaviour should have a good degree of abstraction to gen-
eralise across different actions goals [60]. However, we note
that the number of hidden states behind an observed act may
be infinite. For example, a person may gaze out of their car
window to locate a spot to park their car to go to the theatre
to watch the new show so that they can then write a review
on it to be published in the school newspaper to impress
the headteacher (and so on). In this example, it is hard to
clearly define which end-state has a good level of abstraction
or should be considered the ultimate goal of a sequence of
actions. In real life, reading others’ intentions relies on infer-
ring (maybe erroneously) their hidden states using a limited
set of behavioural and contextual information available at a
given time. In a similar way, we used instructions to pro-
vide an adequate context and facilitate the different levels of
representation of the observed behaviour [61].
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To summarise, we believe that grasping and speaking, as
displayed in our tasks, can be considered as immediate (prox-
imal) intentions within the gaze-to-grasp and gaze-to-speak
action chain.

9.5 Limitations of the current study

In this series of experiments, we compared human and
human-like agents with non-human-like agents. It is impor-
tant to note that both humans and human-like agents differed
in their biological nature (humans are living entities, while
robots are not), visual appearance (Nao and Baxter had dif-
ferent sizes and textures compared to humans), as well as
behavioural repertoire (e.g., Nao has a face with eyes while
Baxter has a display, both Nao and Baxter hand effectors
differ from a human hand). On the contrary, the non-human-
like agent (the triangle) was not only a non-biological agent
but also did not possess any grasping capabilities. However,
while Experiments 1 and 3 suggest that the motor capabili-
ties of an agent may not be crucial to predicting the action
of a robot with a human-like shape (RTs for humans were
faster than the robots and the triangle), Experiments 2, 4,
5, and 6 did not test how quickly participants can predict
the behaviour of a mechanical robot with grasping capabili-
ties but non-human-like appearance. Further studies will be
required to assess the interactionbetweenhuman-like appear-
ance and motor capabilities in predicting the behaviour of
human-like and non-human-like robots from gaze observa-
tion.

10 Conclusions

We observed that an agent’s visual body-form (human-like
vs non-human-like) and biological nature (human vs non-
human) may differently affect the processing of high-level
social behaviours from gaze observation.

Results expand current models of gaze perception and
cannot be explained by non-motor and non-social cognitive
mechanisms. Instead, mindreading from action observation
likely integrates the observed agent’s intentional nature with
perceptual, motor, and mentalising processes. Moreover, our
experimental designs and stimuli have shown that biasing
participants’ attention may facilitate predicting what a robot
might do. In other words, visual information that cue where
a robot may act and may help an observer or collaborator
understand what the robot will do within social and non-
social contexts. An applied and testable outcome of our
results is that visual and body cues can be used to facili-
tate the intuitive interpretation of humanoid robot behaviour
[62]. For example, this might be achieved by positioning the

robot’s body in a way that the grasping hand is closer to the
object-to-be-grasped.Contrary, having both effectors equally
close to two objects may not help the observer predict what
the robot will do next.

Overall, these findings have important theoretical,
methodological, and applied implications for human–human
and human–robot social cognition and the development of
successful and trustworthy human–robot collaboration.
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