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Abstract

We study how stably stratified or semiconvective layers alter tidal dissipation rates associated with the generation
of inertial, gravito-inertial, interfacial, and surface gravity waves in rotating giant planets. We explore scenarios in
which stable (nonconvective) layers contribute to the high rates of tidal dissipation observed for Jupiter and Saturn
in our solar system. Our model is an idealized spherical Boussinesq system incorporating Coriolis forces to study
effects of stable stratification and semiconvective layers on tidal dissipation. Our detailed numerical calculations
consider realistic tidal forcing and compute the resulting viscous and thermal dissipation rates. The presence of an
extended stably stratified fluid core significantly enhances tidal wave excitation of both inertial waves (due to
rotation) in the convective envelope and gravito-inertial waves in the dilute core. We show that a sufficiently
strongly stratified fluid core enhances inertial wave dissipation in a convective envelope much like a solid core
does. We demonstrate that efficient tidal dissipation rates (and associated tidal quality factors Q¢)—sufficient to
explain the observed migration rates of Saturnʼs moons—are predicted at the frequencies of the orbiting moons due
to the excitation of inertial or gravito-inertial waves in our models with stable layers (without requiring resonance
locking). Stable layers could also be important for tidal evolution of hot and warm Jupiters and hot Neptunes,
providing efficient tidal circularization rates. Future work should study more sophisticated planetary models that
also account for magnetism and differential rotation, as well as the interaction of inertial waves with turbulent
convection.

Unified Astronomy Thesaurus concepts: Tides (1702); Astrophysical fluid dynamics (101); Solar system gas giant
planets (1191); Extrasolar gaseous giant planets (509); Internal waves (819); Exoplanet tides (497)

1. Introduction

Jupiter and Saturn in our solar system are the best studied
giant planets in the Universe. They have been explored by
recent and ongoing space missions such as Cassini and Juno,
thereby allowing us to probe their gravity and magnetic fields,
and to observe fascinating features in their ring systems (e.g.,
Bolton et al. 2017; Wahl et al. 2017; Guillot et al. 2018;
Durante et al. 2020; Ingersoll 2020; Connerney et al. 2022).
This wealth of data has constrained models of the interior
structures of these bodies, and we have found that classical
models consisting of a solid rocky core with two distinct,
chemically homogeneous layers above are inconsistent with
observations. For Jupiter, gravity field measurements from
Juno have inferred a dilute fluid core (which may or may not be
stably stratified/nonconvective) containing heavy elements
extending out to 40%–50% of Jupiter’s radius (Wahl et al.
2017). Saturn has had an extended stably stratified layer
inferred in its interior, probably produced by compositional
gradients, and possibly extending out to 60% of the planetary
radius, based on features observed in its rings thought to be
produced by resonances with global oscillation modes within
the planet (Marley & Porco 1993; Hedman & Nicholson 2013;
Fuller 2014; Mankovich & Fuller 2021). These recent findings
strongly motivate new studies of giant planets containing
extended stably stratified fluid layers in their interiors (e.g.,
Vazan et al. 2018). Such studies could also shed light on the

structures and properties of extrasolar planets including hot and
warm Jupiters, as well as hot Neptunes (e.g., Guillot et al.
2023).
The dissipative tidal responses of Jupiter and Saturn have

been probed using astrometric observations over the past
century or so that measure the orbital migration of the Galilean
and Saturnian moons (Lainey et al. 2009, 2012, 2017, 2020).
To explain the observed rates of outward migration of these
moons, we require much more efficient tidal dissipation in
these planets than previously estimated (Goldreich &
Soter 1966). Such efficient rates of tidal dissipation are not
currently understood theoretically, but have motivated an
increasing number of works to explore tides in giant planets.
Possible dissipative mechanisms that have been proposed
include inertial waves (restored by Coriolis forces) in
convective regions (Ogilvie & Lin 2004; Wu 2005; Goodman
& Lackner 2009), gravity or gravito-inertial waves in stable
layers (restored by buoyancy forces, and also by rotation)
which might be locked in resonance (Fuller et al. 2016), and
interactions of equilibrium tides with turbulent convection,
though the latter mechanism is not widely believed to be
important and is more uncertain (Goldreich & Nicholson 1977;
Duguid et al. 2020; Barker & Astoul 2021; Terquem 2021; de
Vries et al. 2023). Finally, dissipation in the viscoelastic rocky/
icy cores of giant planets have also been proposed to be
important (e.g., Remus et al. 2012, 2015; Storch &
Lai 2014, 2015; Lainey et al. 2017), and are worthy of future
study, even if fluid mechanisms are typically favored currently
due to the instability and mixing of such cores in the high-
temperature and high-pressure environments near the centers of
giant planets.
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The efficiency of tidal dissipation is often quantified by the
modified tidal quality factor:
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where k2 is the quadrupolar Love number (essentially a
measure of the degree of central concentration of mass), E0 is
the stored tidal energy, D is the energy dissipation rate, and the
integral represents the energy dissipated over one tidal period.
Observations requireQ 0.94 0.44 104( )¢ »  ´ for Saturn and
Q 1.59 0.25 105( )¢ »  ´ for Jupiter, for most tidal frequen-
cies probed (Lainey et al. 2009, 2012, 2017).

Stabilizing compositional gradients can lead to the inhibition
of ordinary convection if they can compete with the
destabilizing thermal gradients. Since planetary interiors have
more efficient thermal diffusion of heat than viscous diffusion
of momentum (i.e., they have thermal Prandtl numbers smaller
than 1; Guillot et al. 2004), convection instead takes the form
of double-diffusive convection (an oscillatory linear instability
or “overstability” involving excitation of internal gravity
waves; e.g., Garaud 2018), whose nonlinear evolution can
produce layering or density staircases, involving well-mixed
steps separated by sharp, diffusive interfaces (Wood et al.
2013). Whether or not this outcome is expected for conditions
relevant in giant planets is an open question (Fuentes et al.
2022). Nevertheless, the possible presence and effects of stably
stratified layers in giant planets, which may or may not involve
density staircases, are important to study and are likely to
strongly influence the planet’s tidal response. Indeed, the
influence of interior stably stratified layers on planetary tidal
flows is currently poorly understood, and has motivated our
prior work on this problem (André et al. 2017, 2019; Pontin
et al. 2020, 2023).

We present new theoretical models of giant planets contain-
ing stable layers similar to those constrained observationally for
Saturn and hypothesized for Jupiter, to explore dissipation of
tidal flows inside these giant planets. Our idealized (Boussi-
nesq) model of a rotating and tidally forced planet analyses the
dissipative fluid response in a spherical shell using both linear
theoretical analysis and numerical calculations obtained with
high-resolution spectral methods. In this paper, we build upon
Pontin et al. (2023, hereafter Paper I) to study rotating and
stratified planets, by fully incorporating Coriolis forces to study
the effects of rotation on the tidal response. Most notably, the
incorporation of Coriolis forces allows for inertial (restored by
rotation) and gravito-inertial (restored by both buoyancy and
rotation) waves to be excited by tidal forcing and subsequently
dissipated. Since Coriolis forces are important for planetary
applications, including the tidal responses of Jupiter and Saturn
at the forcing frequencies of their moons, our model is more
realistic than the one considered in Paper I. However, we
continue to neglect centrifugal deformations and to consider a
spherical body for simplicity. Incorporating centrifugal defor-
mations considerably complicates the analysis (e.g., Braviner &
Ogilvie 2014, 2015; Barker et al. 2016; Dewberry & Lai 2022)
but is unlikely to change our results substantially, and we leave
its study to future work.

Our work is complementary to the recent studies of Lin
(2023) and Dewberry (2023), who study more sophisticated
compressible and self-gravitating planetary models numeri-
cally, even incorporating centrifugal deformations in the case

of the latter, which are important advances. We have chosen to
focus on a simpler Boussinesq model here to allow a much
wider exploration of parameter space, and also to permit a
deeper understanding of the effects of stable layers as well as
semiconvective ones on the tidal response. Our Boussinesq
(incompressible) model incorporates buoyancy forces, and
hence allows us to study gravito-inertial and inertial wave
excitation and dissipation, but it neglects the density variation
expected in giant planets. The overall features of inertial wave
excitation in spherical shells are, however, broadly similar in
incompressible and compressible polytropic models (e.g.,
Ogilvie 2013), so while the particular linear predictions for
resonant frequencies are likely to depend strongly on the
particular model, much of the behavior we observe here is
likely to be similar in more complex models. Here, we study
the tidal response of semiconvective layers for the first time in
global models with rotation, and perform a detailed exploration
of parameter space for interior stable layers.
The structure of this paper is as follows. Section 2 presents

our model, including the governing equations, energetics,
planetary density/entropy profiles, and numerical methods
adopted (see Paper I for further details). Section 3 presents an
overview of our numerical exploration of parameter space,
analyzing the frequency-dependent tidal response and its
dissipative properties. In Section 4, we vary the parameters
(rotation rate, core sizes, smooth versus layered density
profiles, diffusivities) and also analyze an integrated measure
of the response, given by the frequency-averaged dissipation
rate, to determine how this correspondingly varies. In
Section 5, we compare various models of dilute stably stratified
fluid cores with a rigid core model. Finally, we apply our
results to a Saturn-like model in Section 6, and conclude in
Section 7.

2. Model

2.1. Governing Equations

We briefly recap the model adopted in Paper I and highlight
our extensions to incorporate rotation. We consider the
linearized momentum equation in the Boussinesq approx-
imation, in the frame rotating at the rate Ω=Ωez,

u
u g u

t
p b2
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, 2
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2 ( )W
r

y n
¶
¶

+ ´ = -  - -  + 

where u and p are velocity and Eulerian pressure perturbations,
ρ0 is the reference density, and ψ is the tidal potential. We use
spherical polar coordinates (r, θ, f) centered on the planet, and
the rotation axis (along z) corresponds to θ= 0. We define a
(nonstandard) dimensionless buoyancy variable b=−ρ/ρ0,
where ρ is the Eulerian density perturbation, and adopt a
gravitational acceleration g rg r( ) ˆ= - . The quantity b is
proportional to the entropy perturbation in our model. We
focus predominantly on a homogeneous body with constant
density ρ0, for which g= g0r, where g0 is the surface gravity
with r measured in units of the planetary radius (see Paper I for
exploration of different profiles). Self-gravity is neglected (i.e.,
we adopt the Cowling approximation) to allow us to develop
more detailed understanding and because it is only likely to
lead to a moderate linear effect on any quantitative results. The
perturbation of the gravitational potential due to surface
deformations of our homogeneous model would also lead to
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unrealistically large effects compared with more realistic
centrally condensed models, further motivating our neglect of
its effects here. The flow is assumed to be incompressible, so

u 0. 3· ( ) =

The heat equation written in terms of b is

b

t

u

g
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where N2 is the (radially varying) squared Brunt–Väisälä or
buoyancy frequency, defined to be
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is the first adiabatic exponent and s(r) is

the specific entropy.
We have adopted a single scalar field for the density (b) with

a single “thermal diffusivity” (κ) to model our density/entropy
stratification. If compositional gradients are important then the
density should strictly consist of two distinct components
(thermal and compositional) with two associated (unequal)
diffusivities. This is necessary for double-diffusive convection
to operate in giant planet interiors and potentially produce
layered density structures (e.g., Garaud 2018), but we leave
exploration of double-diffusive effects here to future work.

We introduce tidal forcing by considering the dominant
component of the tidal potential,

r Y e, , 6i t
0

2
2
2 ( ) ( )y y q f= w-

where M

M d
r

a0
6

5
2 3

2 0( )y w= p . We take the l=m= two-dimen-

sional tidal amplitude for a circular orbit, as defined in Ogilvie
(2014), where M is the mass of the planet, M2 is the companion
mass, a is the orbital semimajor axis, and the dynamical

frequency GM rd 0
3w = , where G is the gravitational

constant. The forcing frequency is ω= 2(Ωo−Ω), where Ωo

is the orbital frequency of the satellite and Ω is the spin
frequency of the planet—the most relevant one for a circular
and aligned orbit of a nonsynchronously orbiting moon. Note
that we solve for the entire linear tidal response to ψ directly;
we do not split up the tide into an equilibrium and a dynamical
tide, though only the dynamical/wave-like response is
typically important for dissipation in our models.

We expand perturbations using spherical harmonics with a
harmonic time dependence such that
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where we adopt the standard normalization
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The resulting differential equations in radius for each l and m
are (dropping tildes)
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-
. These are consistent with the equations

in Ogilvie (2009) when b= 0. The equations for each m are
uncoupled due to the axisymmetric basic state, but the Coriolis
term couples components with different angular wavenumbers
l. Hence, we solve our system for m= 2 and l l2, max[ ]Î ,
where lmax is taken to be sufficiently large such that the solution
converges. Typically, l 100max = , though larger values are
required for the smallest diffusivities explored.
We nondimensionalize our system with the planetary radius

r0 as the unit of length, the reference density ρ0 for density, and
d

1w- as the time unit. Therefore, we introduce the following
dimensionless variables: r r r0 ˆ= , u r ur d r0 ˆw= , u ub d bˆw= ,
u uc d cˆw= , 0

ˆy y y= , b b̂= , g g g0 ˆ= , p r gp0 0 ˆr= , and
g

r
0

0
ˆw w= , where g rd0

2
0w= is the surface gravity. We

henceforth drop hats on all variables. This leads to four
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dimensionless parameters for each frequency ω (in units of ωd):
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These are varied in later analysis, and are referred to simply as
Ω, N2 (which can depend on r with mean value N 2¯ ), ν, and Pr,
since we use units such that r0= ωd= 1.

The molecular values of ν and κ expected in giant planets, as
well as the values of Pr, are somewhat uncertain and are likely
to depend on radius. It is believed that Pr ranges from 0.01 to
0.1 in deep giant planet interiors (e.g., Guillot et al. 2004;
French et al. 2012, albeit for Jupiter), with smaller values in the
thin outermost atmosphere. Values of the Ekman number

r0
2( )n W are likely to be very small, on the order of 10−15 or

smaller using molecular values. It is not clear whether
molecular values are appropriate though or whether tidal
waves should be damped by turbulent diffusivities instead,
which may be expected to be much larger (though still small, as
discussed in, e.g., de Vries et al. 2023). We assume ν and κ,
and hence Pr, are constant in radius, and explore the widest
range of these parameters that is computationally accessible,
though we are unable to study values as small as the
microscopic ones in planetary interiors—common with many
other problems in astrophysics, thereby requiring us to
understand how ν and κ affect our results before we can
potentially extrapolate to real planets. Another uncertainty is if
there are semiconvective layers, turbulent motions within
convective layers may lead to Pr∼ 1, whereas the diffusive
interfaces between them may have molecular values of
Pr∼ 10−2. This matter is very speculative, however, so we
prefer to study models with constant diffusivities in this work.

2.2. Boundary Conditions

We assume an idealized, perfectly rigid, solid core that is
impermeable at r= αr0, thus

u r r0 at . 17r
l

0 ( )a= =

At the planetary radius r= r0 there is a perturbed free surface
with vanishing normal stress, requiring (Paper I)

W
g

i
u

du

dr
r r2 at , 18l

r
l r

l

l
0

0 2 0( )
( )

w
n y d-

-
- = =

where Wl pl

0
y= +

r
. At both boundaries, we apply stress-free

conditions (no tangential stress). This is an approximation at
r= αr0, but is less computationally costly than applying a no-
slip condition, and it is unlikely to produce significant
differences in our results. Hence, we require

du
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The inner core has fixed entropy, such that

b r r0 at , 20l
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and we adopt vanishing perturbations to the buoyancy flux
through the surface, i.e.,

b

r
r r0 at . 21

l
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Our results are not particularly sensitive to choices of thermal
boundary conditions, though.

2.3. Energetics

We define the mean rate of energy injection by the tidal
forcing:

u u SI dV d . 22
V S

0 0∮· ( ) · ( )ò r y r y= - = -

By taking the scalar product of Equation (2) with ρ0u, using
Equation (4) and integrating over the volume, we find
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are the kinetic and potential energies of the system,
respectively, except when N= 0, in which case EPE= 0 and
dE

dt
0PE = . The volume-integrated viscous dissipation rate is

given by
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and the volume-integrated thermal dissipation rate is written

D
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V
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and when N= 0, Dther= 0.
In Paper I, we showed how the viscous dissipation can be

separated into bulk and boundary contributions. The former can
be written (e.g., Ogilvie 2009)

D l l
u

r
r

du

dr
r

du

dr

du

dr
l l l l u u

2
1

3 1 1 2 ,

28

l

r
l

b
l

c
l

r
l

b
l

c
l

interior
0

2 2

2
2 2

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

( )

( ) ( )( )(∣ ∣ ∣ ∣ )

( )

å
r n

= + + +

+ + - + + +

and is typically by far the dominant contribution for the
parameters we study. We subsequently refer to the viscous
dissipation using Equation (26), but the differences are
negligible for our purposes.
In a steady state, averaged over the tidal period 2π/ω, the

injection rate I balances the total viscous and thermal
dissipation Dtotal=Dvisc+Dther (ignoring a small boundary
term discussed in Paper I). In this study, we will analyze how
the dissipation rates Dvisc and Dther depend on the properties of
the system.

2.4. Modeling Stratified Layers

We consider stably stratified regions in a giant planet, or
ones with semiconvective layers (“density staircases”), as
might be produced by double-diffusive convection. We model
stable layers both near a small solid core to model a dilute
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stably stratified fluid core, and ones further out to represent a
layer near a potential H/He molecular to metallic transition
where helium rain may occur. First, we model a continuous
stably stratified region with a constant N, which sits above the
solid core extending a defined distance into the planetary
envelope. This is shown on the left-hand side of Figure 1 and is
described by a step function in N2(r) that is nonzero from αr0 to
βr0. When β≠ 1, we consider a smoothly varying profile,

N r
N

r r
2

tanh 1 , 292
2

0( )
¯

( ( ( )) ) ( )b= D - +

with Δ= 100 unless otherwise specified, and set N2= 0 when

N r N2
10

2

7( ) ¯
< . For cases where β= 1, we simply set N r N2 2( ) ¯= .

To model a semiconvective “dilute fluid core” with nmax

steps within the layer we consider a series of δ-like-functions
for N2 to give a staircase-like density profile, as shown on the
right-hand side of Figure 1. We use

N r
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This allows for comparisons between stratified layers and
semiconvective regions. If β= 1, we omit the final step at the
planetary radius (i.e., n n0 1max< < - ), and N0 is altered
accordingly to maintain the mean stratification.

To model a stratified layer at the metallic–molecular
transition zone, we consider one wide “interface”:
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d
- . This models an isolated stable layer

embedded within a convective medium.

2.5. Frequency-averaged Dissipation

The tidal response is expected to be strongly frequency
dependent when wave-like tides are excited, but we have found
it helpful to define a single quantitative measure of the tidal
dissipation that can be compared as we vary our parameters. To
do so, we define a frequency-averaged dissipation measure for
a given dissipation rate D:

D
D

d , 32
min

max¯ ( ) ( )ò
w
w

w=
w

w

which gives more emphasis to lower frequencies. Numerically,
we adopt a small nonzero lower bound minw , and, unless
otherwise stated, Nmax ¯w = . This allows analysis of the low-
frequency regime while slightly reducing the contribution of
the surface gravity modes (f-modes), which are not our primary
focus. We also use the different weighting,

D
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d . 332 2
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w

w
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w

w

This quantity is directly relevant for comparison with Ogilvie
(2013), where in the low-frequency limit, for the unstratified
case with a solid core, they used impulsive forcing to calculate
the associated energy transfer into inertial modes Ê analyti-
cally. This quantity is related to tidal dissipation rates D by

E
D

d
1

2
, 34

2
ˆ ( )òp w
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-¥

¥

which provides motivation for using a ω−2 weighting. Other
weighting factors could be used instead, and it is not at all clear
what is the most useful one for astrophysical purposes, so we
will explore various possibilities.

2.6. Numerical Method for the Forced Problem

We solve the system of ordinary differential equations in
radius, Equations (12) to (16), for each l, using a Chebyshev
collocation method, where the ordinary differential equations in
r are converted into a linear system of equations on a
Chebyshev extrema grid. We consider points in radius as a
set of (ncheb+ 1) Gauss–Lobatto–Chebyshev points, which are

Figure 1. Left panels: illustrative entropy profile and Brunt–Väisälä frequency (N2) profiles for a continuously stratified layer and for semiconvective layers. A solid
inner core extends to αr0 and the stable layer (“dilute core”) extends to βr0, outside of which is a convective envelope to planetary radius r0. Right panels: examples of
the numerical profiles adopted.
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defined as
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c
c⎜ ⎟

⎛
⎝

⎞
⎠

( )p
= =

where Nc is taken as the (smallest) appropriate value for which
numerical convergence is found. This value varies depending
on the parameters, but we typically take Nc = 100 to Nc = 400.
This method is well suited for many nonperiodic problems as it
is a spectral method free of the Runge phenomenon, which
converges exponentially fast with resolution Nc for smooth
solutions (Boyd 2001). We then have a linear algebra problem,
which we solve using the inbuilt MATLAB routine “mldivide,”
where matrices are stored in sparse form to reduce memory
requirements. The solutions for u, p, and b can then be used in
Equations (26) and (27).

2.7. Eigenvalue Problem

In Paper I (see also Pontin et al. 2020) we studied
analytically the nondiffusive free gravity modes in our model
without rotation, and we also explored numerically the
eigenvalues of the dissipative system. In the presence of
rotation, analytical progress is severely hampered by the l-
coupling caused by Coriolis forces, so in almost all cases we
must resort to numerical calculations to obtain eigenfrequen-
cies. This is particularly the case when inertial modes are
excited, i.e., for |ω|< 2Ω in convective regions (or for gravito-
inertial modes in stable layers), where the inviscid (nondiffu-
sive) problem becomes mathematically ill-posed. To compute
the eigenvalues (free modes) of the dissipative problem
numerically, we set ψ0= 0, and manipulate our system of
equations into a linear generalized eigenvalue problem with
eigenvalue (−iω), i.e.,

u u
i A p

b
B p

b
, 36⎡

⎣
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⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥( ) ( )w- =

where A and B are matrices that describe Equations (12) to (16)
with the same boundary conditions as above. This is solved
numerically to obtain eigenvalues (−iω), and corresponding
eigenvectors for u, p, and b. We use the iterative eigs solver in
MATLAB to scan the relevant frequency range, as a
noniterative method would be prohibitive in its memory
requirements for even modest spatial resolutions, since this is
a two-dimensional eigenvalue problem in r and θ. The
frequency of a mode is Re[ ]w and its corresponding damping
rate is Im[ ]w (there are no unstable modes).

3. Overview of the Tidal Response of Rotating Planets

In Paper I, we studied in detail the response of nonrotating
planets containing stable layers (or semiconvective layers),
which consists of internal, surface, and interfacial gravity
modes. When incorporating rotation, the additional excitation
of low-frequency inertial waves in convective (neutrally
stratified) regions and the modification of internal gravity
modes to become gravito-inertial modes means we see new

resonances at low frequencies that align with these modes
compared with calculations without rotation.
We illustrate the dissipative response of a rotating planet as a

function of frequency in Figure 2(a). These plots show the
viscous (Dvisc), thermal (Dtherm), and total (Dtotal) dissipation
rates. In this example, we show results for a rotating body with
a large solid core of size α= 0.5 surrounded by a well-mixed
convective fluid envelope with N= 0, thereby allowing pure
inertial waves to be excited (hence Dtherm= 0). We adopt
Ω= 0.4 here to approximately model Saturn’s rotation rate, and
take ν= κ= 10−6 for this illustration (for molecular diffusion
we expect much smaller values in reality, but this value is
readily accessible computationally). For this example we only
plot positive frequencies, but note that with rotation the
response at a frequency ω will in general differ from that at −ω.
Pure inertial waves are excited at low frequencies for which

|ω|< 2Ω= 0.8, and surface gravity modes associated with the
free surface are excited at higher frequencies |ω| 1. We
observe peaks of enhanced dissipation close to resonances with
inertial modes for low frequencies, which produce the irregular
frequency dependence characteristic of these modes. Here, we
use a large core size to enhance the appearance of inertial
waves in the tidal response, to more clearly illustrate
their properties (Ogilvie 2009; Rieutord 2009; Rieutord &
Valdettaro 2010), though this can be thought to model strongly
stably stratified dilute cores, as we will illustrate later. The
numerically obtained eigenvalues (purple squares) agree well
with the locations and heights of the peaks, where the least
damped modes typically correspond to the tallest resonances
with the strongest dissipation. We have plotted only the least
damped modes, with a cutoff value of Im [ ]w chosen for
aesthetic reasons.
As in the nonrotating cases in Paper I, we observe a strong

surface gravity mode resonance around ω∼ 1, but here it is
shifted to a significantly lower frequency. We show in the
Appendix (see also Lebovitz 1961; Braviner & Ogilvie 2014;
Barker et al. 2016) that rotation causes the splitting of this
mode for a given l for different m values. In the limit of slow
rotation, the l= 2 surface gravity mode is split into five modes,
with frequencies 2 d

m

2
w w= - W, where m=−2, −1, 0, 1,

and 2 instead of the nonrotating frequency 2 dw (in agreement
with Lebovitz 1961, for a Maclaurin spheroid in this limit). As
we consider m= 2 forcing, we only observe the m= 2 surface
gravity mode, with a frequency ω≈ 1.07 that is nicely
predicted by Equation (A10) (the small Ω expression predicts
1.01). There is an additional resonance close to ω= 1.8, caused
by the coupling of different harmonic degrees appearing close
to a resonance with the l= 4, m= 2 surface gravity mode
(again shifted due to splitting). Around ω= 1.5 there is an
eigenvalue solution that does not align with any peak,
corresponding to the l= 3 surface gravity mode. However,
this mode is not actually excited, even though it is a solution to
the unforced eigenvalue problem. The reason for this is that,
while all l’s are coupled by the Coriolis force, the equatorial
symmetry imposed by the l= 2 tidal forcing means that only
modes with this symmetry (equatorially symmetric for ur,
therefore only with even lʼs for m= 2) are excited.
Figure 2(c) shows a similar but potentially more realistic

case where instead of a large solid core there is a stably
stratified layer extending to half the planetary radius, also with
Ω= 0.4 and ν= κ= 10−6. We consider a buoyancy profile as
in Equation (29) with α= 0.1, β= 0.5, and N 1¯ = . This case is
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the same as Figure 2(b) in Paper I but with the addition of
rotation. In this case, as well as exciting inertial waves in the
outer convective envelope, as observed in the solid-core case,
we also excite gravito-inertial waves in the extended stably
stratified layer over a larger range of frequencies

N 4 1.282 2∣ ∣ ¯w < + W = .1

In Figures 3 and 4, we show the spatial structure of the forced
response, which displays features similar to those reported in
previous studies for the free and forced modes in rotating and
stratified planets (e.g., Rieutord & Valdettaro 1997; Dintrans et al.
1999; Ogilvie & Lin 2004; Rieutord 2009). In Figure 3, we show
solutions at two different forcing frequencies for the case shown in
Figure 2(a). We observe inertial wave beams in the convective
envelope that propagate with the angle θi between the rotation axis
along z and the wavevector k̂ as predicted by cos 2i ( )q w= W ,

thus satisfying the dispersion relation 4 cos i
2 2w q= W , with the

group velocity (along which energy travels) propagating perpend-
icular to this direction and lying along the visible wave beams.

Figure 2. Illustrative examples of tidal dissipation as a function of frequency in two rotating models, restricted to positive frequencies in panels (a) and (c), with
numerically obtained eigenvalues overplotted for both models. The y-axis for the eigenvalues indicates their decay rates (imaginary parts). One example is given of an
entirely convective fluid envelope outside a solid inner core (panels (a) and (b), where the latter shows negative frequencies) and one with a stably stratified layer
extending to half the planetary radius and a tiny solid core (panel (c)). In both cases, we set Ω = 0.4 and ν = κ = 10−6.

Figure 3. Illustrative examples of |u| for two different forcing frequencies of
the forced response in a convective envelope with α = 0.5, N 02¯ = , Ω = 0.4,
and ν = κ = 10−6. Both panels show examples of tidally forced inertial waves.

1 The range of frequencies for gravito-inertial wave propagation is explained
in, for example, Rieutord (2009). Alternatively, please see André et al.'s (2017)
Equations (2.14) (or (2.33)) for this upper bound in the case of plane waves
when the rotation axis is perpendicular to the local gravity vector.
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In Figure 4(a), we consider the spatial structure of the forced
solution at a frequency of ω= 0.514 for the case in Figure 2(c),
a frequency which is within the range of both gravito-inertial
waves in the stratified region and inertial waves in the
convective region. We observe both these waves to be excited,
the gravito-inertial waves within the stratified core and the
inertial waves within the convective envelope. At this point, we
note the similarity between the spatial structure in the outer
envelope with the example shown in Figure 3(b), where the
forcing frequency is similar. When we consider a higher
frequency, ω= 0.95, outside the inertial wave range but within
the gravito-inertial wave range, shown in Figure 4(b), we can
see that only gravito-inertial waves within the stably stratified
layer are excited and the response is evanescent above. This
demonstrates how in a region with stable stratification, instead
of the straight lines characteristic of an inertial wave, we
observe the curved lines characteristic of gravito-inertial waves
(e.g., Dintrans et al. 1999, though their profile has N2∝ r).

One significant difference between the tidal response in
rotating and nonrotating models is that rotation breaks the
symmetry between positive and negative forcing frequencies.
Figure 2(b) shows the dissipation rate for negative forcing
frequencies in a convective envelope with a solid core for the
same model as Figure 2(a), demonstrating that D(ω)≠D(−ω)
in general. At small negative frequencies we have additional
Rossby mode resonances (also known as planetary waves).
Rossby modes are a subset of inertial modes obtained by
considering conservation of vorticity and, in the absence of a
background flow and stratification, have a dispersion relation
(Papaloizou & Pringle 1978; Zaqarashvili et al. 2021),

m

l l

2

1
, 37

( )
( )w = -

W
+

which has strictly the opposite sign to rotation, indicating that
they propagate in the retrograde direction. These are more
evident in thin shells (large α) and tend to excite modes with
l= 3 and m= 2, for which ω=−1/3. At higher-frequency
magnitudes, the direction of the shift in frequency of the
surface gravity mode discussed above depends on the sign of
ω, as predicted in the Appendix, and which we confirm
numerically here.

4. Variation of the Parameters

We now begin to explore how the dissipation depends on the
parameters of our model. To do so, we follow Paper I and
employ a frequency-averaged measure of the dissipation, but
now using the two different weightings introduced in
Section 2.5. In many of our parameter ranges, the highest-
frequency gravito-inertial and surface gravity modes have
comparable frequencies, therefore it is not always possible to
separate their behavior using these integrated measures.
Without rotation, we can always take an upper limit on our
integrals to be Nmax ¯w = to include internal gravity modes and
exclude surface gravity modes, but we are unable to do the
same here because gravito-inertial waves propagate up to

N 4max
2 2¯w = + W , which overlaps with surface gravity

modes (which are themselves shifted to lower frequencies for
positive ω). The frequency-averaged measures are helpful to
explore how the dissipative properties depend on the various
parameters, but we emphasize that results involving these
quantities by themselves should be interpreted with caution.
This is partly because they use a single number to represent an
entire complicated spectrum, and partly because this measure is
less robust to the frequency interval considered than in the
nonrotating cases explored in Paper I.

4.1. Variation of Rotation Rate Ω

First, we vary Ω to determine how the planetary rotation rate
affects its dissipative properties. We focus on two models: one
with an entirely stably stratified planet β= 1.0 and one with an
extended stably stratified “dilute core” extending to half the
planetary radius β= 0.5, with a well-mixed convective region
above.
In Figure 5, we consider β= 0.5, and first compare the

outcomes of three different definitions of the frequency-
averaged dissipation. We consider weightings with 1

w
, 1

2w
, and

a “mean average,” which we define to be D̄ =
D d1

max min
ò w

w w-
. In all three cases we have kept the integration

limits the same as the range for gravito-inertial waves, i.e.,
0minw = and N 4 ;max

2 2¯w = + W the same quantity for the
corresponding nonrotating case has been plotted for reference
in each case. There is a slight quantitative difference between
these three definitions but no qualitative differences. The
similarity in all three measures implies that we can focus on
only one of these for an overview of the dissipative response.
In all three cases the total dissipation is larger than obtained

without rotation and there is a large jump between Ω= 0.2 and
Ω= 0.4. Since N 4max

2 2w = + W is not a robust limit to
separate the surface and internal modes, it is also instructive to
consider the frequency-dependent solution, which we plot in
Figure 6 for all of these cases. Considering the vertical lines in
Figure 6, which mark the gravito-inertial wave limit, we can
see that for the rotation rates Ω= 0, 0.1, and 0.2, the surface
gravity mode is well above maxw , whereas for Ω= 0.4 and 0.6,
it is below this limit. In fact, we see that in the case of Ω= 0.6,
the surface gravity mode no longer appears as an isolated peak.
It is therefore likely that the surface gravity mode is to a large
part dictating the trends observed in Figure 5.
In Figure 7, we consider different integration limits, but

show results only for the 1/ω2 frequency weighting. In the top
panel, we consider 1maxw = , which removes the surface
gravity mode from most cases (for Ω= 0.6 it is still included).

Figure 4. Illustrative examples of |u| for the forced response within a planet
with a stably stratified core and convective envelope, with α = 0.1, β = 0.5,
N 12¯ = , Ω = 0.4, and ν = κ = 10−6. Panel (a) shows a gravito-inertial wave
response in the stratified layer and inertial wave response in the convective
envelope. Panel (b) shows gravito-inertial wave in the stratified layer only.
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Figure 5. Comparison of different frequency weightings for the frequency-
averaged dissipation as a function of rotation rate. Other parameters are fixed at
α = 0.1, β = 0.5, N 1¯ = , and ν = κ = 10−6. In all cases the integration limits
have been taken to be 0minw = and N 4max

2 2¯w = + W .

Figure 6. Dissipation rate as a function of ω for varying rotation rates Ω, with
α = 0.1, N 1¯ = , and ν = κ = 10−6 in all cases. Panel (a) shows a stratified
layer extending to half the planetary radius, panels (b) and (c) show a uniform
layer extending to the planetary radius, with (c) showing just the low-frequency
regime (traveling wave).
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The frequency-averaged quantities increase away from the
nonrotating baseline as rotation rate increases and the inertial
wave response is enhanced. In the bottom panel, we consider a
higher integration limit, 1.8maxw = , which incorporates the
surface gravity mode behavior in all cases. We observe that
more rapid rotation leads to more efficient dissipation
according to this measure. Using the higher limit, we find that
there are some differences between the different weightings
(not shown) and those that give the most emphasis to inertial
waves exhibit an increase as rotation rate is increased.

We now turn to explore a case with a fully stratified planet
with β= 1 in Figure 8, with all other parameters fixed at
α= 0.1, N 1¯ = , and ν= κ= 10−6. Due to the similarities
between the weightings, we show here just the frequency-
averaged measure used in the nonrotating case in Paper I (1/ω),
but we have included all three limits of integration discussed so
far in this section. We see that trends observed for β= 0.5 also
hold here. The only key difference is that for data points in

Figure 7. Comparison of different integration limits for frequency-averaged
dissipation with 1/ω2 weighting as a function of rotation rate. Other parameters
are fixed at α = 0.1, β = 0.5, N 1¯ = , and ν = κ = 10−6.

Figure 8. Comparison of integration limits for the frequency-averaged
dissipation as a function of rotation rate for a fully stratified planet. Other
parameters at fixed at α = 0.1, β = 1, N 1¯ = , and ν = κ = 10−6.
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which the surface gravity mode is not included in the
integration, the overall dissipation is lower than for β= 0.5,
due to the absence of a convective envelope permitting inertial
mode excitation.

Returning to the frequency-dependent dissipation in
Figures 6(a) and (b), which show the total dissipation (Dtotal)
for four different rotation rates as well as the corresponding
nonrotating cases from Paper I (black dashed line), the cases
shown are for β= 1 and β= 0.5, respectively. We can see that
there is a nontrivial balance between the roles of the buoyancy
and Coriolis forces. In all rotating cases we see gravito-inertial
waves in the expected range N 42 2¯w < + W . As well as
observing the increasing range of modes, we also see that the
irregular pattern characteristic of inertial modes for β= 0.5 is
more pronounced as rotation rate increases. Indeed, at a low
rotation rate, Ω= 0.1, the profile is similar to that of Ω= 0, as
buoyancy forces appear to dominate. When comparing the two
figures, we note that for a partially stratified planet varying
rotation has a more pronounced effect. This is because the
stratified layer acts similarly to a large solid core in enhancing
the excitation of inertial waves, which are not excited in a
homogeneous full sphere (e.g., Ogilvie 2009).

Figure 6(c) shows the low-frequency range for β= 1. Based
on our analysis in Paper I, we interpret this regime as being the
traveling-wave regime, for which tidally excited inwardly
propagating gravito-inertial waves are excited in the stably
stratified core by perturbations (by non-wave-like tides plus
inertial waves) at r∼ βr0, which are then subsequently fully
damped by viscous and thermal diffusion before they reflect
from the solid core and return to their launching sites. We can
see that at low frequencies there is a clear O(1) dependence on
Ω, though it does not typically lead to order-of-magnitude
variations. It is possible that a similar analysis to that carried
out in the traveling-wave regime in Paper I (and considered by
Papaloizou & Savonije 1997, Ogilvie & Lin 2004, and Ivanov
et al. 2013 in different models) could explain this dependence
(e.g., adopting the “traditional approximation”), but we leave
this to future work as it only leads to O(1) differences in the
dissipation.

We next turn our attention to the spatial structure of the
velocity magnitude in the β= 0.5 case in Figure 9, which
shows the forced solution for four values of Ω increasing in
each row, with increasing forcing frequency in the different
columns. We see clear agreement in properties with the
predicted ranges for inertial and gravito-inertial waves in the
convective envelope and outer core, respectively, as we move
between the different regimes. Additionally, we observe larger-
magnitude inertial waves as the rotation rate Ω increases,
corresponding to the larger dissipation rates. Note the changing
color bars between the different cases. Solutions in the first
column are visually similar to the nonrotating solutions in
Figure 3(a) of Paper I, except that inertial waves are excited in
the convective envelope. In the middle column, showing a
frequency outside the inertial range in the envelope in all panels
except for Ω= 0.6, the solution varies substantially for the
different rotation rates, from g-mode-like in the top panel to
being strongly modified by rotation in the core in the bottom
two panels. The rightmost column shows a higher frequency
for which the free surface perturbations become more
important, and for which ω= 1.1 is outside the inertial range
except for Ω= 0.6. Panel (l) shows a mode with a complicated
structure that exhibits properties of each of surface gravity,

inertial and gravito-inertial modes near the surface, in the
envelope and core, respectively.
Varying the rotation rate can therefore modify the modes and

tidal dissipation rates substantially, depending on the relevant
tidal frequency and whether it lies relative to the free inertial,
gravito-inertial, and surface gravity modes. Overall, the
dissipation is typically enhanced for faster rotation rates.

4.2. Variation of Core Sizes α and β for Uniform N

A large uncertainty is how deep any stable layers extend
throughout planetary interiors, with current estimations and
observational constraints varying significantly. We know from
previous studies that the size of a solid core can significantly
enhance the excitation of inertial waves in incompressible
models (Goodman & Lackner 2009; Ogilvie 2009; Rieutord &
Valdettaro 2010). Here, we compare two scenarios: cases with
a solid core with a convective envelope above (N 0¯ = , varying
α), and cases where a small solid core is surrounded by a stably
stratified (dilute core) layer, again beneath a convective
envelope (N 1¯ = , α= 0.1, varying β).
Figure 10 shows the frequency-averaged profiles for these

two types of model. The darker lines show neutrally stratified
cases and the dependence on the radius of the solid core α,
while the lighter colored lines show the cases varying the size
of the stably stratified core β. The black line shows the
equivalent trend found in the nonrotating cases, where we
consider a small core with a stably stratified region above. We
can see that in both cases the frequency-averaged dissipation
shows a strong dependence on core size, but this trend varies
between the two core types. For core sizes less than 0.5r0, there
are larger dissipation rates where there is a stably stratified
core; for larger core sizes (larger than would be expected in the
case of Jupiter and Saturn), we see the opposite trend. This
suggests that for the smaller core sizes, the stratified layer acts
as a solid core for the excitation of inertial waves, with
additional contribution to the overall dissipation rate arising
from the excitation of gravito-inertial waves in the stratified
layer. We consider the trend found for the largest core sizes
with caution, however, as when considering the frequency-
dependent dissipation in Figure 11 we see that the surface
gravity mode has shifted to frequencies less than the integration
limit ω= 1 when considering a solid core, which also
contributes to the dissipation rate. We again see the enhance-
ment of the dissipation in solid-core cases with rotation
compared with nonrotating results.
Figure 11 shows the frequency-dependent dissipation rates,

which allow us to understand more about the contribution of a
stratified core. In Figures 11(a) and (b), we compare cases with
differently sized cores for a solid core and a stratified core,
respectively. In both cases, we see that the amplitudes of the
resonances increase as the core sizes increase, but we note
some differences. For cases with a stratified core, we observe
the increased frequency range of resonances matching gravito-
inertial waves rather than inertial waves. Additionally, when a
stably stratified layer extends to 0.85r0, there are regular
discrete peaks that are characteristic of internal gravity waves
that dominate around a forcing frequency of 0.2. In
Figures 11(c)–(e), we compare the total dissipation rates for
cases with a solid core and stably stratified core for three
different radii, 0.25, 0.55, and 0.85. We see clearly that for the
smallest core size, the inertial wave response is very similar in
both models, departing from each other at frequencies around

11

The Astrophysical Journal, 960:32 (22pp), 2024 January 1 Pontin, Barker, & Hollerbach



0.6–0.9 only. However, as we increase the core size we
increase the contribution of the gravito-inertial waves, so this
agreement between a solid-core model and a dilute core is
worse. Indeed, when the core extends as far as 0.85r0, we see at
frequencies less than 0.6 that the dissipation in a stably

stratified core resembles the equivalent nonrotating system
more than the equivalent solid-core case. We note also that the
shift in the frequency of the surface gravity mode varies
between these cases as the stratified layer also affects the
frequency of this mode (as predicted analytically without

Figure 9. Examples of the spatial structure for different rotation rates and forcing frequencies; in all cases, we consider a stably stratified layer extending to half the
planetary radius α = 0.1, β = 0.5, N 1¯ = , and ν = κ = 10−6.
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rotation in Paper I). Finally, we note that when considering
these thin-shell convective regions (large cores) we expect
negative-frequency Rossby modes to be more significant than
the positive-frequency modes we show here, which require
further investigation to explore.

4.3. Variation of Step Number for a Density Staircase

We now turn to explore the consequences of semiconvective
layers. As in the nonrotating cases in Paper I, we consider a
staircase-like density profile as defined by Equation (30), and
we consider cases in which α= 0.1, β= 1.0, N 1¯ = , δr= 0.03,
Ω= 0.4, and ν= κ= 10−6, with varying step numbers. We
consider β= 1.0 here to allow us to explore the largest number
of steps possible, permitting us to resolve modes with
variations on the scale of the steps while minimizing
computational costs. In Figure 12(a), we show the frequency-
averaged dissipation as the step number is increased; we have
in this case shown just the 1

w
weighting and used an upper

integration limit of 1maxw = to exclude the surface gravity
waves. Note, the lower limit of 0.1minw = has been chosen for
purely numerical reasons; this is because the lowest-frequency
waves require the highest resolution and contribute little to the
overall dissipation using this measure. For comparison, we also
show the equivalent nonrotating case as a function of step
number (black dashed line), as well as the uniformly stratified
layer with equivalent mean stratification (black solid line).

We see that the dissipation for all step numbers considered is
higher than both a uniformly stratified rotating medium and
cases without rotation according to this measure. Although
there is a trend toward the uniformly stratified case as we
increase the number of steps, our results do not converge to this
result as quickly as we had found in the nonrotating cases in
Figure 11 of Paper I. The dissipation is initially nearly 8 times
larger with one step as the case with a constant N. For large step
numbers, though, there is a trend toward the uniformly
stratified case, implying that if the planetary interior contains
a large number of steps it will behave on average similar to an

equivalent continuously stratified medium. Here, the staircase
dissipation remains slightly larger than the uniform case even
for 13 steps, though it is very similar.
In Figure 12(b), we explore the effects of varying viscosity

and thermal diffusivity according to the same frequency-
averaged measure, showing total dissipation for ν= κ= 10−6

compared with ν= κ= 10−4. Although it is hard to draw
robust conclusions from two values of the diffusivities, these
initial results suggest that our findings may be robust to varying
the viscosity and thermal diffusivity to approach planetary
values. We also expect that varying the Prandtl number may
also be unimportant for the total dissipation, and that, as found
in Paper I, it will primarily alter the balance between viscous
and thermal dissipation rates rather than the total dissipation.
Figure 13 shows the corresponding frequency-dependent

dissipation rates for various cases with different step numbers
for ν= κ= 10−6 in panel (a) and ν= κ= 10−4 in (b). At low
frequencies the behavior varies significantly for different
numbers of steps. Note that the frequency limit for propagation
of gravito-inertial waves is N 4max

2 2w < + W and when
considering a staircase-like structure N Nmax ¯ , thereby
increasing the range slightly (but with no significant implica-
tions for the most astrophysically relevant parameter values, so
we do not focus on this aspect).
We first compare the cases with zero steps, one step, and five

steps, noting that zero steps consists of a small solid core with a
convective envelope to the outer edge. At low frequencies,
although inertial waves are excited in the convective envelopes
in all three cases, these are barely visible for the case of zero
steps, where there is only the small solid core to launch inertial
waves from. As we increase the number of steps to one and
then five, the excitation of inertial waves occurs from
boundaries at additional and increasingly larger radii, leading
to enhanced dissipation. Following this, we now compare the
cases with five, nine, and 13 steps, and find there are
significantly smaller differences between these cases. At this
point the outer radius does not vary significantly as the number
of steps is increased. The individual resonant peaks do shift as
the number of steps is increased, but overall the dissipation
spectrum looks similar when there are “enough steps” (here this
means more than five).
Figure 14 shows the forced solutions at ω= 0.25 for all five

step numbers explored for ν= κ= 10−6. We see inertial wave
beams excited in the convective layers, which have a very
small amplitude response dominated by the non-wave-like tide
in the case of zero steps, but increase in amplitude as we
increase the number of steps and the outer interface moves
outwards. The case with one step behaves visually like a solid
core at the location of the interface, with inertial waves in the
envelope and little activity inside the interface within the
“core.” We will explore this similarity further in the next
section. As we increase the number of steps, the solution
appears to become dominated by inertial waves, presumably
excited at the critical latitudes on each interface (where rays are
tangent to it), that subsequently bounce between the interfaces
to form these modes. The solution becomes increasingly
dominated by wave-like tides, rather than the larger-scale non-
wave-like tide, as we increase the number of steps in these
examples.
We are beginning to see that the size of the convective

envelope is key to the behavior of the inertial waves and the
corresponding dissipation, which is consistent with expectation

Figure 10. Frequency-averaged dissipation as a function of core size for both
cases where a convective layer sits above a solid core (N 0¯ = and varying α)
and those where a stably stratified layer extends to the same radius (N 1¯ = ,
α = 0.1, varying β). Other parameters kept constant at Ω = 0.4 and
ν = κ = 10−6.
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Figure 11. Frequency dependence of the dissipation rate for different core sizes, comparing both a solid core and stably stratified core, with Ω = 0.4 and ν = κ = 10−6

in all cases. Panels (a) and (b) show a solid core and stratified layer, respectively, for different core sizes. Panels (c) to (e) compare a solid core to a stratified layer for
three different radii.
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from incompressible models of the unstratified case (e.g.,
Goodman & Lackner 2009; Ogilvie 2009, 2013; Rieutord &
Valdettaro 2010). Therefore, we now compare cases with a
solid or stratified core that extends to the same radii as the
staircase interfaces. The solid black lines on Figures 15(a) and
(b) show the total dissipation as a function of frequency for a
single step and five steps, respectively. In Figure 15(b), we
have compared this case to both a solid core and a stratified
layer extending to that radius, i.e., α= 0.55 and N 0¯ = , and
α= 0.1, β= 0.55, and N 1¯ = . We can see that at low
frequencies there is very good agreement between these three
different profiles, suggesting that the forced wave response in
the outer envelope only depends weakly on what is below the
envelope, provided the buoyancy frequency of the stably
stratified layers is sufficiently strong. We will explore this issue
further in the next section.

Figure 12. Frequency-averaged dissipation as a function of the number of
steps. Other parameters kept constant at α = 0.1, β = 1.0, N 1¯ = , Ω = 0.4, and
ν = κ = 10−6. Panel (a) compares total, viscous, and thermal dissipation with
the total dissipation of the uniformly stratified case and the nonrotating case.
Panel (b) compares two different viscosities/diffusivities for the same case.

Figure 13. Frequency dependence of dissipation for different numbers of steps
in the staircase density profile. In all cases, α = 0.1, β = 1, and N 1¯ = . In
panel (b), we fix ν = κ = 10−6 and in panel (c) we fix ν = κ = 10−4.
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In Figure 15(b), we similarly show a solid core and a stably
stratified layer, this time extending to the first interface (blue,
α/β= 0.25) and last interface (red, α/β= 0.85). We notice
that, although the agreement is not as good as in the single-step
case, there is still closer agreement between the cases where the
core corresponds to the last interface of the staircase. This
suggests that this is the key interface in dictating the dissipation
due to inertial waves. We note that dissipation is larger in the
staircase model due to the additional interior interfaces where

inertial waves can be excited from critical latitudes. In both
figures there is significantly different behavior between the
various models in the mid to high frequencies, where it is
expected that the buoyancy effects dominate. This comparison
suggests that the importance of buoyancy forces compared with
Coriolis forces will strongly depend on the forcing frequency.

5. Comparison of Dilute-core Models

Motivated by the relevance of giant planet interior models
that consist of an extended “dilute” core, and that the properties
of this core are highly uncertain, in this section we explore
further the consequences of different buoyancy frequency
profiles describing stable stratification. We consider four cases
that have different buoyancy profiles which each represent a
stratified outer core extending to half of the planetary radius
surrounded by a convective envelope. We compare the
following:

Figure 14. Examples of the spatial structure of the forced response for a
density staircase with zero (i.e., unstratified), one, five, nine and 13 steps, in
all cases with α = 0.1, β = 1.0, N 1¯ = , ν = κ = 10−6, and a forcing
frequency ω = 0.25.

Figure 15. Comparison of total dissipation between profiles with interfaces,
uniformly stratified layers and a solid core, with Ω = 0.4 and ν = κ = 10−6 in
all cases. The black solid lines are the single-step and five-step cases in panels
(a) and (b), respectively. The dashed colored lines describe a stratified layer
with α = 0.1 and N 1¯ = , and solid colored lines a solid core with N 0¯ = . The
blue aligns the core/stratification with the first (or only) interface and the red
the last interface.
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1. Case 1: a large solid core with a convective envelope:
α= 0.5 and N 0¯ = .

2. Case 2: a uniformly stably stratified layer extending from
an inner core boundary to an outer core boundary:
α= 0.1, β= 0.5, and N 1¯ = .

3. Case 3: a single stable interface at the outer core
boundary βr0: α= 0.1, β= 0.5, and N 1¯ = .

4. Case 4: a staircase extending from an inner core
boundary to an outer core boundary: α= 0.1, β= 0.5,
N 1¯ = , steps = 3.

All other parameters are kept constant with Ω= 0.4 and
ν= κ= 10−6. We plot the total dissipation in each case in
Figure 16.

We find that when considering the low-frequency inertial
range (i.e., observed to be |ω|Ω= 0.4), the frequency-
dependent dissipation is remarkably similar in all four cases.
The inertial wave behavior in the convective envelope then
appears to dominate the behavior and is little affected by the
form of the stratified layer (or solid core) beneath it. We see
that the stable layer, single interface, and staircase each act like
a solid boundary for the propagation of inertial waves in the
convective envelope, and they enhance the dissipation for low
frequencies in a very similar manner.

Within the mid-frequency range between 0.8 ω 1, the
behavior varies significantly, as it is in this frequency range that
the gravito-inertial modes within the stratified region are
dominant when N 1¯ = . These modes are sensitive to the form
of the stratification adopted, and we observe peaks corresp-
onding to gravito-inertial modes in the case of a uniformly
stratified layer, as well as the interfacial modes that are
characteristic of a staircase structure in cases with interfaces.

In Figure 17, we compare the spatial structure of the
response in all four cases at three different forcing frequencies,
using color scales that differ in each panel to most clearly
illustrate the variation in space. Considering the first column,
for which the forcing frequency is low (ω= 0.21), within the
inertial wave range, we observe the solution in the convective
envelope to be similar in each case. Their structures are very
similar, and their amplitudes are mostly similar but do differ to
some extent. In all examples the stable stratification is acting
effectively as a solid boundary for the propagation of inertial

waves, showing that an extended (sufficiently stably) stratified
core acts like a large solid core, enhancing the dissipation over
cases with a small core. Inertial waves are presumably excited
in a similar way at the critical latitudes on the interface at the
outer boundary of the core.
In the second column, at a higher forcing frequency of

ω= 0.73, the spatial structure observed in the convective
region again remains consistent. However, we now see the
different modes that form within the stratified region, which
vary significantly, contributing to the differences between the
resultant dissipation. At both forcing frequencies, for the
staircase and interface cases we faintly observe additional
inertial modes in the deeper convective layers, as well as
gravito-inertial modes in the uniformly stratified case. These
additional modes can explain the increase in dissipation
observed for Cases 2–4 over that of a solid core (Case 1).
Finally, in the last column we show the solution with the

highest forcing frequency, ω= 0.9, at which we are outside the
inertial wave range (|ω|< 2Ω= 0.8) but within the gravito-
inertial wave ranges. We clearly observe different responses in
each case that depend on the properties of the stratified region,
with wave-like behavior only observable in the cases with a
stratified layer and a staircase structure. Purely non-wave-like
behavior is observed in the unstratified case, as expected since
inertial waves do not propagate with this frequency.
To summarize this section and Section 4.3, we find that a

sufficiently strongly stratified core behaves very similarly to a
rigid core for the inertial wave response and for the
corresponding dissipation at low frequencies (  N∣ ∣ ¯w ), and
it is largely insensitive to the properties of the stratified layer
beneath. For larger frequencies  N d∣ ∣ ¯w wW ~ ~ , we find
more substantial differences between these cases due to the
decreasing importance of rotation relative to internal and
surface buoyancy forces, and the transmission of wave energy
between the convective and stably stratified layers. For the
forcing due to Jupiter’s and Saturn’s moons, we typically
expect |ω|∼Ω, but it is not certain how large N̄ should be.
Weaker values of N̄ ~ W, such as those considered by Lin
(2023) and Dewberry (2023) for Jupiter, would permit
substantial connection between convective and stable layers
for these tidal frequencies, such that the response would be
expected to differ somewhat from the case of a solid core. On
the other hand, the larger values inferred for Saturn
(Mankovich & Fuller 2021), for which N̄ W, would
typically predict that the inertial wave response in the envelope
may be better represented by a solid core at the outer interface
of the stratified dilute core. Similarly, extrapolating our result to
slowly rotating solar-type stars, for which N̄ W, the
radiative zone would be expected to behave quite similarly to
a rigid core for the inertial waves in the envelope, thereby
motivating use of rigid boundary conditions in studies of their
properties (e.g., Astoul & Barker 2022).

6. Application to Saturn’s Tidal Dissipation

Finally, we explore cases with parameter values that are as
consistent as possible with the latest observational constraints
for Saturn. Our model is the simplest global one able to capture
the dynamics of stratified layers, since we adopt the Boussinesq
approximation, and hence neglect realistic variations in density
throughout the planet. It is still instructive, however, to
compute the tidal response in this model and to compare with
observational constraints. To do this, we adopt values similar to

Figure 16. Total dissipation for different dilute-core modes, where in all cases
Ω = 0.4 and ν = κ = 10−6.
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Figure 17. Examples of the spatial structure for different dilute cores and forcing frequencies, with ν = κ = 10−6 and Ω = 0.4.
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those suggested by Mankovich & Fuller (2021) and consider an
example where α= 0.1 (a tiny solid core for which the precise
value of α is unlikely to be important), β= 0.6 (an extended
stably stratified dilute core), N 2¯ = , and Ω= 0.4. We consider
both a uniformly stratified case as well as a staircase structure
with one, five, and nine steps. Figure 18(a) shows the
dissipation rate using these four profiles, and Figure 18(b)
shows the modified tidal quality factor Q¢ for the case of a
uniformly stratified layer, where Q D15 16 total∣ ∣ ( )w p¢ = ; see
Section 4 of Paper I for further details. The black vertical lines
show the tidal frequency of six of Saturnʼs major moons:
Mimas, Enceladus, Tethys, Dione, Rhea, and Titan, as points of
reference for the relevant frequency regimes. The tidal forcing
frequencies are also reported in Table 1.

We see that all four cases show qualitatively and
quantitatively similar dissipation profiles, and the typical level

of dissipation (e.g., quantified by the frequency average) is
almost unchanged as the step number is varied. In these
examples all three wave frequency ranges—gravito-inertial,
inertial, and surface gravity modes—overlap, making it
difficult to separate the behavior of each. However, given the
sensitivity to the tidal frequency due to the moons exhibited,
stably stratified layers could have important implications for
Saturn’s tidal dissipation rates.
The tidal quality factor Q¢ obtained in Figure 18(b) ranges

from approximately 102 to 104 at the frequencies relevant for
Saturn’s moons. This is comparable to observational con-
straints from the migration rates of Saturn’s moons (e.g.,
Lainey et al. 2017), which provide Q 0.94 0.44 104( )¢ »  ´ .
Our idealized calculations therefore highlight the importance of
considering stably stratified layers on the excitation and
dissipation of inertial and internal waves in planets. This figure

Figure 18. Example of total dissipation and modified tidal quality factor for Saturn-like parameters, with the tidal forcing frequency of six of Saturn’s moons
overplotted: Mimas, Enceladus, Tethys, Dione, Rhea, and Titan.
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demonstrates that efficient tidal dissipation rates—sufficient to
explain the observed migration rates of Saturnʼs moons—are
predicted at the frequencies of the orbiting moons due to the
excitation of inertial and gravito-inertial waves in our models
with stable layers. Note that we do not require resonance
locking to operate (e.g., Fuller et al. 2016), though the
possibility of resonance locking and whether or not it is a
viable mechanism in giant planets should be explored further.
The presence of a stably stratified dilute core, and its effects in
enhancing inertial wave excitation in the overlying convective
envelope, as well as—to a lesser extent—the additional gravito-
inertial mode excitation in the fluid core itself, may be the key
mechanisms of tidal dissipation in Saturn, and which could
explain observations. We envisage similar results may apply to
Jupiter also (see also Dewberry 2023; Lin 2023), though see
the caveats in Section 5.

7. Conclusions

We have presented new theoretical models of giant planets
containing stable layers similar to those constrained observa-
tionally for Saturn and hypothesized for Jupiter, to explore
dissipation of tidal flows inside these planets. We have studied
the role of stably stratified and semiconvective layers on tidal
dissipation in rotating giant planets, extending our prior work
without rotation (in Paper I) to account for Coriolis forces.
Rotation permits the propagation of inertial waves that can
significantly enhance tidal dissipation in neutrally stratified
convective regions. These can be tidally forced for frequencies
|ω|� 2|Ω|, which is typically the most relevant range for solar
and extrasolar giant planets. Rotation also modifies the
properties of internal, surface, and interfacial gravity modes
(the former are then commonly referred to as gravito-inertial
waves). With our idealized (Boussinesq) model of a rotating
and tidally forced planet, we analyzed the dissipative fluid
response in a spherical shell using both linear theoretical
analysis and numerical calculations (with high-resolution
spectral methods). Our parameter study analyzed the properties
of both the dissipative forced response and free oscillation
modes as we varied the properties of any stably stratified layers
in the planet (including their sizes, strengths and compositions
—layered or smooth), the sizes of any solid core, the viscosity
and thermal diffusivity, and the rotation rate (relative to the
dynamical frequency), in addition to scanning the full range of
relevant tidal frequencies.

We found the presence of an extended stably stratified fluid
core in a giant planet significantly enhanced tidal wave
excitation of both inertial waves in the convective envelope

and gravito-inertial waves in the core. We have demonstrated
that efficient tidal dissipation rates—sufficient to explain the
observed migration rates of Saturnʼs moons—are predicted at
the frequencies of the orbiting moons due to the excitation of
inertial waves in convective envelopes in our models with
interior stable layers, and to a lesser extent gravito-inertial
waves in the fluid core itself. Stable layers could also be
important for tidal evolution of hot and warm Jupiters, and hot
Neptunes, providing efficient tidal circularization rates (see
discussion in Paper I).
We analyzed both the frequency-dependent and frequency-

averaged response to establish some overarching trends in this
problem, building upon our nonrotating study in Paper I. We
established that increasing the rotation rate typically enhances
the inertial wave response, in turn increasing the total
dissipation. Increasing the size of the core, whether it is a
solid core or a stably stratified layer (layered or smooth),
significantly increases the dissipation rate. We find that gravito-
inertial waves excited in a stably stratified layer can enhance
the dissipation compared to that of a solid core with the same
radius, depending on the tidal frequency that is relevant. As in
nonrotating cases, we established that, provided a sufficient
number of steps are present in a staircase-like density structure,
the region will behave like a uniformly stably stratified layer
when considering any frequency-integrated quantities. How-
ever, important differences in the frequencies of the free modes,
and hence the enhancement of dissipation at the frequencies of
these resonances, are found, which can lead to significant
differences in the response to different stratified models at a
given tidal frequency.
We found that a key parameter in the excitation of inertial

waves is the size of the outer convective envelope (i.e., the
radius to which the dilute core extends). The dissipative
properties of the envelope were shown to be approximately
independent of the properties of the stratified layer beneath it,
whether it is a stably stratified layer (layered or smooth), single
interface, or solid core for Saturn-like parameter values. The
buoyancy frequency profile beneath this layer can alter the
frequencies of the free modes, however. This conclusion is
valid for low frequencies relative to the buoyancy frequency of
the stable layer, as expected for Saturn. Different results might
be found for more weakly stratified layers.
Future work should study more sophisticated planetary models

that also account for magnetism and differential rotation (Baruteau
& Rieutord 2013; Guenel et al. 2016; Lin & Ogilvie 2018;
Wei 2018; Astoul et al. 2021; Astoul & Barker 2022), as well as
the interaction of inertial waves with turbulent convection (as
opposed to large-scale tidal flows; e.g., Duguid et al. 2020). It
would also be of interest to separate the thermal and compositional
contributions to the buoyancy and to study whether double-
diffusive effects could be important in this problem.
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Table 1
Tidal Forcing Frequencies ω = 2(Ωo − Ωs), for Six of Saturnʼs Major Moons

Satellite Period Ωo ω ω

Units (days) (ωd) (ωd) Nd( ¯ )w

Mimas 0.942 0.176 −0.395 −0.198
Enceladus 1.37 0.121 −0.505 −0.253
Tethys 1.89 0.0879 −0.572 −0.286
Dione 2.74 0.0606 −0.626 −0.313
Rhea 4.52 0.0367 −0.674 −0.337
Titan 15.9 0.0104 −0.727 −0.363

Note. Data taken from Jet Propulsion Laboratory: https://ssd.jpl.nasa.gov/
sats/elem/. In this case N 2 d¯ w= .
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Appendix
Analytical Derivation of f-mode Frequencies with Rotation

Here, we outline a derivation of the f-mode frequencies of a
uniformly rotating homogeneous spherical fluid body, i.e.,
neglecting centrifugal deformations, consistently with the
model adopted throughout our paper. We follow Barker et al.
(2016) and use the elegant Lagrangian perturbation theory of
Lebovitz (1989a, 1989b). For this section only we define

3x Î to be the Lagrangian displacement vector, satisfying (in
the rotating frame)

p p2 0, A1t t
2 ( · ) ( )x x xW¶ + ´ ¶ -   + D =

0, A2· ( )x =

where Δp is the Lagrangian pressure perturbation (which
vanishes on the free surface) and we neglect perturbations to
the gravitational potential. For our basic state, we assume a
fixed spherically symmetric gravitational potential such that

rp d
2w = - . We seek solutions in the form of solenoidal

vector fields whose components are polynomials in the
Cartesian coordinates up to a specified harmonic degree ℓ= 2
(for the pressure perturbation), such that

x xt t, , A3
i

i

i i
1

max

( ) ( ) ( ) ( )åx xa=
=

where ti ( )a Î is an amplitude and imax Î + is the number
of basis elements considered. To analyze surface gravity
modes, we consider irrotational motions that perturb the
boundaries of the body (i.e., basis elements belonging to the
subspace U2 in Barker et al. 2016). To exactly represent all
surface gravity modes with ℓ= 1, we require i 3max = linearly
independent vectors:

1, 0, 0 , 0, 1, 0 , 0, 0 ,1 . A4T T T( ) ( ) ( ) ( )

To exactly represent all such modes up to ℓ= 2, we require
i 8max = , of which the first three are those in Equation (A4),
with five additional linearly independent vector fields:

y x z y z x

x y x y z

, , 0 , 0, , , , 0, ,

, , 0 , , , 2 . A5

T T T

T T

( ) ( ) ( )
( ) ( ) ( )- -

We can project Equation (A1) onto the basis given in
Equation (A3) using the inner product (involving integration
over volume V )

* dV, , A6i j
V

i j· ( )òx x x xá ñ =

to obtain

 p, , 2 , 0,

A7
i j j i j j i j j̈ ( · )

( )
x x x x x xa a aWá ñ + á ´ ñ + á -  ñ =

where a sum over j is implied. Seeking solutions αj∝ e− iω t,
this problem is converted to a quadratic eigenvalue problem of
the form

M iA B 0, A82( ) ( )aw w- - + =

for appropriate matrices M, A, and B and column vector α with
elements αj. To obtain all ℓ= 1 surface gravity modes, we

restrict i 3max = to obtain the six eigenvalues:

   , or , A9d

m

d

m

2 2

1 0

( )w w w= W  W + 
= =

where we have identified the corresponding azimuthal
wavenumber magnitude m. These are unimportant but strictly
unphysical modes that involve the body oscillating about a
fixed position in space, and arise because we have fixed the
gravitational potential. On the other hand, for i 8max = , we
obtain the additional eigenvalues:

     

  

2 , or
2

1

2
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2 2

2

2 2

1

0
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w
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W
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=
=
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These are the frequencies of all surface gravity modes with
ℓ= 2. When  d

2 2wW , i.e., for slow rotation, we find the latter
can be written

m
2

2
, A11d ( )w w=   W

which agrees with the results of Lebovitz (1961) for a (self-
gravitating) Maclaurin spheroid in the same limit. In this paper,
we have adopted a fixed gravitational potential for simplicity,
and because the effects of surface perturbations on the
gravitational potential are unrealistically enhanced in a
Maclaurin spheroid over a more realistic planet model that is
denser at its center than near its surface (see Appendix A of
Barker et al. 2016).
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