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ARTICLE OPEN

Adaptive learning from outcome contingencies
in eating-disorder risk groups
Alexandra C. Pike 1,2,3,4✉, Ann L. Sharpley3,4, Rebecca J. Park3,4, Philip J. Cowen 3,4, Michael Browning3,4,5 and Erdem Pulcu 3,4,5

© The Author(s) 2023

Eating disorders are characterised by altered eating patterns alongside overvaluation of body weight or shape, and have relatively
low rates of successful treatment and recovery. Notably, cognitive inflexibility has been implicated in both the development and
maintenance of eating disorders, and understanding the reasons for this inflexibility might indicate avenues for treatment
development. We therefore investigate one potential cause of this inflexibility: an inability to adjust learning when outcome
contingencies change. We recruited (n= 82) three groups of participants: those who had recovered from anorexia nervosa (RA),
those who had high levels of eating disorder symptoms but no formal diagnosis (EA), and control participants (HC). They performed
a reinforcement learning task (alongside eye-tracking) in which the volatility of wins and losses was independently manipulated.
We predicted that both the RA and EA groups would adjust their learning rates less than the control participants. Unexpectedly, the
RA group showed elevated adjustment of learning rates for both win and loss outcomes compared to control participants. The RA
group also showed increased pupil dilation to stable wins and reduced pupil dilation to stable losses. Their learning rate adjustment
was associated with the difference between their pupil dilation to volatile vs. stable wins. In conclusion, we find evidence that
learning rate adjustment is unexpectedly higher in those who have recovered from anorexia nervosa, indicating that the
relationship between eating disorders and cognitive inflexibility may be complex. Given our findings, investigation of noradrenergic
agents may be valuable in the field of eating disorders.

Translational Psychiatry          (2023) 13:340 ; https://doi.org/10.1038/s41398-023-02633-w

INTRODUCTION
Eating disorders (EDs) are a cluster of psychiatric disorders
characterised by altered eating attitudes and behaviours, along-
side over-valuation of the control of eating, weight and/or shape
[1]. EDs are relatively common [2–4], often severely disabling [5],
and can become chronic [6, 7], with high rates of mortality [3, 8, 9]
and relatively low rates of treatment response or remission
[10–13]. Psychological treatments can help, but only in some cases
[14], and there are few efficacious pharmacological treatments
[15]. To improve treatment success, greater knowledge of the
cognitive differences that precipitate and maintain the ritualistic,
rigid behaviours that characterise many EDs would be valuable
[16]. Furthermore, understanding cognitive mechanisms under-
lying a disorder may combine with our knowledge of the actions
of pharmacological agents on those mechanisms to indicate new
treatment directions.
‘Cognitive inflexibility’ is frequently observed in EDs [17, 18],

and can be defined as an inability to adjust or adapt cognitive
functions (e.g. learning, and decision-making) in response to
changes in the requirements of the task, outcome contingencies,
or the goals that the individual is pursuing. This is often probed
using set-shifting tasks such as the Wisconsin Card Sort Task [19],
where the ‘rule’ that governs correct behaviour changes without

warning. On this and similar tasks, those with EDs show worse set-
shifting performance, broadly indicating difficulty in flexibly
altering responses given changes in the requirements of the task
[20]. This is thought to be present as a ‘trait’, i.e. not just a product
of the disease-state [21, 22].
‘Set-shifts’ induce unexpected uncertainty or volatility –

changes in the underlying probabilistic structure that has been
learnt by the individual [23, 24]. This type of uncertainty is
common in everyday life. For example, you may have a local
restaurant you really like but have recently found the food to be
less good than it had been. Where you go to eat in the future will
depend on whether the recent bad meals occurred by chance (in
which case you should continue going to the same restaurant), or
whether there has been a reduction in the underlying quality of
the food (i.e. the quality is volatile, in which case you should
switch restaurant). The question addressed in this paper is
whether people with EDs are able to perceive and change their
behaviour appropriately in response to outcome volatility, and
whether difficulties with this might underpin neuropsychological
findings of poor cognitive flexibility.
Recent work in this area has used a task [25] in which the

volatility of outcomes is manipulated independently between
blocks. Computational modelling allows us to estimate a
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parameter referred to as a 'learning rate', which can be
understood as the extent to which each outcome influences the
learnt value of particular options. When outcomes are volatile,
learning rates should be higher, as more recent outcomes are
more predictive of the actual value of an option than outcomes
that occurred further back in history. Healthy participants
performing this task are able to adjust their learning rate in
response to volatility in an approximately optimal way [26]. A
recent adaptation of this task has shown that participants are also
able to maintain separate estimates of different valences of
outcomes (‘wins’ and ‘losses’), and track the volatility of each of
these, adjusting learning rates for wins and losses independently
[25]. Importantly, using computational modelling allows us to
adjudicate between competing hypotheses regarding poor set-
shifting performance in eating disorders: greater noise in
behavioural decision-making, generally reduced learning rates,
or reduced learning rate adjustment in response to volatility.
We hypothesised that adjustment in learning rates in response

to volatility would be reduced in individuals with EDs, in line with
the cognitive neuroscience evidence suggesting that those with
EDs may experience difficulties with cognitive flexibility, and
struggle to adjust their behaviour [17, 20–22]. A finding that those
in ED groups adjusted their learning rates less would also
correspond with a similar finding in anxiety disorders [27], which
would be unsurprising given the high comorbidity between
anxiety disorders and EDs [28].
Biologically, noradrenaline (NA) may signal unexpected uncer-

tainty [24]. It is possible to indirectly measure the response of the
central noradrenergic system using pupillometry [29, 30]; phasic
changes in pupil diameter have been observed to correlate with
volatility [25, 27, 29], and pupil dilation may also be linked to
surprise [31]. Pharmacological manipulations that increase the
release of NA are able to improve performance on (attentional)
set-shifting tasks in rats [32]. Furthermore, NA deafferentation in
rats impairs set-shifting performance [33]. In humans, propranolol,
which attenuates NA transmission, reduces volatility-related
increases in learning rates [34]. However, not all of the evidence
paints such a clear picture of the role of NA in signalling
unexpected uncertainty. Jepma et al. [35] found that atomoxetine
(a NA transporter blocker) caused an increase in learning rate after
an alteration in outcome contingencies if the baseline learning
rate was low, but otherwise, atomoxetine caused a reduction in
learning rate. There has been early evidence for the efficacy of
atomoxetine in the treatment of binge-eating disorder, and
anorexia nervosa with binge-purge features [36, 37]. Additionally,

research has indicated that there is reduced NA functioning in ED
patients, including those who have recovered [38–40]. We
therefore recorded pupil dilation to examine whether any changes
in learning rate adjustment were reflected in altered pupil dilation
changes, which could in turn reflect differences in noradrenergic
transmission. We hypothesised that corresponding to a reduction
in learning rate adjustment, those with EDs might show a reduced
pupil dilation response to volatility. This may indicate a lack of
sensitivity to changes in outcome volatility.

METHODS AND MATERIALS
This study was preregistered on clinicaltrials.gov, with the identifier
NCT03450291. This study was approved by the University of Oxford’s
Central University Research Ethics Committee (reference R51898). Open
data and code are not available as not all participants consented to have
their data shared, even if they could not be identified after anonymisation.

Participants
Three groups of female participants, selected to cover a range of different
ED-relevant phenotypes, were recruited (82 in total): those who had
recovered from anorexia nervosa (RA, n= 25), those who were highly
concerned about their eating, shape and weight, but did not have a formal
ED diagnosis (EA, n= 25), and control participants who had never had an
eating disorder and were below various markers on self-report ques-
tionnaires about eating, shape and weight (HC, n= 32). The criteria for
each of these groups, along with further details of the inclusion and
exclusion criteria, may be found in the Supplementary Material.

General procedure
The study involved the completion of pre-screening questionnaires: the
Eating Attitudes Test (EAT-26; [41]), Eating Disorders Examination Self-
Report Questionnaire (EDE-Q; [42]), and Clinical Impairment Assessment
for eating disorders (CIA; [43]). If eligible, participants were invited for a
single study visit. During that visit, the Structured Clinical Interview for
the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition
(DSM-5) (Revised Version) was performed. Subsequently, participants
completed additional self-report questionnaires online (see Table 1). They
then completed the learning task [25] described below, alongside eye-
tracking.

The volatility task
This study utilises a task which has been shown to produce adaptive
learning in human participants [25–27]. The volatility of outcomes (here
defined as the frequency at which the associations between the stimuli
and outcomes alter) is manipulated between blocks (Fig. 1). In brief, the
task consisted of three blocks (each consisting of 80 trials), and on any trial,

Table 1. Demographic details.

EA RA HC Group difference

Age 23.78 (5.15) 23.48 (3.77) 25.03 (6.38) None (p= 0.469)

BMI 21.76 (2.78) 21.79 (2.43) 23.09 (4.81) None (p= 0.123)

EDE-Q 3.16 (0.77) 1.49 (1.23) 0.99 (0.84) F[2,79]= 36.37, p < 0.001

EAT-26 28.52 (6.80) 7.43 (12.21) 5.33 (5.00) F[2,79]= 61.39, p < 0.001

CIA 19.52 (9.02) 9.09 (8.84) 3.73 (4.11) F[2,79]= 32.69, p < 0.001

BDI-II 8.39 (9.39) 5.61 (5.68) 2.60 (4.65) F[2,79]= 5,74, p= 0.005

STAI trait 38.74 (13.21) 40.26 (9.83) 29.63 (8.03) F[2,79]= 8.77, p < 0.001

STAI state 32.83 (12.65) 31.74 (5.44) 27.53 (9.45) None (p= 0.103)

OCI-R 7.65 (7.37) 6.78 (6.63) 5.40 (6.57) None (p= 0.428)

Summary of participant demographics and questionnaire measures.

Mean, standard deviation scores, and ANOVA results (with 3 levels of ‘group’) are displayed.

BMI Body Mass Index, EDE-Q Eating Disorders Examination (Self-Report Questionnaire), EAT-26 Eating Attitudes Test, 26 item version, CIA Clinical Impairment

Assessment, which measures the extent to which eating disorder symptoms affect one’s daily life, BDI-II Beck’s Depression Inventory (version 2), STAI

Spielberger Stait-Trait Anxiety Inventory, which is divided into two subscales, measuring trait and state anxiety, OCI-R Obsessive-Compulsive Inventory (Revised

Version).

There was a significant group difference in EDE-Q, EAT-26, CIA, BDI-II and STAI trait, and no significant group differences in STAI state, OCI-R, age or BMI.
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two stimuli were presented (kept constant within blocks), and associated
with win and/or loss outcomes. Participants learned using trial and error to
select the stimulus that was associated with wins and avoid the stimulus
associated with losses. Importantly, the associations between stimuli and
outcomes were not necessarily fixed: they could vary within a block (i.e.
were ‘volatile’). A stimulus could be associated with both win and loss
outcomes on a given trial (or only one of the two outcomes, or neither):
therefore, we were able to independently manipulate the volatility of wins
and losses between the three blocks. Participants generally display an
elevated learning rate for volatile outcomes [26, 27], akin to overweighting
more recent outcomes compared to more distal outcomes, and
participants have been shown to adjust their learning rates for wins and
losses separately as their volatility changes [27]. The reader should note
that wherever we analyse behaviour or pupil dilation in response to
volatility, we include data from both the first block (block 1) and the block

where only that outcome was volatile (i.e. the ‘win volatile’ block for wins,
and the ‘loss volatile’ block for losses), to maximise our power to detect
differences.

General statistical approach
Wherever applicable we used a Greenhouse-Geisser correction to adjust
for lack of sphericity. To further clarify significant effects from the mixed
ANOVAs, we used post-hoc Welch’s t-tests, which conservatively assume
unequal variance between groups. We did not correct for multiple
comparisons in these analyses: the primary (adjustment of learning rate)
and secondary outcomes (valence-specific effects in learning rate
adjustment, and differences in pupil dilation under volatility) were pre-
registered, and all other analyses are exploratory and designed to aid the
interpretation of the results.

Fig. 1 Volatility task details. A An example stimulus presentation screen (prior to choice), showing the two stimuli (abstract shapes, referred to as
‘A’ and ‘B’ throughout for convenience), a fixation cross in the centre of the screen, and the participant’s monetary total below the fixation cross.
Their monetary total was initialised at £1.50. The two abstract stimuli presented were changed between blocks (i.e. after 80 trials, and after 160) and
the same pair of stimuli was always presented within a block, though the side of the screen they appeared on was counterbalanced. Participants
were encouraged to take breaks in between blocks. After participants made a choice, they could receive wins or losses. The stimulus-outcome
associations for one stimulus, referred to here as stimulus A, are shown in panel (B). The associations were exactly reversed for the other stimulus
presented in that block – i.e. for stimulus B, the probability of a win is 1 minus the probability of a win for shape A. If, on any given trial, ‘win’
feedback was shown for one stimulus, it could not be shown for the other. However, the summed probability of both outcomes for a given shape,
i.e. win + loss, was not 1 as wins and losses were independent. Note that in block 1 (up to trial 80, marked with a dotted line) both win and loss
outcomes are volatile, and change between a high probability (0.85) and a low probability (0.15). In blocks 2 and 3 (trials 81:160 and 161:240; order
counterbalanced between participants), one outcome was stable (0.5 probability of that outcome resulting from choosing the relevant stimulus),
and one was volatile (changing between 0.85 and 0.15 probability of outcome receipt). When outcomes were volatile, the probability of each
outcome changed with a frequency of between 14 and 30 trials. The total probability within a block that wins and losses were associated with any
given stimulus averaged 50%, such that the task did not systematically favour either of the shapes within a block. As can be noted from panel B, it is
possible for a stimulus to be associated with both win and loss, neither win or loss, win only, or loss only. These four possible outcomes are shown as
example trial sequences in panel (C). The box around shape B reflects the choice the participant made on that trial (so, in this instance, they selected
shape B). Regardless of which stimulus was chosen, the outcomes associated with both stimuli were shown. From top to bottom, these are (i) win
associated with shape A and loss associated with shape B, (ii) both win and loss associated with shape A, (iii) both associated with shape B, and (iv)
win associated with shape B, and loss associated with shape A. Note that these example sequences show the win outcome being displayed before
the loss outcome: in the actual task, the order of presentation of these two outcomes was counterbalanced (reflected by the dotted arrows), and
there was a jittered delay of between 2 and 6 s before the other outcome was presented. A win outcome resulted in an addition of 15p to their
monetary total; a loss resulted in 15p being deducted from their total. Notably, win and loss outcomes were independent, such that knowing the
stimulus associated with the win was not informative about the location of the loss. Participants were required to learn over time which stimulus
was associated with wins and losses and were asked to aim to maximise their wins and minimise their losses.

A.C. Pike et al.
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Behavioural analysis
Data quality. Participants who showed no evidence of learning during
the task (those whose total money won was the same or less than the
£1.50 they started with) were removed from further analysis (n= 4;
comprised of two HC participants, and one from each of the other two
groups).

Switch/stay analysis. The trial-by-trial tendency of participants to ‘switch’
(i.e. choose a different stimulus on the next trial) or ‘stay’ (i.e. repeat their
choice on the next trial) may provide some insight into participants’
behaviour in this volatility task. Those who heavily weigh the most recent
outcome against the long-run probability of each outcome associated with
each stimulus are more likely to choose to ‘switch’ after a loss and a ‘stay’
after a win. In general, we expected that participants would ‘switch’ more
after a negative outcome in blocks where losses are volatile, as the receipt
of a loss would indicate a potential change in loss probability. Similarly, we
would expect participants to ‘stay’ more after a rewarding outcome in
blocks where wins are volatile. Cognitive inflexibility, in particular reduced
adjustment to changing outcome probabilities (which we expected to
observe in both the RA and EA groups), may manifest as a reduction in this
pattern of choices.
We, therefore, analysed the proportion of times that participants chose

to switch after receiving an outcome when that outcome was either
volatile or stable. We used a logit transform on the proportion of times that
participants chose to stay after each outcome to ensure that this was on
the real, infinite number line. We subsequently used a repeated-measures
ANOVA, with between-subject effects of group and block presentation
order and within-subject effects of outcome volatility (volatile vs. stable)
and valence of outcome (win vs. loss), to investigate whether there were
any between-group differences.

Reinforcement learning analysis. The switch/stay analysis described above
relies on summary statistics, which are less suitable for assessing the latent
variables of interest (e.g. learning, performance, stochasticity) than more
principled model-based analyses [44, 45]. In particular, computational
models of learning are able to capture how performance evolves as a result
of feedback, rather than simply assessing average performance [46].
Furthermore, previous work has suggested that behaviour in this learning
task is modulated by three separate computational factors, which all
contribute to the obtainable summary statistics: learning rates, unex-
plained biases in favour of one shape, and choice stochasticity [47].
We therefore fit reinforcement-learning models linked to stochastic

choice models based on previous work using variants of this task [25–27].
Models were fit using Markov-Chain Monte-Carlo sampling. The models
used and further methodological details of the model-fitting procedure
can be found in the Supplementary Information.
Subsequently, we selected the model that (a) best fit the participants’

behaviour (according to the total integrated BIC score [48]), (b) showed
good parameter recovery, and (c) was able to faithfully reproduce
participant behaviour. Finally, we conducted statistical analyses on the
relevant parameters from the best-fitting model.

Statistical analysis. The preregistered primary analysis of this study aimed
to see if there were group differences in ability to alter learning rate
between blocks, which we examined using a repeated-measures ANOVA
on the difference between learning rates in blocks (sets of 80 trials) in
which outcomes were volatile (see above: in block 1 both win and loss
outcomes were volatile, and in blocks 2 and 3 win outcomes were volatile
and loss outcomes stable, or vice versa, in an order counterbalanced
between participants). We used counterbalance order and group as
between-participant factors, and valence (win and loss learning rate
adjustment) as the within-participant factor. We also analysed the learning
rates in block 1, in which both outcomes were volatile, using an ANOVA
with group and order as between-participant factors, and valence as a
within-participant factor.
For completeness, we also explored the effects of group on the other

parameters from the winning computational model, with between-subject
factors of group and order, and within-subject factor of block.

Pupillometry analysis
Preprocessing. Detailed information on the preprocessing of eye tracking
data is provided in the supplementary materials. Notably, trials were
excluded from analysis if >50% of the data in that trial was interpolated,
and two participants who had >50% interpolation on >50% of the task

trials were removed. One participant was removed as a power outage
corrupted their pupillometry data.
After preprocessing, we had a time-series for each trial displaying pupil

dilation to rewards, and to punishments, spanning 1 s before to 6 s after
the outcome presentation. We subsequently calculated four mean time-
series: for each combination of volatility and outcome (win volatile, win
stable, loss volatile, and loss stable). As elsewhere, ‘block 1’ data was
included in the volatile time-series. We then created a subtraction time-
series from these: the difference between pupil dilation to receipt
(subtracted from non-receipt) of volatile wins/losses minus stable
rewards/losses.

Statistical analysis. We ran a cluster-based permutation mixed effects
model using the ‘permutes’ package in R [49], with 1000 permutations and
a random slope specified as (valence | id), to identify any time-points in
which there were significant effects of group, valence, or interactions. The
model had the following equation:

value � valence � Groupþ valencejidð Þ;

where time was added as a continuous time-series variable. The package
used shuffles the labels of the fixed effects, using a simplified version of
the algorithm from Lee & Braun [50]. Note that the data included in the
permutation test represent averaged time series for each individual for
each valence. Subsequently, we ran post-hoc permutation linear mixed-
effects models on relevant time-windows to obtain robust p-values.

RESULTS
Participant characteristics
Demographic information and participant questionnaire scores
(and group differences if found) are shown in Table 1.

Switch/stay analyses do not discriminate between ED groups
and healthy controls
In a repeated-measures ANOVA, there were main effects of
volatility (F1,76= 16.21, p < 0.001) and valence (F1,76= 364.60,
p < 0.001), and an interaction effect between the two
(F1,76= 40.64, p < 0.001). This is an expected task effect: partici-
pants tended to ‘stay’ more when receiving a reward outcome
when that reward was presented in a volatile block (M= 0.91,
SD= 0.11) than when presented in a stable block (M= 0.87,
SD= 0.18). Participants also tended to stay less when receiving a
loss outcome when that loss was presented in a volatile block
(M= 0.62, SD= 0.14) compared to a stable block (M= 0.75,
SD= 0.16). There was not a main effect of group (F2,76= 0.16,
p= 0.851; Fig. 2) nor any interaction effects including group
(group and volatility: F2,76= 0.62, p= 0.542; group and valence:
F2,76= 0.04, p= 0.965; group, volatility and valence: F2,76= 0.03,
p= 0.971). There was an interaction effect between volatility,
valence and order (F1,76= 4.32, p= 0.041). The full results of this
analysis can be seen in the Supplementary material.
At first sight, therefore, the different groups seem to show

comparable learning rates (i.e., their tendency to switch or stay is
not affected by group membership). In order to validate these
results and explore the other computational factors that may
govern behaviour in this task (overall choice stochasticity and
unexplained preference biases), we modelled choice behaviour by
linking different reinforcement learning and stochastic choice
models.

Best-fitting reinforcement learning model
We examined a set of reinforcement learning models which
incorporated separate learning rates for rewards and losses, as in
Pulcu & Browning [27] - see supplementary materials. The best-
fitting reinforcement learning model (according to the integrated
BIC [48]) had a single inverse temperature term, which captures
choice stochasticity, or the extent to which participants do not act
in accordance with the learnt values of the stimuli. We present
results in the Supplementary Material which show that this model

A.C. Pike et al.
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has good parameter recovery and was able to faithfully reproduce
salient features of our participant data. We therefore use this
model for subsequent inference.

RA group show greater learning rate adjustment
We performed an ANOVA on the parameters from our best-fitting
reinforcement-learning model, and found a significant group
effect on the difference in learning rates between volatile and
stable blocks (including block 1; F2,76= 3.42, p= 0.038; Fig. 3A).
This was driven by the RA group (groupwise RA vs. HC:
F1,53= 7.13, p= 0.010; groupwise EA vs. HC: F1,53= 0.53,
p= 0.468; groupwise RA vs. EA: F1,46= 2.72, p= 0.106), who show
elevated learning rate adjustment (t110.78= 2.43, p= 0.017). When
we examined the learning rates themselves in both the volatile
block and the stable block, there was no effect of group (volatile
block: F2,76= 0.56, p= 0.574; stable block: F2,76= 0.12, p= 0.888).
Notably, there was no interaction between group and valence, so
we do not investigate this further (F2,76= 0.02, p= 0.985), nor any
interaction between group and order (F2,76= 0.91, p= 0.407). We
also replicated a previous finding, of elevated win learning rate for
wins when these are volatile compared to stable (t161.65= 3.31,
p= 0.001, M= 0.371 vs. 0.246), and the same for loss outcomes
(t161.57= 2.99, p= 0.003, M = 0.291 vs. 0.183). This demonstrates
that, as expected, participants are adapting to volatility. The
learning rate adjustment in all three groups was significantly
different to 0 (RA: t49= 8.00, p < 0.001, M(sd)=0.191(0.169); EA:
t49= 5.29, p < 0.001, M(sd)=0.134(0.180); HC: t63= 4.43, p < 0.001,
M(sd)=0.107(0.195)).
We also examined participants’ learning rates in block 1, in

which both rewards and punishments were volatile. This block is
particularly well-suited to the detection of baseline negative and
positive biases in learning, as both of the outcomes are volatile
and thus equally informative. In this exploratory analysis, we did
not find a group effect (F2,.79= 0.78, p= 0.463; Fig. 3B). There was
also no effect of group on the other computational model
parameter: inverse temperature (exploratory analysis: F2,76= 1.04,
p= 0.360; Fig. 3C).

RA group also shows reduced effect of reward volatility on
pupil dilation
In our cluster-based permutation mixed-effects model, we
observed significant clusters for all contrasts. In particular, we

observed a significant interaction effect between group and
valence, from 342ms to 4904ms after outcome presentation
(F2= 3.85, p < 0.001, see Supplementary Figure 6). We subse-
quently performed post-hoc exploratory analyses using permuta-
tion mixed-effects models on subsets of the data (separated back
into four time courses) to identify the source of this effect. In the
reward domain, there were main effects of group, condition, and
an interaction effect; this was also true in the punishment domain.
Further investigation showed no significant effect of group on

Fig. 2 Difference in the mean proportion of times participants repeated a choice (‘stay’ choices) depending on whether the outcome
they received was volatile (i.e. informative) or stable. These are shown using boxplots separated by group (colour) and by outcome (x-axis).
The expected effect of block volatility would be numbers >0 for rewards and <0 for losses. Specifically, we expected to observe a greater
tendency to ‘stay’ after the presentation of a reward in blocks where the ‘win’ outcomes are volatile, suggesting higher weighting of a recent
‘win’ than the previous long-run average of ‘win’ outcomes; alongside a greater tendency to switch in blocks where loss outcomes are volatile
after the receipt of loss outcomes. This pattern can be seen in the figure. We expected to see this pattern reduced in the RA and EA groups,
but in fact this pattern was not modified by group.

Fig. 3 Learning rates, shown using violin plots, with mean and
standard error shown using black dots and bars. A There was a
significant effect of group on learning rate adjustment, such that the
RA group adjusted their learning rate more than the HC group in
response to volatility. B There was no group effect on the learning
rate in block 1. C There was no group effect on inverse temperature,
estimated across the task. *marks effects where p < 0.05.
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pupil responses to volatile rewards (F2= 0.01, p= 0.949), but there
was a group effect in response to stable rewards (F2= 2.73,
p= 0.036), driven by the difference between RA and both other
groups (vs. HC F1= 3.26, p= 0.036, vs. EA F1= 5.17, p= 0.029; Fig.
4C). There was no group effect when just including EA and HC
(F1= 0.38, p= 0.345). Similarly, there was no effect when
examining volatile losses (F2= 0.156, p= 0.682), but there was
when including data for stable losses (F2= 2.94, p= 0.022). This
was driven by a significant difference between RA and EA
(F1= 4.86, p= 0.040); and RA and HC (F1= 3.03, p= 0.043; Fig. 4B).
There was no significant difference between EA and HC (F1= 0.85,
p= 0.185). The full results of these permutation tests can be
observed in the Supplementary material.

Learning rate adjustment and pupil volatility adjustment
correlate in the RA group
The average of the pupil response to rewards, across the time
period of the significant group*valence interaction, was positively
correlated with learning rate adjustment for rewards in the RA
group in an exploratory correlation analysis (r22= 0.512, p= 0.011;
Fig. 4C), but this was not true in any other group (EA: r23= 0.067,
p= 0.751; HC: r28=−0.176, p= 0.351). We compared these
correlation coefficients using a Fisher’s r-to-z transform, and found
a significant difference between the RA and HC coefficients
(z= 2.56, p= 0.011), but not between the RA and EA coefficients
(z= 1.71, p= 0.087). There was no significant correlation between

pupil response to losses and learning rate adjustment for losses in
any group (ps > 0.2).

DISCUSSION
Contrary to our hypotheses, we found that a group of participants
who had recovered from Anorexia Nervosa (RA group) showed
greater learning rate adjustment when outcomes changed from
volatile to stable (Fig. 3A). There was no difference between
healthy control participants (HC) and those with high levels of
symptoms but no diagnosed eating disorder (EA). In parallel, we
found that the RA group showed greater pupil dilation to volatile
vs. stable loss outcomes, soon after outcome delivery (Fig. 4B), and
lower pupil dilation in response to volatile rewards compared to
stable rewards soon after outcome delivery (Fig. 4B). These effects
were driven by elevated pupil dilation to stable win outcomes,
and reduced pupil dilation to stable loss outcomes. The pupil
response difference for volatile win vs. stable win outcomes was
positively correlated with learning rate adjustment in this group
(Fig. 4C).
The finding that learning rate adjustment is greater in the RA

group (Fig. 3A), is somewhat surprising, as much previous eating
disorder research has focused on the trait of cognitive inflexibility
as a possible marker for eating disordered behaviour [17,
18, 20–22]. Indeed, we hypothesised that we would observe the
opposite result: that learning rate adjustment would be reduced.

Fig. 4 Results of pupillometry analysis. A Pupil dilation in response to the receipt of an outcome in blocks where that outcome is volatile,
compared to blocks in which that outcome is stable. This plot is subdivided into pupil responses to rewards and losses. There was a significant
interaction between group, condition (volatile vs. stable) and valence (win vs loss) from 342ms to 4904ms after outcome onset. The RA group
showed reduced greater pupil dilation to wins in the stable condition (compared to both other groups), and greater pupil dilation to losses in
the stable condition (compared to both other groups). The lines represent the mean, with the ribbon representing the standard error.
B Results of pupillometry analysis, by condition and valence. Top left is the pupil response to loss outcomes when these are stable, top right
win outcomes when these are stable, the bottom left is loss outcomes during blocks where losses are volatile, and the bottom right is win
outcomes when they are volatile. The lines represent the mean, with the ribbon representing the standard error. C The overall volatile-stable
pupil dilation response to rewards during the time of the significant group*valence effect was significantly correlated with behavioural
learning rate difference in the RA group only. *marks significant cluster-mass statistic.
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Reduced adjustment has been observed previously in anxiety
disorders [27], and in those with high levels of internalizing
symptoms [51], although findings in autism are similar to those we
observe [52].
This result was specific to those in the RA group, and no

differences were found between the EA group and HC group. This
may reflect greater premorbid vulnerability to EDs: all of those in
the RA group had a previously diagnosed eating disorder, whilst
none of the EA group had a current ED diagnosis and were
recruited purely on the basis of elevated scores on a symptom
questionnaire (though some may be formally diagnosed in the
future, but we do not know how many). They may thus not be an
appropriate ‘risk’ group, and indeed, perhaps should be con-
sidered resilient to eating disorders, by virtue of the combination
of elevated symptoms but no formal diagnosis. Importantly, the
RA group included only those who had previously been diagnosed
with one eating disorder – Anorexia Nervosa – whereas the EA
group could include those with symptoms consistent with other
eating disorders, so our finding may reflect different cognition
between these disorders. Alternatively, it is possible that the EA
group is an appropriate choice of risk group, but that differences
in cognition are more subtle than would be observed in a group of
participants with diagnosed eating disorders. The results pre-
sented in Fig. 3 suggest that perhaps this is the best explanation –

this group have numerically greater learning rate adjustment
values than the HC group, though less than the RA group. Future
research should consider this, and use a more conservative
estimate of effect sizes for power calculations for risk groups
compared to clinically-diagnosed groups.
We also found an effect of group on the pupil dilation during

volatile and relative to stable outcome receipt. This effect was
driven by differences in the RA groups’ response to stable
outcomes. Interestingly, the RA group shows greater pupil
dilation to stable rewards and reduced pupil dilation to stable
losses (compared to both other groups). This is further evidence
that the RA group may be processing volatile outcomes
unusually: in fact, the mean pupil dilation to stable rewards
was greater than the mean pupil dilation to volatile outcomes
(Fig. 4A). It may be significant that the effects are opposite for
wins and losses – perhaps this reflects asymmetric processing of
outcomes that are noisy but not volatile [53]. This type of
imbalance was not, however, reflected either in the ‘baseline’
learning rates in response to the first block or by any effect of
valence in the learning rate adjustment analyses. This discre-
pancy is not necessarily a contradiction: pupil dilation is thought
to reflect many underlying computations, including volatility, but
also surprise, salience, and mental effort [54, 55]. This discrepancy
could thus be due to a fundamental between-groups difference
in processing different types of uncertainty, or due to a mismatch
in how participants from the different groups experience task
difficulty or outcome salience. Future experiments should
attempt to control for these other variables to further disentangle
this effect. This pupil dilation time course for rewards was
positively associated with learning rate adjustment, such that
participants who adjusted their learning rates more (i.e., were
further away from the HC group) showed more typical pupil
dilation patterns (Fig. 4C), which is also consistent with the theory
that greater pupil dilation reflects greater noradrenergic activity
in response to increased volatility. This allowed us to link our
model-based results (learning rate adjustment) with a model-
free, physiological measure (pupil dilation). Speculatively, this
may be a marker of improved cognitive flexibility: individuals
who recover from eating disorders adjust their learning rates
further, and their pupil responses are closer to those observed in
the control group. It is also surprising that there is no correlation
between learning rate adjustment and pupil dilation within the
other groups studied, or in the loss domain, as has been
observed previously [25].

Previous cognitive neuroscience studies have shown that
changes in pupil diameter may reflect a number of different
influences, from cognitive effort, to uncertainty, to surprise, to
changes in the world [29, 31]. Further work could attempt to
manipulate these independently in different ED groups to
ascertain which is reflected in our findings. Importantly, various
noradrenergic agents such as propanalol [34] or atomoxetine [35]
may be able to alter responses to volatility. Above, we note that
noradrenaline has been implicated in EDs using measurements of
noradrenaline metabolites [38–40], with emerging evidence that
atomoxetine may be effective in eating disorders featuring
binging behaviours [36, 37]. Notably, however, our RA group (in
whom we observed pupillometry differences) were not selected
for high levels of binging, which may suggest that noradrenaline
differences may be more broadly present across ED groups. In
light of our findings, experimental medicine studies or early-stage
clinical trials of noradrenergic compounds in other, non-binging
eating disorders may be a promising new avenue for exploration.

Limitations
This study has several limitations. Firstly, ‘expected’ or ‘irreducible’
uncertainty was not manipulated independently from volatility,
and may have its own effects on behaviour and pupil dilation
[23, 24, 53]. Specifically, expected uncertainty is high when an
outcome is probabilistic rather than deterministic, and is maximal
when the probabilities of all outcomes are equiprobable – as was
the case in our ‘stable’ blocks, where outcomes were associated
with stimuli with 50% probability. This may mean that our results
relate to differences in uncertainty estimation more generally,
rather than volatility. Future work should use a task in which other
versions of uncertainty are held stable whilst volatility is
manipulated. On a related note, both outcomes were always
volatile in the first block. This design choice allowed us to check
for the existence of baseline differences in learning rate. Given
that no differences were observed, in future research it might be
more beneficial to have a fully randomised block order to avoid
any ‘priming’ with expectations of high volatility, and to balance
the number of times that participants would be expected to
increase (compared to decrease) their learning rates.
Secondly, we did not recruit any individuals who were currently

unwell with eating disorders. Part of our rationale for this was to
ensure that malnutrition and underweight status did not drive
results in this cognitively-demanding task. However, we therefore
cannot claim our findings are necessarily representative of those
with a current eating disorder.

CONCLUSIONS
In conclusion, we find evidence for differences in the processing of
outcome volatility between a group who had recovered from
Anorexia Nervosa, and healthy control participants. The RA group
showed greater adjustment of their learning rates to volatility than
controls. In this same group, we also observed an atypical lower
pupil dilation to volatile than stable outcomes, particularly in
those participants who showed learning rate adjustment closest
to control participants. Importantly, given these findings, manip-
ulation of noradrenaline levels using pharmacological agents may
be an interesting future direction for eating disorder research.
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