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Abstract

We study kink and fluting waves in expanding and twisted magnetic flux tubes. We use the

thin-tube and zero-beta plasma approximations. The equilibrium magnetic field is force free

with a constant proportionality coefficient between the electrical current and the magnetic

field. We derive the equation governing the kink and fluting waves in a tube. Using this

equation we study the propagation of kink waves in a particular case of a magnetic tube

homogeneous in the axial direction. We show that while there is only one propagating kink

wave with the phase speed equal to the kink speed in an untwisted tube, in a twisted tube

there are two wave modes, accelerated and decelerated. The phase speed of the accelerated

wave exceeds the kink speed, while the phase speed of the decelerated wave is less than

the kink speed. We also show that the standing modes are defined by the same eigenvalue

problem as that in the case of an untwisted tube. Hence, the frequencies of the standing-

wave modes are not affected by the twist. This implies that the seismological results based

on the observation of the standing-wave mode frequencies remain valid when the twist is

taken into account. The only effect of twist is the variation of the direction of polarisation

of the coronal magnetic-loop displacement along the loop. As a result, an apparent node can

be detected near the loop apex if only one component of the loop displacement is observed.

This can lead to an incorrect conclusion that the observed coronal loop kink oscillation was

the first overtone, while in fact it was the fundamental mode.

Keywords Corona · Coronal magnetic loops · Waves · Oscillations

1. Introduction

It is generally accepted that the solar atmosphere is highly inhomogeneous and this inho-

mogeneity is intrinsically related to the magnetic field. One of the main blocks of the solar
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atmosphere structuring are coronal magnetic loops (see, e.g., the review by Reale, 2014).

The footpoints are attached to the solar chromosphere. The coronal magnetic loops are elon-

gated in the magnetic field direction. The characteristic size of a coronal loop cross section

is a few Mm, and its length varies in a wide range and can be up to a few hundred Mm (e.g.

Schrijver, 2007). The loops are also characterised by the enhanced plasma density. The ratio

of these densities inside and outside of a loop can vary from a value only slightly higher than

unity to more than one hundred (see, e.g., Aschwanden, Nakariakov, and Melnikov, 2004).

Coronal magnetic loops are highly dynamic. In particular, transverse oscillations of coro-

nal loops are observed. The first observations of these oscillations were made by the Tran-

sition Region and Coronal Explorer (TRACE) spacecraft in 1998. They were reported by

Aschwanden et al. (1999) and Nakariakov et al. (1999), and interpreted as kink oscillations

of magnetic tubes. After this first observation kink oscillations of coronal magnetic loops

have been routinely observed by space missions (e.g. Goddard et al., 2016; Abedini, 2018;

Nechaeva et al., 2019).

The coronal loop kink oscillations observed by TRACE in 1998 were large-amplitude

standing waves. Later, low-amplitude propagating waves were also detected with the Coro-

nal Mulyi-Channel Polarimeters (CoMP). They have been observed propagating along coro-

nal loops and plumes (Tomczyk et al., 2008; Morton, Weberg, and McLaughlin, 2019; Yang

et al., 2020; Morton et al., 2021; Li et al., 2023). Propagating kink oscillations have been

also observed in solar prominences (Okamoto et al., 2007).

The first application of the theory of magnetic tube kink waves to observations was based

on early studies of waves in a magnetically structured atmosphere (e.g. Ryutov and Ryutova,

1976; Edwin and Roberts, 1983). In these studies, the simplest model of a coronal loop in

the form of a straight homogeneous magnetic tube was used. Later, more complex models

were adopted (for a review see Ruderman and Erdélyi, 2009; Nakariakov et al., 2021). One

important property of magnetic waveguides is that both the plasma density and the cross-

sectional radius vary along them. Dymova and Ruderman (2005) showed that kink waves in

a straight magnetic tube are described by a wave equation with the variable phase velocity.

Ruderman, Verth, and Erdélyi (2008) generalised this result and showed that even when not

only the plasma density but also the cross-sectional radius varies along the magnetic tube

the kink waves are still described by the wave equation.

Since the plasma β in the solar corona is very small, any equilibrium magnetic field in

the solar corona must be approximately force free. The simplest force-free magnetic field is

potential. The equilibria describing coronal magnetic loops that are based on using poten-

tial magnetic field predict sufficiently strong loop expansion. However, observations show

that the loop expansion is quite weak with the ratio of the loop cross-sectional radius at

the apex to that at the footpoints usually not exceeding two (Golub et al., 1990; Klim-

chuk et al., 1992; Klimchuk, 2000; Watko and Klimchuk, 2000; López Fuentes, Klimchuk,

and Dómoulin, 2006; Brooks et al., 2007; Kucera et al., 2019; Li et al., 2020). One pos-

sible explanation of weak coronal loop expansion is that the coronal magnetic loops are

twisted. Twisted magnetic flux tubes were first considered in relation to magnetohydrody-

namic (MHD) stability (e.g. Dungey and Loughhead, 1954; Roberts, 1956; Shafranov, 1957;

Kruskal and Tuck, 1958; Goedbloed, 1971; Parker, 1974; Browning and Priest, 1983). Later,

twisted magnetic tubes were considered in connection with the MHD resonant absorption

(e.g. Sakurai, Goossens, and Hollweg, 1991; Goossens, Ruderman, and Hollweg, 1995; Bal-

lai and Erdélyi, 2002; Karami and Bahari, 2010; Bahari, 2018; Ebrahimi and Bahari, 2019).

To our knowledge, Bennett, Roberts, and Narain (1999) were the first who studied kink

waves in twisted magnetic flux tubes. They used the approximation of incompressible plas-

mas and considered magnetic tubes homogeneous in the axial direction. Ruderman (2007)
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(Paper I below) studied the eigenmodes of kink oscillations in a twisted magnetic tube using

the cold-plasma and thin-tube approximations. He took the plasma density variation along

the tube into account. He also assumed that the twist is bounded to the tube interior, while

there is no twist outside of the tube, and took the azimuthal magnetic field component pro-

portional to the distance from the tube axis. It is worth noting that the equilibrium magnetic

field is discontinuous at the tube boundary. One of the main results obtained in Paper I is

that in this particular equilibrium the twist does not affect the oscillation frequency of kink

waves. Later, a few authors studied kink waves in twisted magnetic flux tubes. Terradas

and Goossens (2012) considered an equilibrium with the twist bounded to an annulus. They

found that in such a tube the twist affected the oscillation frequency of the kink wave. Later, a

few authors continued to study kink waves in twisted magnetic flux tubes. Ruderman (2015)

studied propagating kink waves in an equilibrium with a continuous magnetic field, so that

it is twisted both inside and outside of the tube. Ruderman and Terradas (2015) investi-

gated standing kink waves in the same equilibrium. Recently, Bahari and Khalvandi (2017),

Cheremnykh et al. (2017), Bahari, Petrukhin, and Ruderman (2020), Bahari and Ebrahimi

(2020) and Bahari (2021) studied various properties of kink waves in a twisted magnetic

tube in the presence of flow. Ruderman and Petrukhin (2022) considered the generation of

fluting modes by a kink mode in a twisted magnetic tube.

In all previous studies the kink waves in twisted magnetic flux tubes were studied under

the assumption that the cross-sectional radius does not vary along the tube. In this article

we aim to study the kink waves in twisted and expanding magnetic tubes. The article is

organised as follows. In the next section we formulate the problem. In Section 3 we describe

the equilibrium state. In Section 4 we derive the wave equation for kink and fluting waves.

In Section 5 we give the application of the obtained results to coronal seismology. Section 6

contains the summary and our conclusions.

2. Problem Formulation

We consider kink waves in a twisted magnetic tube. The plasma β in the solar corona is very

low. In accordance with this we use the cold-plasma approximation and neglect the plasma

pressure. Hence, the plasma motion is described by the system of equations

∂v

∂t
+ (v · ∇)v =

1

μ0ρ
[∇ × (B + b)] × (B + b), (1)

∂b

∂t
= ∇ × [v × (B + b)], ∇ · (B + b) = 0. (2)

Here, v is the plasma velocity, ρ the equilibrium plasma density, B the equilibrium magnetic

field, b the magnetic field perturbation and μ0 the magnetic permeability of free space.

Equations 1 and 2 must be complemented with the kinematic and dynamic boundary

conditions at the magnetic tube boundary. The kinematic boundary condition is that the nor-

mal component of the plasma displacement must be continuous, and the dynamic boundary

condition is that the magnetic pressure must be continuous. The linearised form of these

conditions will be used in Section 4.
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3. Equilibrium State

Since the plasma β in the solar corona is very low, the magnetic field is approximately force

free. Then, the equilibrium magnetic field satisfies the equations

∇ · B = 0, B × (∇ × B) = 0. (3)

We consider the equilibrium with a straight magnetic flux tube and use cylindrical coor-

dinates r , φ, z with the z-axis coinciding with the tube axis. In cylindrical coordinates

B = (Br ,Bφ,Bz). Below, we assume that the equilibrium is axisymmetric, implying that

B is independent of φ. Then, we can write the first Equation 3 as

1

r

∂(rBr)

∂r
+

∂Bz

∂z
= 0. (4)

It follows from this equation that we can express Br and Bz in terms of the flux function for

a poloidal magnetic field ψ :

Br = −
1

r

∂ψ

∂z
, Bz =

1

r

∂ψ

∂r
. (5)

The second Equation 3 implies that ∇ × B = aB. Below, we assume that a is a constant.

The three components of this equation are

∂Bφ

∂z
=

a

r

∂ψ

∂z
,

∂

∂r

(
1

r

∂ψ

∂r

)
+

1

r

∂2ψ

∂z2
= −aBφ,

∂(rBφ)

∂r
= a

∂ψ

∂r
. (6)

It follows from the first and third of these equation, and the regularity condition for ψ at

r = 0 that

Bφ =
aψ

r
. (7)

Substituting this expression in the second Equation 6 yields the equation for ψ :

r
∂

∂r

(
1

r

∂ψ

∂r

)
+

∂2ψ

∂z2
+ a2ψ = 0. (8)

Below, we only need the expressions describing the equilibrium magnetic field inside the

tube and its immediate vicinity, that is at the distances from the tube boundary of the order

of the tube cross-section radius. The exact form of the equilibrium magnetic field far from

the tube is not important because the amplitudes of the kink and fluting oscillations decay

outside of the tube at a distance of the order of the characteristic tube cross-sectional radius.

We note that the equilibrium magnetic field is continuous at the tube boundary.

We assume that the magnetic tube is thin, meaning that the ratio of characteristic scales

in the radial and axial directions is ǫ ≪ 1. In accordance with this we introduce the scaled

variable Z = ǫz. Then, it follows from Equation 4 that the ratio of the radial and axial com-

ponents of the magnetic field is of the order of ǫ. This estimate prompts us to introduce

the scaled magnetic field radial component Br = ǫB̃r . It follows from the stability condition

(e.g. Shafranov, 1957; Kruskal and Tuck, 1958) that the magnetic twist must be weak, mean-

ing that the ratio of the azimuthal and axial magnetic field components must be of the order

of ǫ. In accordance with this estimate we introduce the scaled azimuthal component of the
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magnetic field Bφ = ǫB̃φ . Introducing the characteristic spatial scale in the radial direction

Rch we obtain from the second Equation 5 that ψ ∼ BzR
2
ch. Then, it follows from Equation 7

that a ∼ (Bφ/Bz)R
−1
ch ∼ ǫR−1

ch . In accordance with this estimate we write a = ǫα. Then, we

transform Equation 8 into

r
∂

∂r

(
1

r

∂ψ

∂r

)
= −ǫ2 ∂2ψ

∂Z2
− ǫ2α2ψ = O(ǫ2). (9)

It follows from this equation and the condition that ψ must be regular at r = 0 that

ψ =
1

2
r2h(Z)[1 +O(ǫ2)], (10)

where h(Z) is an arbitrary function. Using this equation and Equations 5 and 7 yields

B̃r = −
r

2

dh

dZ
[1 +O(ǫ2)], B̃φ =

αr

2
h(Z)[1 +O(ǫ2)], Bz = h(Z)[1 +O(ǫ2)]. (11)

Using these expressions we write the equations of a magnetic field line in the non-scaled

variables as

−
2dr

r dh/dz
=

2dφ

ah
=

dz

h
. (12)

It follows from these equations that the equations determining a magnetic field line are

r = r0

(
h0

h

)1/2

, φ =
az

2
+ φ0, (13)

where h(0) = h0. Hence, a magnetic field line is a helix with pitch 4π/a and a variable

radius.

The magnetic tube boundary must be a magnetic surface, that is, the magnetic field must

be tangential to the tube boundary. Then, it is easy to show that its equation must be ψ =
const. Writing the equation of the tube boundary as r = R(Z) we obtain

R2(Z)h(Z) = R2
0h0 +O(ǫ2), (14)

where R0 = R(0). We see that we can take R(z) arbitrarily. Then, the magnetic field is

defined by Equation 11.

To finalise the description of the equilibrium we also need to define the plasma density.

We assume that it can vary along the tube axis, can be discontinuous at the tube boundary,

and is independent of r inside the tube and outside the tube. Hence,

ρ =

{
ρi(z), r < R(z),

ρe(z), r > R(z),
(15)

where ρe(z) < ρi(z).

4. Derivation of Wave Equation

To describe waves in magnetic flux tubes we use the linearised Equations 1 and 2:

∂2ξ

∂t2
= −

1

μ0ρ
[B × (∇ × b) + b × (∇ × B)], (16)
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b = ∇ × (ξ × B), ∇ · b = 0, (17)

where ξ = (ξr , ξφ, ξz) is the plasma displacement related to the plasma velocity by v =
∂ξ/∂t .

4.1. Transformation of Governing Equations

The characteristic time with respect to the radial direction is R0/V0, where V0 is the char-

acteristic speed that can be taken equal to the Alfvén speed at z = 0 inside the tube. On the

other hand, the characteristic time with respect to the axial direction is ǫ−1R0/V0. This esti-

mate inspires us to introduce the scaled time T = ǫt . Then, using the equation ∇ ×B = ǫαB

we transform Equation 16 into

ǫ2 ∂2ξ

∂T 2
=

1

μ0ρ
B × (ǫαb − ∇ × b) +O(ǫ3). (18)

Below, we introduce

ξ⊥ =
Bzξr − Brξz

B
, b⊥ =

Bzbr − Brbz

B
, P =

b · B

μ0

, (19)

where B is the magnetic field magnitude and P is the magnetic pressure perturbation. It

follows from the second Equation 3 that ∇ × B‖B. Then, it follows from Equation 16 that

B · ξ = 0.

Now, we need to obtain the equation for ξ⊥. To do this we take the scalar product of

Equation 16 with e⊥ = (Bzer − Brez)/B , where er and ez are the unit vectors in the radial

and axial directions. As a result, using Equations 8, 9, and 11 we obtain

ǫ2ρ
∂2ξ⊥

∂T 2
= ǫ2B

∂

∂Z

(
B̃rP

B2

)
−

B2
⊥

B

∂

∂r

(
BzP

B2
⊥

)
+

ǫB

μ0

∂b⊥

∂Z
+

ǫB̃φ

rμ0

∂b⊥

∂φ

+
ǫ

μ0

∂(B̃rb⊥)

∂r
+ ǫα

(
ǫ
B̃φP

B
−

Bbφ

μ0

)
+O(ǫ3), (20)

where

B2
⊥ = ǫ2B̃2

r + B2
z . (21)

When deriving Equation 20 we used the relations

B2
z = B2

[
1 +O(ǫ2)

]
, B2

⊥ = B2
[
1 +O(ǫ2)

]
(22)

and took into account that ∂B/∂r = O(ǫ2). We consider ξ⊥ and ξφ as quantities of the order

of unity. Then, it follows from Equation 20 that P = O(ǫ). Later, we will show that b⊥
and bφ are of the order of ǫ, so that in fact P = O(ǫ2). In accordance with this estimate

we introduce the scaled magnetic pressure perturbation Q defined by P = ǫ2Q. Then, we

reduce Equation 20 to

ρ
∂2ξ⊥

∂T 2
+

∂Q

∂r
=

ǫ−1

μ0

(
h

∂b⊥

∂Z
+

αh

2

∂b⊥

∂φ
−

1

2

dh

dZ

∂(rb⊥)

∂r
− αhbφ

)
+O(ǫ). (23)
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Next, we derive the equation for ξφ . For this we take the scalar product of Equation 16

with eφ . As a result we obtain

ρ
∂2ξφ

∂T 2
+

1

r

∂Q

∂φ
=

ǫ−1

μ0

(
h

∂bφ

∂Z
+

αh

2

∂bφ

∂φ
−

1

2

dh

dZ

∂(rbφ)

∂r
+ αhb⊥

)
+O(ǫ). (24)

It follows from the equation B · ξ = 0 that ξz = O(ǫ). Then, we obtain ξr = ξ⊥ + O(ǫ2).

Using this estimate we obtain from the first Equation 17

ǫ−1b⊥ =
∂(hξ⊥)

∂Z
+

αh

2

∂ξ⊥

∂φ
−

1

2

dh

dZ

∂(rξ⊥)

∂r
+O(ǫ), (25)

ǫ−1bφ =
∂(hξφ)

∂Z
+

αh

2

∂ξφ

∂φ
−

1

2

dh

dZ

∂(rξφ)

∂r
+O(ǫ), (26)

∂(rξ⊥)

∂r
+

∂ξφ

∂φ
= O(ǫ). (27)

When deriving the last equation we took into account that P = O(ǫ2). We also used Equa-

tion 27 when deriving Equation 26. Equations 25 and 26 show that the previously made

statement that b⊥ and bφ are of the order of O(ǫ) is correct. Following Ruderman, Verth,

and Erdélyi (2008) we use ψ as an independent variable instead of r , so that r = r(ψ,Z).

Using Equation 10 we obtain that for an arbitrary function f

∂f

∂r
= rh

∂f

∂ψ
,

∂f

∂Z

∣∣∣∣
r

=
∂f

∂Z

∣∣∣∣
ψ

+
1

2
r2 dh

dZ

∂f

∂ψ
, (28)

where the indices r and ψ indicate that a partial derivative is calculated at constant r and

constant ψ , respectively. Substituting f = r(ψ,Z) in Equation 10 we obtain

∂r

∂ψ
=

1

rh
,

∂r

∂Z
= −

r

2h

dh

dZ
. (29)

Using Equations 28 and 29 we transform Equations 23 – 27 into

ρ
∂2ξ⊥

∂T 2
+ rh

∂Q

∂ψ
=

ǫ−1

μ0

[
h3/2 ∂

∂Z

(
b⊥

h1/2

)
+

αh

2

∂b⊥

∂φ
− αhbφ

]
, (30)

ρ
∂2ξφ

∂T 2
+

1

r

∂Q

∂φ
=

ǫ−1

μ0

[
h3/2 ∂

∂Z

(
bφ

h1/2

)
+

αh

2

∂bφ

∂φ
+ αhb⊥

]
, (31)

ǫ−1b⊥ = h1/2 ∂(h1/2ξ⊥)

∂Z
+

αh

2

∂ξ⊥

∂φ
, (32)

ǫ−1bφ = h1/2 ∂(h1/2ξφ)

∂Z
+

αh

2

∂ξφ

∂φ
, (33)

rh
∂(rξ⊥)

∂ψ
+

∂ξφ

∂φ
= 0. (34)

The next step is using Equations 25 and 26 to eliminate b⊥ and bφ from Equations 23 and 24.

We also take all variables proportional to eimφ , where |m| = 1 corresponds to kink modes,
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while |m| ≥ 2 correspond to fluting modes. As a result, using Equation 10 we transform

Equations 30, 31, and 34 into

∂2u

∂T 2
+

h

ρ

∂Q

∂σ
= V 2

A

(
∂2u

∂Z2
+ imα

∂u

∂Z
−

1

4
m2α2u − α

∂w

∂Z
−

i

2
mα2w

)
, (35)

∂2w

∂T 2
+

imh

ρσ
Q = V 2

A

(
∂2w

∂Z2
+ imα

∂w

∂Z
−

1

4
m2α2w + α

∂u

∂Z
+

i

2
mα2u

)
, (36)

∂(σu)

∂σ
+ imw = 0, (37)

where u = h1/2ξ⊥, w = h1/2ξφ , σ =
√

2ψ and VA = h(ρμ0)
−1/2 is the Alfvén speed. Using

Equation 37 to eliminate ξφ from Equations 35 and 36 yields

∂2u

∂T 2
+

h

ρ

∂Q

∂σ
= V 2

A

(
∂2u

∂Z2
−

iα

m

∂2(σu)

∂σ∂Z
+ imα

∂u

∂Z
+

α2

2

∂(σu)

∂σ
−

1

4
m2α2u

)
, (38)

∂3(σu)

∂σ∂T 2
+

m2h

ρσ
Q = V 2

A

(
∂3(σu)

∂σ∂Z2
+ imα

∂2(σu)

∂σ∂Z

−
1

4
m2α2 ∂(σu)

∂σ
− imα

∂u

∂Z
+

1

2
m2α2u

)
. (39)

Equations 38 and 39 are used below to derive the wave equation governing kink waves.

4.2. Governing Equation for Kink and Fluting Waves

Eliminating Q from Equations 38 and 39 yields

[
∂2

∂T 2
− V 2

A

(
∂

∂Z
+

imα

2

)2
]

F = 0, F =
(

∂

∂σ
σ

∂(σu)

∂σ
− m2u

)
. (40)

Looking for the solution to this equation in the form of normal modes we take F proportional

to exp(ikZ − iωT ). Then, we obtain the dispersion equation ω2 = V 2
A(k + mα/2)2. This

dispersion equation corresponds to Alfvén waves that do not perturb the tube boundary.

They propagate independently inside and outside of the tube. Eliminating these waves from

our analysis we obtain F = 0, that is

∂

∂σ
σ

∂(σu)

∂σ
− m2u = 0. (41)

The two linearly independent solutions to this equation are u = σ |m|−1 and u = σ−|m|−1.

Then, taking into account that u must be regular at σ = 0, decay as σ → ∞ and be contin-

uous at the tube boundary we obtain

u = U(T ,Z)

{
(σ/σb)

|m|−1, σ < σb,

(σb/σ)|m|+1, σ > σb,
(42)
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where σb = h1/2R and σ = σb is the equation of the tube boundary. It follows from Equa-

tion 10 that σb is independent of Z. Using Equation 42 we obtain from Equation 39

|m|hQ = σb

(
σ

σb

)|m| [
− ρi

∂2U

∂T 2
+ ρV 2

A

(
∂2U

∂Z2

+
iαm(|m| − 1)

|m|
∂U

∂Z
−

α2|m|(|m| − 2)

4
U

)]
(43)

for σ < σb, and

|m|hQ = σb

(σb

σ

)|m|+1
[
ρe

∂2U

∂T 2
− ρV 2

A

(
∂2U

∂Z2

+
iαm(|m| + 1)

|m|
∂U

∂Z
−

α2|m|(|m| + 2)

4
U

)]
(44)

for σ > σb. The magnetic pressure must be continuous at the tube boundary. This implies

that Q must be continuous at σ = σb. Using this condition and returning to the non-scaled

variables we obtain from Equations 43 and 44 the equation for W = h
−1/2

0 R−1
0 U :

∂2W

∂t2
− C2

k

(
∂2W

∂z2
+ iam

∂W

∂z
−

a2m2

4
W

)
= 0, (45)

where Ck is the kink speed defined by

C2
k =

2ρV 2
A

ρi + ρe

. (46)

In the leading-order approximation ξ⊥ = ξr . Introducing η = ξr at the tube boundary we

obtain from Equation 42 that U = h1/2η. Then, using Equation 14 yields W = η/R.

It is expedient to compare Equation 46 with the equation obtained in Paper I (see Equa-

tion 35 in that article). Formally, the tube expansion does not affect the form of Equation 46.

It only effects the dependence of Ck on z and the dependent variable in this equation is

not η but η/R. We can see that Equation 46 is different from Equation 35 in Paper I. In

particular, it was obtained in Paper I that the magnetic twist does not affect kink waves cor-

responding to |m| = 1. We can see that this is not the case in this article. The difference in

results obtained in this article and in Paper I is related to the difference in the equilibrium

state considered in the two articles. In Paper I the magnetic field is only twisted inside the

tube, while it is not twisted outside the tube. This is not a realistic configuration because in

this equilibrium the magnetic field is discontinuous at the tube boundary. This implies that

there is an unphysical surface current on the tube boundary. In the present article there is no

magnetic field discontinuity and the magnetic field is twisted both inside the tube as well as

in its vicinity.

Substituting W = S exp(−iamz/2) in Equation 45 we reduce it to

∂2S

∂t2
− C2

k

∂2S

∂z2
= 0. (47)

This equation coincides with the similar equation derived by Ruderman, Verth, and Erdélyi

(2008) for kink waves in an expanding but not twisted magnetic tube.
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5. KinkWaves and Corona Seismology

In this section we only study kink waves and take |m| = 1. Since a and m are only present

in Equation 45 in the form of the product am we can take a > 0 without loss of generality.

First, we consider propagating waves in a magnetic tube homogeneous in the axial direction.

Looking for the solution to Equation 45 in the form W = W0 exp(ikz − iωt) we obtain the

dispersion equation

ω = ω± ≡ ±Ck

(
k +

am

2

)
. (48)

Again, without loss of generality, we can take k > 0. When m = 1 the wave with the fre-

quency ω+ propagates in the positive z-direction, and that with the frequency ω− in the neg-

ative z-direction. Both waves have the same phase speeds that exceed Ck. When m = −1

the wave with the frequency ω+ propagates in the positive z-direction, and that with the fre-

quency ω− in the negative z-direction if k > a/2. However, when k < a/2 the wave with the

frequency ω+ propagates in the negative z-direction, and that with the frequency ω− in the

positive z-direction. In both cases, the two waves have the same phase speeds that are less

than Ck. Following Ruderman (2015) we call the wave with m = 1 the accelerated wave,

and the wave with m = −1 the decelerated wave.

The observation of kink oscillations of coronal magnetic loops is one of the main tools of

coronal seismology. The first application of observed kink oscillations of coronal magnetic

loops to coronal seismology was made by Nakariakov and Ofman (2001) who estimated

the magnetic field magnitude in coronal loops. Later, Verwichte et al. (2004) reported the

simultaneous observation of two different frequencies of the kink oscillation of a coronal

magnetic tube. They interpreted them as the fundamental frequency and first-overtone fre-

quency. A remarkable property of the observational results was that the ratio of the two

frequencies was less than 2. Andries, Arregui, and Goossens (2005) attributed this result to

the fact that the plasma density varies along a loop. They developed a method of estimating

the atmospheric scale height in the corona using observations of the fundamental frequency

and the frequency of the first overtone. Dymova and Ruderman (2005) derived the equation

describing kink waves in a thin magnetic tube with the density varying along the tube that

makes it easy to relate the ratio of the two frequencies to the plasma density profile in a

coronal loop. In particular, Dymova and Ruderman (2006) used this equation to study the

effect of the coronal loop geometry on the estimate of the atmospheric scale height in the

corona.

Afterwards, Ruderman, Verth, and Erdélyi (2008) showed that the equation similar to

that derived by Dymova and Ruderman (2005) is valid for an expanding magnetic tube

with the only difference that the dependent variable is not the loop displacement but the

loop displacement divided by the tube radius. In particular, it follows from the equation

derived by these authors that the decrease of the plasma density in the loop with the height

reduces the ratio of the first-overtone frequency to the fundamental frequency, while the

loop expansion acts in the opposite direction (see also Ruderman, Petrukhin, and Pelinovsky,

2016). This result was applied to coronal seismology by Verth, Erdélyi, and Jess (2008) to

provide the correct interpretation to the observation of coronal loop kink oscillations where

the frequency ratio exceeded 2 (e.g. De Moortel and Brady, 2007; O’Shea et al., 2007).

They explained that these seemingly weird observational results are related to the effect of

the loop expansion that overpowered the effect of the plasma density variation along the

loop.
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If we consider a magnetic loop with the length L then standing kink waves in this loop

are described by the solutions to Equation 47 satisfying the boundary conditions

S = 0 at z = 0,L. (49)

To find the eigenmodes we take S proportional to cos(ωt). Then, Equation 47 reduces to

C2
k

d2S

dz2
+ ω2S = 0. (50)

This equation together with the boundary conditions in Equation 49 constitute the bound-

ary value problem that is exactly the same as the one formulated by Ruderman, Verth, and

Erdélyi (2008) in the case of expanding but untwisted magnetic tubes. This implies that the

eigenfrequencies of the magnetic tube kink oscillations are not affected by the magnetic

twist. This is good news for coronal seismology because it follows that the estimates of

the magnetic field magnitude based on the observations of the fundamental harmonic fre-

quency as well as the estimates of the coronal scale height based on the observations of the

frequencies of the fundamental and first harmonic are not affected by the magnetic twist.

The only situation when the magnetic twist can affect seismological results is when ob-

servations of the loop displacement is used in addition to the observations of oscillation

frequencies. Let us assume that only one component of the loop displacement is observed.

Consider a linearly polarised oscillation of a coronal loop. If there is no twist then the di-

rection of polarisation is the same along the loop. In particular, this implies that the loop

displacement has its maximum at the loop apex. However, this is not the case in a twisted

loop. Let us consider a twisted loop of the length L. We introduce the auxiliary Cartesian

coordinate system x, y, z with the z-axis coinciding with the loop axis. We assume that the

loop oscillates with the fundamental frequency and the loop displacement is linearly po-

larised. We also assume that only the x-component of the loop displacement is observed.

Obviously, we can take S in Equation 50 to be real. It follows from Equation 42 that ξ⊥ is

independent of σ inside the tube. Hence, the tube is displaced as a whole without distortion.

When we took all dependent variables proportional to eimφ we implicitly assumed that phys-

ical variables are given by the real parts of dependent variables. Restoring the φ-dependence

we obtain that the radial and azimuthal components of the tube displacement are ℜ(ξreimφ)

and ℜ(ξφeimφ), respectively, where ℜ indicates the real part of a quantity. Then, the loop

displacement in the x-direction is

ξx = ℜ(ξreimφ) cosφ − ℜ(ξφeimφ) sinφ. (51)

Using Equation 37 we obtain that ξφ = imξr , where m = ±1. Using this relation we trans-

form Equation 51 into

ξx = ℜ(ξreimφ) cosφ + mℑ(ξreimφ) sinφ = ℜ(ξr), (52)

where ℑ indicates the imaginary part of a quantity. Using the relation valid for kink waves,

ξr = η = RW = RS exp(−iamz/2) (53)

and recalling that S is taken to be real we eventually obtain

ξx = RS cos(az/2). (54)
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We recall that a is an arbitrary positive quantity. The only restriction is that aL is on the

order of unity. If we take S corresponding to the fundamental mode of kink oscillations

then there are no nodes in the total loop displacement. However, this is not the case for

ξx . If a ≤ π/L, then ξx also does not have the nodes. When π/L < a < 3π/L then there

is one node of ξx in the interval [0,L]. In general, there are n nodes of ξx when πn/L <

a < π(n + 2)/L, n = 1,2, . . . . In particular, if we take a = 2π/L then we obtain ξx = 0 at

z = L/2, that is at the loop apex. Hence, it is possible that there is a node at the loop apex in

the observed displacement in the fundamental mode. As a result, using the loop displacement

we can draw an incorrect conclusion that the first overtone was observed while, in fact, it

was a fundamental mode. De Moortel and Brady (2007) interpreted one of the observational

results presented by Schrijver, Aschwanden, and Tilte (2002). In this observation the two

frequencies were detected. The mode with the larger period has an amplitude much greater

than that with the smaller period. Also, it has a node near the loop apex. On the basis of this

result De Moortel and Brady (2007) suggested that the mode with the larger period was the

first overtone. However, it is quite possible that the observed node was only apparent and it

was related to the effect of twist, while the observed mode was fundamental.

6. Summary and Conclusions

In this article we study kink and fluting waves in expanding and twisted magnetic tubes. We

use the cold-plasma and thin-tube approximations. The first approximation is viable when

studying waves in the solar corona where the plasma β is very low. The second approxima-

tion works very well in application to structures like coronal magnetic loops because their

transverse size is by about two orders of magnitude less than their lengths. We considered

an axisymmetric equilibrium with the constant plasma density in the radial direction inside

the tube and outside the tube. It follows from the cold-plasma approximation that the equi-

librium state is force free with the electrical current proportional to the magnetic field. We

made the assumption that the coefficient of proportionality is constant. In contrast to the

previous two assumptions this third assumption is disputable. In general, the proportionality

coefficient can depend on the spatial variables and even on the magnetic field. In the lat-

ter case the force-free equilibrium is called nonlinear. We assume that the proportionality

coefficient is constant just for the sake of simplicity. We obtained that in the thin-tube ap-

proximation the magnetic field inside the tube and in its immediate vicinity is very simple.

The axial component of this field is independent of the radial coordinate, while the radial

and azimuthal components are proportional to the radial coordinate.

We derive the governing equation for the kink and fluting modes. It follows from this

equation that there are two propagating kink wave modes in a homogeneous magnetic tube

in its axial direction, the accelerated and decelerated, while in an untwisted tube there is

only one propagating kink mode. The existence of the two modes is related to the magnetic

twist. The phase speed of the accelerated wave mode exceeds the kink speed, while the

phase speed of the decelerated wave mode is less than the kink speed.

The standing-wave modes are described by the same eigenvalue problem as in the case

of an untwisted tube. This implies that twist does not affect the eigenfrequencies of kink

oscillations. Hence, the account of twist does not affect the seismological results based on

the observations of the frequencies of the fundamental harmonic and first overtone. The only

effect related to the account of twist is the variation of the direction of polarisation of the

coronal loop displacement along the loop. As a result, an apparent node can be detected

near the loop apex if only one component of the loop displacement is observed. This can
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lead to an incorrect conclusion that the observed coronal loop kink oscillation was the first

overtone, while in fact it was the fundamental mode.
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