
This is a repository copy of Parallel window decoding enables scalable fault tolerant
quantum computation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/204962/

Version: Published Version

Article:

Skoric, L., Browne, D.E., Barnes, K.M. et al. (2 more authors) (2023) Parallel window
decoding enables scalable fault tolerant quantum computation. Nature Communications,
14 (1). 7040. ISSN 2041-1723

https://doi.org/10.1038/s41467-023-42482-1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Article https://doi.org/10.1038/s41467-023-42482-1

Parallel window decoding enables scalable
fault tolerant quantum computation

Luka Skoric1 , Dan E. Browne1,2, Kenton M. Barnes1, Neil I. Gillespie1 &

Earl T. Campbell1,3

Large-scale quantum computers have the potential to hold computational

capabilities beyond conventional computers. However, the physical qubits are

prone to noise which must be corrected in order to perform fault-tolerant

quantum computations. Quantum Error Correction (QEC) provides the path

for realizing such computations. QEC generates a continuous stream of data

that decodersmust process at the rate it is received,which can be as fast as 1μs

per QEC round in superconducting quantum computers. If the decoder

infrastructure cannot keep up, a data backlog problem is encountered and the

computation runs exponentially slower. Today’s leading approaches to

quantum error correction are not scalable as existing decoders typically run

slower as the problem size is increased, inevitably hitting the backlog problem.

Here, we show how to parallelize decoding to achieve almost arbitrary speed,

removing this roadblock to scalability. Our parallelization requires some

classical feed forward decisions to be delayed, slowing-down the logical clock

speed. However, the slow-down is now only polynomial in the size of the QEC

code, averting the exponential slowdown. We numerically demonstrate our

parallel decoder for the surface code, showing no noticeable reduction in

logical fidelity compared to previous decoders and demonstrating the

predicted speedup.

Quantum error correction (QEC) generates a streamof syndrome data

to be decoded. An offline decoder collects and stores all the syndrome

data generated during a hardware run (often called a shot) and then

performs decoding as a post-processing step. Offline decoding is suf-

ficient for computations consisting solely of Clifford gates (e.g. CNOT

and Hadamard gates). However, fault-tolerant quantum computations

must adapt in response to certain logical measurement results, which

must be decoded to be reliable. For instance, when performing

T≔ diag(1, eiπ/4) gates using teleportation and a magic state1,2, wemust

decide whether to apply a Clifford S≔ diag(1, eiπ/2) correction before

performing the next non-Clifford operation (see Fig. 1). This logic

branching decision can only be reliably made after we decode the

syndrome data from the T gate teleportation3–5. Therefore, online, or

real-time, decoding is necessary for useful quantum computation.

Classical computation occurs at finite speed, so online decoders will

have some latency, but they need only react fast enough to enable

feed-forward and Clifford correction.

How fast do decoders need to be? A fundamental requirement

was first noted by Terhal4 in her backlog argument

“Let rproc be the rate (in bauds) at which syndrome bits are

processed and rgen be the rate at which these syndrome bits are

generated. We can argue that if rgen/rproc = f > 1, a small initial

backlog in processing syndrome data will lead to an exponential

slow down during the computation, …”

Terhal proved that quantum algorithms with T-depth k have a

running time lower bounded by cfk when f > 1 and c is some constant.

Received: 2 August 2023

Accepted: 12 October 2023

Check for updates

1Riverlane, Cambridge, United Kingdom. 2Dept. of Physics and Astronomy, University College London, London WC1E 6BT, UK. 3Dept. of Physics and

Astronomy, University of Sheffield, Sheffield S3 7RH, UK. e-mail: luka.skoric@riverlane.com; earl.campbell@riverlane.com

Nature Communications | (2023) 14:7040 1

12
3
4
5
6
7
8
9
0
()
:,
;

12
3
4
5
6
7
8
9
0
()
:,
;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42482-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42482-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42482-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-42482-1&domain=pdf
mailto:luka.skoric@riverlane.com
mailto:earl.campbell@riverlane.com

Refs. 6,7 provide more detailed reviews of this backlog argument. As

we scale the device, for all known decoders the decoding becomes

more complex, the value of f increases and inevitablywe encounter the

backlog problem.

Herewe solve thisproblem, removing a fundamental roadblock to

scalable fault-tolerant quantum computation.We propose parallelized

window decoding that can be combined with any inner decoder that

returns an (approximately) minimum weight solution, presenting

results for minimum-weight perfect matching (MPWM)8–10 and union-

find (UF)11,12.

The previous leading idea to modify decoders to work online was

proposed by Dennis et al.8:

“…take action to remove only these long-lived defects, leaving

those of more recent vintage to be dealt with in the next

recovery step.”

Here defects refer to observed changes in syndrome. Dennis et al.

called this the overlapping recovery method8,13. Later, similar approa-

ches were adopted for decoding classical LDPC codes14, where this is

known as sliding window decoding. Roughly speaking, given a

sequence of defects proceeding in time one decodes over some con-

tiguous subset, or window. The decoder output gives only tentative

error assignments, and from these only a subset—those of an older

vintage—are committed. Here, committing means making a final cor-

rection decision for potential error locations, with all corrections

performed in software. One then slides thewindowup and the process

repeats.

Sliding window decoding is inherently sequential. Let us consider

a single code block (e.g. a surface code patch) with each QEC round

taking τrd seconds. If each window is responsible for committing error

corrections over ncom rounds of syndrome data, then it takes time

ncomτrd to generate all this data. If the time to decode each window is

τW, including any communication latency, then avoiding Terhal’s

backlog problem requires that τW < ncomτrd. Since τW typically grows

superlinearly with the decoding volume, this leads to a hard upper

bound on the achievable distance d. For example, a distance d surface

code has τW =Ω(ncomd
2) and therefore we are restricted to d2

≤O(τrd).

Scaling hardware based on a fixed device physics means τrd is fixed.

This imposes a hard limit on code distance. The reader should pause to

reflect how remarkable it is that the current leading proposal for fault-

tolerant quantum computation is not scalable.

As with sliding window decoding, our parallel window decoder

breaks the problem up into sets of overlapping windows. Rather than

solving these sequentially, some windows are decoded in parallel by

adapting how overlapping windows are reconciled. Through numeric

simulations, we find that sliding, parallelized and global approaches

differ in logical error rates by less than the error bars in our simula-

tions. We show that, by scaling classical resources, the parallel window

can achieve almost arbitrarily high rproc regardless of decoding time

per window τW. Furthermore, we show that while there is still an

inherent latency determined by τW leading to a slow-down of the

logical clock speed, this is only linear in τW, rather than the exponential

slowdown resulting from Terhal’s backlog argument. We conclude

with a discussion of the implications of this work for practical decoder

requirements and extensions to a number of other decoding pro-

blems. After making this work public, similar results were posted by

the Alibaba team15. The Alibaba numerics present the logical fidelity of

the decoder, but do not include numerical results on decoding speed

and improvements through increasing number of processors used.

Single-shot error correction is a different paradigm of decoding

that uses only the results of a single round of QEC measurements,

without any historical data. This type of decoding is only possible for

certain quantum codes, such as higher-dimensional topological

codes16–19 andquantum low-density parity-check codes (qLDPC)20,21. To

date, no such code has yet been able to reproduce the very high

threshold of the surface code. Furthermore, single-shot error correc-

tion is still susceptible to a backlog problem. In every analysis of single-

shot QEC, it has been assumed that the correction for previous QEC

rounds has already been performedbefore the next roundof decoding

is performed. However, if these decoding problems take longer to

solve than the time to perform a round of QEC, then even single-shot

QEC encounters a backlog problem. This situation is worse when the

backlog problem is encountered by a single-shot decoder, because it

cannot be alleviated by using the single-shot decoder in conjunction

with the parallel decoding methods proposed here.

Results
Matching decoders
Windowing techniques, both sliding and parallel, can be combined

with most decoders acting internally on individual windows. We will

refer to these as the inner decoders. The only property we assume of

the inner decoder is that it returns a correction that is (approximately)

the lowestweight correction.Weotherwise treat the inner decoder as a

black box. For brevity, in the main text we will describe the procedure

for the case ofmatching decoders, such asMWPM and UF. Amatching

decoder is applicablewhen any error triggers either a pair of defects or

a single defect. For example, in the surface code X errors lead to pairs

of defects (when occurring in the bulk) or a single defect (when

occurring at so-called rough boundaries of the code). To fully for-

mulate a matching problem, all errors must lead to a pair of defects.

Therefore, errors triggering a single defect are connected to a virtual

defect commonly called the boundary defect. We then have a graph

where the vertices are potential defects (real or boundary) and edges

represent potential errors. Given an actual error configuration, we get

a set of triggered defects and we can enforce that this is an even

number by appropriately triggering the boundary defect. A matching

decoder takes as input this set of triggered defects and then outputs a

subset of edges (representing a correction) that pair up the triggered

defects. Running a decoder on our entire defect data set at once (no

windowing)will be referred to as global decoding, but global decoding

is not compatible with the real-time feedback required for non-

Clifford gates.

Sliding window decoding
Instead of decoding a full history of syndrome data after the compu-

tation is complete, sliding window decoding starts decoding the data

in sequential steps while the algorithm is running. At each step, a

subset (a window) of nW rounds of syndrome extraction is processed.

The window correction graph is acquired by taking all the vertices and

edges containing defects in the selected rounds. The measurement

errors in the final round of a window only trigger a single defect within

the window. Therefore, all final round defects are additionally con-

nected to the boundary defect, referred to as the rough top time

boundary.

Following the overlapping recovery method8,13, a window can be

divided into two regions: a commit region consisting of the long-

Fig. 1 | A gate-teleportation circuit to perform a T gate using a magic state

Tj i : =T +j i, including a classically controlled S gate depending on the mea-

surement outcome. In fault-tolerant implementations with logical qubits, the

logical Z measurement must be decoded before the S correction can be correctly

applied. This leads to a response time τ that is largely determined by the decoding

time but also includes communication and control latency.

Article https://doi.org/10.1038/s41467-023-42482-1

Nature Communications | (2023) 14:7040 2

lived defects in the first ncom rounds, and a buffer region containing

the last nbuf rounds (nW = ncom + nbuf). An inner decoder (e.g. MWPM

or UF) outputs a subset of tentative correction edges within the

window. Only the correction edges in the commit region are taken as

final. Sometimes, the chains of tentative correction edges will cross

from the commit to the buffer region. Applying only the part of the

chain in the commit region will introduce new defects, referred to as

artificial defects along the boundary between the commit and buffer

regions.

The window is then moved up by ncom for the next decoding step

that now includes the artificial defects along with the unresolved

defects from the buffer region of the preceding step and new defects

in the following rounds. Figure 2 illustrates sliding window for the

simple example of a repetition code, naturally extending to surface

codes by adding another spatial dimension. Notice in Fig. 2 the crea-

tion of artificial defects where tentative corrections cross between

commit and buffer regions.

Due to these artificial defects, sliding window decoding (and also

parallel window decoding, described below) requires an inner deco-

der, which returns an approximately lowweight correction, such as UF

or MWPM. Decoders, such as those based on tensor network con-

tractions, identify the optimal homology class (all errors strings cor-

responding to contractible loops are in the same class) that contains a

low-weight correction. Once a homology class has been identified, we

can always efficiently select a representative correction from the class

but this could be a high-weight correction (e.g. containing many con-

tractible loops), leading to additional artificial defects at the boundary

of the committed region, and then to logical errors when the next

window is decoded. Therefore, additional modifications beyond those

discussed in this work would be needed to use homology-based inner

decoders.

Processing only a subset of the syndrome data at a time inevi-

tably reduces the logical fidelity of the decoder. However, a logical

fidelity close to that of the global decoder can be retained by making

the unaccounted failure mechanisms negligible compared to the

global failure rate. In particular, the error chains beginning in the

committed region need to be unlikely (compared to the global failure

rate) to span the buffer region and extend beyond the window. If the

measurement and qubit error rates are comparable, to achieve this

for distance d codes, it suffices to make the buffer region of the

same size nbuf = d8. In the Supplementary Note Section 3, we

demonstrate numerically that by choosing nbuf = ncom = d there is no

noticeable increase in logical error rate when applying the sliding

window algorithm. Indeed, in our numerics we saw some evidence

that one can use nbuf < d without significant degradation, provided

nbuf/d remains sufficiently large, though we do not thoroughly

investigate this in detail here.

Parallel window decoding
Here we present our main innovation to overcome the backlog pro-

blem, which we call parallel window decoding. We illustrate the

method in Fig. 3. As in Fig. 2, our illustration is for a repetition code

example. These figures are for illustrative purposes only, with all

numerical results using the natural generalization to the 3D decoding

problem of the surface code (further extensions discussed in Sec-

tion III).

Parallel windowdecodingproceeds in two layers. First, weprocess

a number of non-overlappingwindows in decode layer A concurrently.

As opposed to the sliding window approach, there are potentially

unprocessed defects preceding the rounds in an A window. We thus

need to include a buffer region both preceding and following the

commit regions. Additionally, we set both time boundaries to be

rough, connecting the first and last round of defects to the boundary

node. We set nbuf = ncom =w, giving a total of nW = 3w per window for

some constantw. Using the same reasoning aswith the sliding window

we set w = d. Note that in Fig. 3 we use w < d to keep the illustration

compact.

Having committed to corrections in adjacent windows and

computed the resulting artificial defects, in layer B we fill in the

corrections in the rounds between the neighbouring A commit

Fig. 2 | Sliding window decoding schematic for 2D decoding problem, for

example representing the repetition code with phenomenological noise. At

each decoding step a number of syndrome rounds (window) is selected for

decoding (orange region in left columns), and tentative corrections acquired. The

corrections in the older ncom rounds (green region in right columns) are of high

confidence and are committed to, while the corrections in the remaining (buffer)

nbuf rounds are discarded. Thewindow is thenmoved up to the edge of the commit

region and the process repeated.We decide to commit to the edges going from the

commit regionout of it, producing artificial defects defined by nodes outsideof the

region belonging to such an edge. All numerics performed using a generalisation of

this method to the 3D decoding problem representing the surface code with

circuit-level noise.

Article https://doi.org/10.1038/s41467-023-42482-1

Nature Communications | (2023) 14:7040 3

regions. For convenience, we separate A windows by d rounds, so

that B windows also have nW = 3d rounds. As we have already

resolved the nearby defects preceding and succeeding each B win-

dows, the B windows have smooth time boundaries and do not

require buffers.

Crucially, if the size of buffer region in layer A is chosen

appropriately, we expect no significant drop in logical fidelity com-

pared to the global decoder. As with sliding windows, this is because

each error chain of length ≤d is guaranteed to be fully captured

within one of the windows. In Fig. 4a we verify this by simulating the

decoding process on a d × d ×Nrounds rotated planar code under

circuit-level noise (see Methods for the noise model details). We find

that the logical error rates of rotated planar codes using the global

MWPM and parallel windowMWPM are within the numerical error of

each other across a range of code sizes and number of measurement

rounds. The same holds for UF-based decoders, as well as different

noise models, with the data presented in the Supplementary

Note Section 3.

This approach is highly parallelizable: as soon as the last round of

window An has been measured, the data can be given to a worker

process to decode it. However, as the window Bn requires the artificial

defects generated by windows An and An+1 adjacent to it (see Fig. 3), it

can only start once both processes have completed. In the Supple-

mentary Figure 4, we sketch a schematic defining how the data pipe-

lining could be implemented in an online parallel window decoder to

achieve a high utilization of available decoding cores.

Assuming no parallelization overhead, the syndrome throughput

will scale linearly with the number of parallel processes Npar. In this

case, Nparncom rounds are committed to in layer A, and NparnW in layer

B. Each round takes τrd to acquire and the two layers of decoding take

2τW. To avoid the backlog problem, we need the acquisition time to be

greater than the decoding time:

Nparðncom +nWÞτrd ≥ 2τW: ð1Þ

Therefore, the number of processes needs to be at least:

Npar ≥
2τW

ðncom +nWÞτrd
: ð2Þ

In practice, the overhead of data communication among worker pro-

cesses needs to be considered. In the parallel window algorithm, each

process only needs to receive defect data before it is started, and

return the artificial defects and the overall effect of the committed

correction on the logical operators (see the Supplementary Note Sec-

tion 4). Thus, we expect the data communication overhead to be

negligible compared to the window decoding time. Indeed, in Fig. 4b

wedemonstrate this by simulating parallel windowdecoding in Python

usingMWPMas the inner decoder, showing howusingNpar = 8 leads to

nearly an 8x increase in decoding speed. Some sub-linearity can be

seen due to parallelization overheads in software, particularly for low-

distance codes where the decoding problem is relatively simple. In the

Supplementary Note Section 3, we repeat these simulations using UF

decoderwhere the overhead ismore noticeable due to faster decoding

of individual windows. However, hardware decoders such as FPGA

(Field Programmable Gate Array) and ASIC (Application-Specific

Integrated Circuit) are more suited to parallel data processing,

allowing a large number of processes without being bottle-necked

by the communication overheads (discussed further in the Supple-

mentary Note Section 4). Lastly, even with some sub-linearity, the

backlog can be averted provided arbitrary decoding speed is achieved

with a polynomial number of processors.

Fig. 3 | Parallel window decoding schematic for 2D decoding problem, for

example representing the repetition code with phenomenological noise. The

decoding proceeds in two layers. In layer A, a number of non-overlapping windows

An is decoded in parallel. The high confidence corrections in the middle ncom

rounds of each window are committed to, while the corrections in the surrounding

nbuf. The artificial defects are passed on to layer B. Windows Bn in layer B are fully

committed to, resolving all the defects between the committed regions of layer A

and completing the correction. All numerics are performed using a generalisation

of this method to the 3D decoding problem representing the surface code with

circuit-level noise.

Article https://doi.org/10.1038/s41467-023-42482-1

Nature Communications | (2023) 14:7040 4

Discussion
While we can achieve almost arbitrarily high syndrome processing

rates, there is still an inherent latency determined by the time to

decode each window τW. If τW is large compared to the physical QEC

round time τrd, we may slow down the logical clock of the quantum

computer to compensate for this latency. This slowdown is achieved

simplybyextending thedelay time τ as shown in Fig. 1. If wepickNpar as

described in Eq. (2), at every instance a block of nlag =Npar(ncom + nW)

rounds are being decoded at once. The last round for which the full

syndrome history has been decoded is therefore going to be nlag
rounds behind themost recentlymeasured syndromedata. Therefore,

we can set the response time after each T-gate (as defined in Fig. 1) to

τ =nlagτrd =Nparðncom +nWÞτrd ð3Þ

However, combining Eq. (2) and Eq. (3) the total response time is ≈ 2τW.

That is, for analgorithmwith k layersofT gates, the total response time

is τk ≈ 2kτW. This is in stark contrast to the exponential in k response

time observed by Terhal4. Furthermore, using an efficient decoder for

eachwindow, the average window decode time τW scales polynomially

with code size d, so τW =O(dα) for some constant α. Since code size is

poly-logarithmic in algorithm depth k and width W, d =Oðlog ðkW Þ
β
Þ

for some constant β. The response time per layer of T-gates is a poly-

logarithmic factor so τ =Oðlog ðkW Þ
αβ
Þ. Strictly speaking, this addi-

tional overhead increases the decoding volume kW by a logarithmic

factor, but overall still gives a poly-logarithmic complexity.

We define logical clock time as how long it takes to execute one

logical non-Clifford gate. Using lattice surgery to perform T-tele-

portation— and assuming no bias betweenmeasurement and physical

errors — it takes dτrd time for lattice surgery and τ response time. This

gives a logical clock time of τclock≔ dτrd + τ. Alternatively, this time

overhead can be converted into a qubit overhead by moving Clifford

corrections into an auxiliary portion of the quantum computer22, for

example using auto-corrected T-gate teleportation2,23. In algorithm

resource analysis, a common assumption is that T gates are performed

sequentially 2,24–31 as thenonly a fewmagic-state factories are needed to

keep pace. Auto-correction gadgets enable us to perform the next T-

gate before the response timehaselapsed. Theprice is that anauxiliary

logical qubit must instead be preserved for time τ, after which it is

measured in a Pauli basis depending on the outcome of the decoding

problem. Therefore, instead of a time overhead we can add ⌈τ/dτrd⌉

auxiliary logical qubits. If we have an algorithmwith 100 logical qubits

and τclock = 10dτrd, then: without autocorrection we incur a 10 × time

cost; and with autocorrection we instead require 9 auxiliary logicals

qubits and so a 1.09 × qubit cost. Under these common algorithm

resource assumptions, we the find seemingly large time overheads

from parallel window decoding can be exchanged for modest qubit

overheads. Indeed, the auto-correction strategies trade time for space

resource, but the overall space-time volume is preferable under these

resource estimation assumptions (1.09 × insteadof 10 ×).Note that the

additional space-time volume required for magic state distillation will

depend only on the number of magic states produced and not on

whether we use auto-corrected teleportation.

Our proposed decoder admits several extensions. Error mechan-

isms (e.g. Y errors in the bulk of the surface code) sometimes trigger

more than a pair of defects, but reasonable heuristics can often be

used to approximately decorrelate these errors to produce a graphical

decoding problem. This decorrelation works well for the surface code.

However, many codes cannot be decorrelated and require a non-

matching decoder. Even when decorrelation approximations are pos-

sible, logical fidelities can be improved by using a non-matching

decoder that accounts for this correlation information32–35. Extensions

of parallel window decoding to non-matching inner decoders are

outlined in the Supplementary Note Section 2.

By judicious choice of window shapes and boundaries, one could

consider 3D-shaped windows that divide the decoding problem in

both space and time directions. Similarly, we can construct 3D-shaped

windows for parallel execution with only a constant number of layers.

When slicing in the time direction we only needed 2 layers of windows,

but when constraining window size in D dimensions a D + 1 layer

construction is possible, with the minimum number of layers being

determined by the colorability of some tiling (see the Supplementary

Note Section 1 for details). When performing computation by lattice

surgery, during merge operations the code temporally has an

Fig. 4 | Logical error rate and decoding frequency on a d ×d ×Nrounds rotated

planar code using Minimum Weight Perfect Matching (MWPM) under circuit-

level noise with p =0.5% (seeMethods). a Logical error rates as a function of the

number of rounds of syndrome extraction for different code sizes for both the

global offline MWPM (shaded bands), and using the parallel window algorithm

(points). The parallel window decoder has no numerically significant drop in

logical fidelity compared to the global decoder. Additional data with a different

noise rate p and using phenomenological noise is presented in Supplementary

Figures 2 and 3. b The decoding frequency (number of rounds decoded per

second) as a function of the number of decoding processes for the parallel win-

dow algorithm. The decoding frequency increases with the number of processes,

achieving approximately linear speed-up with the number of processes for harder

decoding scenarios (d ≥ 15). The sub-linearity most noticeable on small decoding

problems is due to the parallelization overhead in the software implementation.

Error bars represent standard deviation over samples. Where the error bars are

not visible, they are smaller than the marker size. Here we plot the decoding

frequency rdec, therefore the rate of syndrome processing is rproc = rdec(d
2
− 1).

Article https://doi.org/10.1038/s41467-023-42482-1

Nature Communications | (2023) 14:7040 5

extended size2,27,36,37, and windowing in the spatial direction will

become necessary to prevent the window decode time τW from sig-

nificantly increasing. Onemay alsowish to spatially window for a single

logical qubit with windows smaller than the code distance since the

decoder running time τW reduces with window size, and therefore the

logical clock time may decrease (alternatively auto-correction qubit

overhead may reduce). But there are subtle tradeoffs. For windows of

sizeω < d in either the spaceor timedirection, theremaybe adversarial

failure mechanisms of weight (ω + 1)/2 < (d + 1)/2 that are no longer

correctly decoded. One may speculate that this reduces the effective

code distance to ω. However, in practice, percolation theory

arguments38 show that for a distance d code, the largest error clusters

are typically of sizeOðpolylogðdÞÞ. This leaves open the possibility that

windows of size OðpolylogðdÞÞ<ω<d will suffice and be of practical

value for stochastic (even if not adversarial) noise, though substantial

further investigation is required. We remark that this discussion

assumes that measurement errors (that create vertical error chains)

have a comparableprobability as physical Pauli errors. If there is a large

measurement error bias, then we must appropriately scale the dura-

tion of lattice surgery operations and the vertical extent of our

windows.

In summary, parallel window decoding avoids the exponential

backlog growth that is unavoidable (for large enough computations)

with sliding window decoders. For many leading hardware platforms,

such as superconducting devices, syndrome backlog can be a severe

practical obstacle, even for modest code sizes. In recent super-

conducting experiments a QEC round was performed every 1.1 μs by

Krinner et al.39 and every 921 ns by the Google QuantumAI team40. Our

results are applicable to all hardware platforms, but the speed of

superconducting quantum computers means these are amongst the

most challenging systems for real-time decoding. Indeed, both afore-

mentioned teams instead performed offline decoding, omitting a

crucial aspect of scalable error correction.

To meet this challenge, improving the speed of decoders is cur-

rently an area of intense research. For example, LILLIPUT41 is a recently

proposed fast online sliding window decoder, implemented as an

FPGA-based look-up table. Ford≤5 surface codes, the authors reported

that a round of syndrome data could be processed every 300 ns, fast

enough even for superconducting qubits. However, the memory

requirements of lookup tables scale exponentially in qubit number,

making this decoder impractical for all but the smallest code sizes. The

UF decoder scales favourably, and modelling of it on a dedicated

microarchitecture12 suggested it would be fast enough for distance

11 surface codes. However, the authors acknowledged that: “further

study is necessary to confirm the validity of ourmodel in a real device".

Riverlane recently showed real-time FPGA decoding of single windows

fast enough to beat the backlog problem without any further paralle-

lization up-to-distance 21 codes42. There have been other approaches

to accelerating decoders. A parallelized version of minimum weight

perfect matching (MWPM) has been proposed43 but never imple-

mented and its performance is unclear. Adding a predecoding stage

has also been identified as a way to further accelerate decoding and

potentially boost logical fidelity7,44–48, but this has not been tested in an

online setting. As such, for larger code distances, it is unclear whether

conventional decoding approaches will be fast enough.

On the other hand, a parallel window decoder, as introduced here

can achieve almost arbitrarily high decoding speed given enough

classical resources and some (polynomially scaling) quantum resource

overheads. Therefore, this approach resolves both fundamental scal-

ability issues and practical obstacles for hardware with rapid QEC

cycle times.

Methods
All simulations were performed on a standard D32as v4 Azure

instance. We used the PyMatching package10 to perform MWPM. For

UF we used a custom Python implementation of the algorithm

described in Ref. 11.

The decoding graph for each window is acquired by taking a

subset of edges between nodes belonging to vertices in the window.

Dependingon the roughbottom (top) timeboundaries,we further add

edges connecting each of the nodes in the first (last) round to the

boundary node. These are assigned a probability equal to the prob-

ability of triggering one of the edges connecting the given node in the

window to a node out of the window.

In all experiments,we compute the logical error rate of sliding and

parallel window methods for rotated planar code with different code

sizes and increasing number of decoding rounds. We use circuit-level

noise parametrized by p = 0.5% with the following noise model:
• p two-qubit depolarising noise after each two-qubit gate
• measurement results flipped with probability p
• p/10 depolarising noise after each single-qubit gate and reset

operation
• p/10 depolarising noise for any idling qubit while gates are

applied elsewhere

The syndrome data for the noise model has been sampled using Stim

simulation package49.

To compute the timing for Fig. 4b, we perform the decoding on

ð4maxNpar + 1Þd rounds to ensure a full utilizationofparallel resources

if both A andBdecoding steps.We assume initialisation and readout in

the Z basis, meaning that the initial and final rounds of defects are

smooth. Moreover, in parallel window decoding, we take the first

round to always belong to layer A, and the first 2d rounds of the first

window are committed to. The last round belongs to a layer B if the

total number of rounds ntot satisfies ntot mod 4d 2 ð�d,d�, in which

case the decoding is performed normally with the last B window

potentially being of reduced size. Otherwise, the last window belongs

to layer A and the commit region of the last window is from the bottom

of the regular commit region to the last round.

Data availability
The stim circuits and data that support the findings of this study are

available in Zenodo with the DOI identifier https://doi.org/10.5281/

zenodo.8422904.

References
1. Bravyi, S. & Kitaev, A. Universal quantum computation with ideal

clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

2. Litinski, D. A game of surface codes: Large-scale quantum com-

puting with lattice surgery. Quantum 3, 128 (2019).

3. DiVincenzo, D. P. & Aliferis, P. Effective fault-tolerant quantum

computation with slow measurements. Phys. Rev. Lett. 98,

020501 (2007).

4. Terhal, B.M. Quantumerror correction for quantummemories.Rev.

Mod. Phys. 87, 307 (2015).

5. Chamberland, C., Iyer, P. & Poulin, D. Fault-tolerant quantum

computing in the Pauli or Clifford framewith slowerror diagnostics.

Quantum 2, 43 (2018).

6. Holmes, A. et al. Nisq+: Boosting quantum computing power by

approximating quantum error correction, in 2020 ACM/IEEE 47th

Annual International Symposium on Computer Architecture (ISCA)

(IEEE, 2020) pp. 556–569.

7. Chamberland, C., Goncalves, L., Sivarajah, P., Peterson, E. & Grim-

berg, S. Techniques for combining fast local decoders with global

decoders under circuit-level noise. Quantum Sci. Technol. 8,

045011 (2023).

8. Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum

memory. J. Math. Phys. 43, 4452 (2002).

9. Fowler, A. G., Stephens, A. M. & Groszkowski, P. High-threshold

universal quantum computation on the surface code. Phys. Rev. A

80, 052312 (2009).

Article https://doi.org/10.1038/s41467-023-42482-1

Nature Communications | (2023) 14:7040 6

https://doi.org/10.5281/zenodo.8422904
https://doi.org/10.5281/zenodo.8422904

10. Higgott, O., PyMatching: A python package for decoding quantum

codes with minimum-weight perfect matching, arXiv preprint

arXiv:2105.13082 (2021).

11. Delfosse, N. & Nickerson, N. H. Almost-linear time decoding algo-

rithm for topological codes. Quantum 5, 595 (2021).

12. Das, P. et al. A scalable decoder micro-architecture for fault-

tolerant quantum computing, arXiv preprint

arXiv:2001.06598 (2020).

13. Huang, S. & Brown, K. R. Between shor and steane: A unifying

construction for measuring error syndromes. Phys. Rev. Lett. 127,

090505 (2021).

14. Iyengar, A. R. et al. Windowed decoding of protograph-based LDPC

convolutional codes over erasure channels. IEEE Trans. Inf. Theory

58, 2303 (2012).

15. Tan, X., Zhang, F., Chao, R., Shi, Y., and Chen, J., Scalable surface

code decoders with parallelization in time, arXiv preprint

arXiv:2209.09219 (2022).

16. Bombín, H. Single-shot fault-tolerant quantum error correction.

Phys. Rev. X 5, 031043 (2015).

17. Brown, B. J., Nickerson, N. H. & Browne, D. E. Fault-tolerant error

correction with the gauge color code. Nat. Commun. 7,

12302 (2016).

18. Quintavalle, A. O., Vasmer, M., Roffe, J. & Campbell, E. T. Single-

shot error correction of three-dimensional homological product

codes. PRX Quantum 2, 020340 (2021).

19. Kubica, A. & Vasmer, M. Single-shot quantum error correction with

the three-dimensional subsystem toric code. Nat. Commun. 13,

6272 (2022).

20. Fawzi, O., Grospellier, A. & Leverrier, A. Constant overhead quan-

tum fault tolerance with quantum expander codes. Commun. ACM

64, 106 (2020).

21. Higgott, O. and Breuckmann, N. P., Improved single-shot decoding

of higher dimensional hypergraph product codes, arXiv preprint

arXiv:2206.03122 (2022).

22. Fowler, A. G., Time-optimal quantum computation, arXiv preprint

arXiv:1210.4626 (2012).

23. Gidney, C. and Fowler, A. G., Flexible layout of surface code com-

putations using autoccz states, arXiv preprint

arXiv:1905.08916 (2019).

24. Berry, D. W., Gidney, C., Motta, M., McClean, J. R. & Babbush, R.

Qubitization of arbitrary basis quantum chemistry leveraging

sparsity and low rank factorization. Quantum 3, 208 (2019).

25. Kivlichan, I. D. et al. Improved fault-tolerant quantum simulation of

condensed-phase correlated electrons via trotterization. Quantum

4, 296 (2020).

26. Campbell, E. T. Early fault-tolerant simulations of the hubbard

model. Quantum Sci. Technol. 7, 015007 (2021).

27. Chamberland, C. & Campbell, E. T. Universal quantum computing

with twist-free and temporally encoded lattice surgery. PRX Quan-

tum 3, 010331 (2022).

28. Lee, J. et al. Even more efficient quantum computations of chem-

istry through tensor hypercontraction. PRX Quantum 2,

030305 (2021).

29. von Burg, V. et al. Quantum computing enhanced computational

catalysis. Phys. Rev. Res. 3, 033055 (2021).

30. Blunt, N. S. et al. A perspective on the current state-of-the-art of

quantum computing for drug discovery applications, arXiv preprint

arXiv:2206.00551 (2022).

31. Chamberland, C. et al. Building a fault-tolerant quantum computer

using concatenated cat codes. PRX Quantum 3, 010329 (2022).

32. Darmawan, A. S. & Poulin, D. Tensor-network simulations of the

surface code under realistic noise. Phys. Rev. Lett. 119,

040502 (2017).

33. Panteleev, P. & Kalachev, G. Degenerate quantum LDPC codes with

good finite length performance. Quantum 5, 585 (2021).

34. Roffe, J.,White, D. R., Burton, S. &Campbell, E. Decoding across the

quantum low-density parity-check code landscape. Phys. Rev. Res.

2, 043423 (2020).

35. Higgott, O., Bohdanowicz, T. C., Kubica, A., Flammia, S. T., and

Campbell, E. T., Fragile boundaries of tailored surface codes, arXiv

preprint arXiv:2203.04948 (2022).

36. Horsman, C., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code

quantum computing by lattice surgery.N. J. Phys. 14, 123011 (2012).

37. Chamberland, C. & Campbell, E. T. Circuit-level protocol and ana-

lysis for twist-based lattice surgery. Phys. Rev. Res. 4,

023090 (2022).

38. Fawzi, O., Grospellier, A., and Leverrier, A., Constant overhead

quantum fault-tolerance with quantum expander codes, in 2018

IEEE 59th Annual Symposium on Foundations of Computer Science

(FOCS) (IEEE, 2018) pp. 743–754.

39. Krinner, S. et al. Realizing repeated quantum error correction

in a distance-three surface code, arXiv preprint

arXiv:2112.03708 (2021).

40. Acharya, R. et al. Suppressing quantum errors by scaling a surface

code logical qubit, arXiv preprint arXiv:2207.06431 (2022).

41. Das, P., Locharla, A., and Jones, C., Lilliput: A lightweight low-

latency lookup-table based decoder for near-term quantum error

correction, arXiv preprint arXiv:2108.06569 (2021).

42. Barber, B. et al. A real-time, scalable, fast and highly resource effi-

cient decoder for a quantum computer, arXiv preprint

arXiv:2309.05558 (2023).

43. Fowler, A. Minimum weight perfect matching of fault-tolerant

topological quantum error correction in average o(1) parallel time.

Quantum Inf. Comput. 15, 145 (2015).

44. Anwar, H., Brown, B. J., Campbell, E. T. & Browne, D. E. Fast deco-

ders for qudit topological codes. N. J. Phys. 16, 063038 (2014).

45. Ueno, Y., Kondo, M., Tanaka, M., Suzuki, Y., and Tabuchi, Y., Qecool:

On-line quantum error correction with a superconducting decoder

for surface code, in 2021 58th ACM/IEEE Design Automation Con-

ference (DAC) (IEEE, 2021) pp. 451–456.

46. Meinerz, K., Park, C.-Y. & Trebst, S. Scalable neural decoder for

topological surface codes. Phys. Rev. Lett. 128, 080505 (2022).

47. Paler, A. and Fowler, A. G., Pipelined correlated minimum weight

perfect matching of the surface code, arXiv preprint

arXiv:2205.09828 (2022).

48. Ueno, Y., Kondo, M., Tanaka, M., Suzuki, Y., and Tabuchi, Y., Neo-

qec:Neural network enhancedonline superconductingdecoder for

surface codes, arXiv preprint arXiv:2208.05758 (2022).

49. Gidney, C. Stim: A fast stabilizer circuit simulator. Quantum 5,

497 (2021).

Acknowledgements
This projectmade use of code co-developedwith AdamRichardson and

Joonas Majaniemi. We thank Kauser Johar for useful discussions. We

thank Steve Brierley and Jake Taylor for encouraging this research and

related discussions.

Author contributions
E.C. and L.S. developed the parallel window algorithm. L.S. imple-

mented the algorithm, performed simulations and data analysis. K.B.

designed the framework for QEC simulations and assisted with the

technical aspects of the implementation. N.G. and D.B. formulated the

backlog problem and aided in interpreting the results. E.C. performed

theoretical considerations of resource overheads and extensions to

different noisemodels and decoding scenarios. E.C. and L.S. drafted the

manuscript and designed the figures, incorporating comments and

edits from all authors.

Competing interests
The authors declare no competing interests.

Article https://doi.org/10.1038/s41467-023-42482-1

Nature Communications | (2023) 14:7040 7

Additional information
Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-42482-1.

Correspondence and requests for materials should be addressed to

Luka Skoric or Earl T. Campbell.

Peer review informationNature Communications thanks Muyuan Li and

the other, anonymous, reviewer(s) for their contribution to the peer

review of this work. A peer review file is available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-

isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-42482-1

Nature Communications | (2023) 14:7040 8

https://doi.org/10.1038/s41467-023-42482-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Parallel window decoding enables scalable fault tolerant quantum computation
	Results
	Matching decoders
	Sliding window decoding
	Parallel window decoding

	Discussion
	Methods
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

