
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Titarenko and Titarenko BMC Bioinformatics (2023) 24:396
https://doi.org/10.1186/s12859-023-05517-4

BMC Bioinformatics

PerFSeeB: designing long high-weight
single spaced seeds for full sensitivity alignment
with a given number of mismatches
Valeriy Titarenko1* and Sofya Titarenko2

Abstract

Background: Technical progress in computational hardware allows researchers to use
new approaches for sequence alignment problems. For a given sequence, we usually
use smaller subsequences (anchors) to find possible candidate positions within a ref-
erence sequence. We may create pairs (“position”, “subsequence”) for the reference
sequence and keep all such records without compression, even on a budget com-
puter. As sequences for new and reference genomes differ, the goal is to find anchors,
so we tolerate differences and keep the number of candidate positions with the same
anchors to a minimum. Spaced seeds (masks ignoring symbols at specific locations)
are a way to approach the task. An ideal (full sensitivity) spaced seed should enable
us to find all such positions subject to a given maximum number of mismatches
permitted.

Results: Several algorithms to assist seed generation are presented. The first one
finds all permitted spaced seeds iteratively. We observe specific patterns for the seeds
of the highest weight. There are often periodic seeds with a simple relation
between block size, length of the seed and read. The second algorithm produces
blocks for periodic seeds for blocks of up to 50 symbols and up to nine mismatches.
The third algorithm uses those lists to find spaced seeds for reads of an arbitrary length.
Finally, we apply seeds to a real dataset and compare results for other popular seeds.

Conclusions: PerFSeeB approach helps to significantly reduce the number of reads’
possible alignment positions for a known number of mismatches. Lists of long, high-
weight spaced seeds are available in Additional file 1. The seeds are best in weight
compared to seeds from other papers and can usually be applied to shorter reads.
Codes for all algorithms and periodic blocks can be found at https:// github. com/
vtman/ PerFS eeB.

Keywords: Spaced seeds, Lossless seed, Full sensitivity, Sequence alignment,
Mismatch, Indexing

*Correspondence:
valeriy.titarenko@manchester.ac.uk

1 School of Biological Sciences,
University of Manchester, Oxford
Road, Manchester M13 9PL, UK
2 School of Mathematics,
University of Leeds, Woodhouse,
Leeds LS2 9JT, UK

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05517-4&domain=pdf
https://github.com/vtman/PerFSeeB
https://github.com/vtman/PerFSeeB

Page 2 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

Background
Scientists use sequence analysis to understand organisms’ features, structure, and
function. By comparing sequences obtained for well-known and unexplored plants or
animals, we may understand the biology of the investigated organisms. Currently, exper-
imental techniques cannot provide us with whole sequences but only with many subse-
quences that we need to concatenate/merge in some way to form a long sequence. Thus,
researchers have to solve a general sequence alignment problem before producing any
meaningful conclusions related to the biological properties of an organism.

Suppose two long sequences are similar in some way. One sequence (a reference
sequence) is known, and a researcher wants to find the other sequence. For example, as
a reference sequence, we may use a human genome sequence (an “averaged” sequence
based on genetic information of several individuals). We want to know a genome
sequence for another person, i.e. a patient with a specific disease. The current hard-
ware for genome sequence allows us to find only chunks of the unknown genome of the
“patient”. Those chunks (called reads) are usually relatively short (hundreds of base pairs)
and may contain errors. We assume that the reference and “patient” sequences are simi-
lar, so we may use the reference sequence to align a set of reads accounting for possible
mismatches.

The standard procedure is to consider each read and find its possible positions within
the reference sequence such that the distance between the read and a part of the ref-
erence sequence is minimal. Subject to final goals, several definitions of distance as a
measure of similarity between two sequences are possible. The distance may depend on
all elements of sequences or only elements at specific locations, and it may also involve
various transformations of sequences. The similarity between two strings was measured
initially using dynamic programming algorithms, see [1–3]. However, due to time com-
plexity, the use of these algorithms became impractical for the increased size of data
available. While it is natural to position a read in a way to achieve the smallest distance,
the found location may only sometimes be the best one.

With progress related to sequencing hardware and the amount of data provided, we
may often simplify the original problem since many reads overlap. So for each position
within a reference sequence, tens/hundreds of reads have regions similar to a chosen
reference chunk. Ideally, we should align all reads so that there are fewer discrepancies
between each other when aligned. Therefore for the initial step of aligning, for each read,
we can measure the minimum distance (maximum similarity score) between the read
and all possible positions within the reference sequence. Next, however, we should cre-
ate a list of locations with slightly lower similarity scores. And for the next step, we need
to account for all reads to achieve maximum similarity between reads sharing the same
regions.

Choosing the best sequence alignment algorithm may also depend on an experimen-
tal technique used to acquire data. And data collection procedures tend to be prone to
specific errors. For example, scientists usually fragment nucleic acid chains by physical,
enzymatic and chemical approaches. However, the enzymatic process produces more
insertions/deletions (indels) compared to physical techniques [4]. While everyone wants
to acquire many high-quality long reads as quickly as possible and for a small cost, there
is always a compromise: a large number of short (100–300 bp) reads with a reduced

Page 3 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

number of errors or a smaller number of long reads (> 1k bp) with extra errors [5].
Despite different possible approaches to defining distances between two sequences or
similarity scores, we should expect that two close or similar sequences should have many
identical elements ordered in the same way. Therefore we want to avoid checking all
positions within a reference sequence, e.g. billions of positions for a human genome, but
consider a limited number of candidate positions where a read and a reference sequence
have common subsequences (anchors). We may be tempted to consider only those posi-
tions that provide us with the least distance from the read. However, more candidate
positions with higher distance values may give us higher similarity scores when dynamic
programming algorithms are applied. Therefore we need an algorithm to find possible
candidate positions within a specific distance from a read.

In the late 90s, several new algorithms, e.g. BLAST [6, 7], appeared based on ideas of
filtration and indexing. Researchers used short sequence fragments. They require pieces
from the read to be present in a reference sequence to align a read. The search is sped up
using various indexing, which may provide a researcher with “false-matching” positions.
The fragments were considered contiguous segments. Once candidate positions based
on the complete matching of contiguous regions are found, algorithms extend areas
around the common parts to calculate a similarity score (seed-and-extend approach).

Originally only contiguous fragments were considered. However, in [8, 9], spaced
seeds were introduced when elements of sequences were taken into account at specific
positions only. We ignore possible different elements at other positions. For example,
one popular spaced seed is 111010010100110111 introduced in [8]. Elements 1
mean that we take into account possible differences, while in the case of elements 0,
we ignore them. The total number of 1 -elements is called the weight of a seed, and the
total number of all elements of a seed is the length. For the above seed, the weight is 11
and length 18. Let us be given two sequences ATC ATA TCC GTA GCC TCT and ATC ATA
GCC GTT GCA TCT of length 18. There are three mismatches (the seventh, twelfth and fif-
teenth elements from the left), so the sequences are different. However, when the above
mask (seed) is applied, only eleven elements are compared, and all these elements are
identical. Let the first string belong to a reference sequence and the second string belong
to a read. Then the seed provides us with the same “signatures” for these strings. So if we
have indexed all substrings in the reference sequence in the same way, we pre-align the
read and perform an in-depth comparison after. However, if there are two strings ATC
ATA TCC GTA GCC TCT and ACC GTA TCG GTA ACC TCT , then we have four mismatches (the
second, fourth, ninth and thirteenth elements) and only of them are ignored. Therefore
using the indexed library does not allow us to pre-align the read. The goal is to have such
seeds that the corresponding indexed library is good for finding similar strings (allowing
some number of mismatches) but, at the same time, does not have an excessive number
of candidate locations to be checked later.

Some spaced seeds for different weights can be found in [10]. The idea of spaced seeds
was extended for other problems: vector [11], indel [12], and neighbour [13] seeds. In
ZOOM software [14], spaced seeds are generated to perform alignment with at most
two mismatches. In PerM software [15], the authors used so-called periodic spaced seeds
to improve mapping efficiency. Fast alignment-free string comparison based on spaced
seeds (spaced-words) is discussed in [16]. Later approaches based on multiple seeds were

Page 4 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

used, e.g. [17, 18] (a good review can be found in [19]). Seeds in a multiple-seed environ-
ment are designed to have less overlap and thus increase the chances of hitting com-
mon regions. A good bibliography related to spaced seeds can be found in [20]. While
papers for the original BLAST [6] and PSI-BLAST [7] algorithms have very high number
of citations (more than 70 000 and 60 000), the developers of the modern versions of
BLAST agree that the productivity of using spaced seeds is much higher compared to
contiguous seeds [21]. SpeedBLAST is an example of an extension of original BLAST
software based on spaced seeds which is superior in terms of efficiency, especially in the
case of twilight zone hits [22]. Inspired by the results shown in [22] the authors consider
the next step to be the modification of the BLAST algorithm to take advantage of the
spaced seeds designed in this work. The full design of the algorithm for the local align-
ment is out of the scope of the current study.

Seed design may also deal with a non-binary alphabet. For example, in YASS [23] a
three-letter alphabet (#, @, -) is used, where # stands for a nucleotide match, @ is for a
match or transition (A ↔ G or C ↔ T mutations) and - is used when we ignore corre-
sponding symbols.

Computational resources available to researchers for the past 20 years have also
improved significantly. For example, even for a budget computer it is possible to create
a library of records, i.e. data structures of pairs (“key”, “value”). A human genome has a
length of ≈3.2× 109 < 232 bp. Therefore each position (“key”) within the sequence can
be represented as a 32-bit number. Suppose the corresponding “value” for a given posi-
tion depends on n elements around the position in a predefined order (n is the weight
of a seed). If we avoid undefined areas, then each element is one of the following four
symbols A , C , G , T , i.e. requires only 2 bits for storage, e.g. A = 00 , C = 01 , G = 10 and
T = 11 . Therefore each record (“key”, “value”) may require (32+ 2n) bits. Firstly, we cre-
ate a library of records and all these records are ordered by “key” elements which are
unique for each record. Secondly, we sort all records by “values”. The library sorted in
this way may have multiple records for the same index number (“value”). The total size
of the library is at most 3.2 · 109 · (32+ 2n) bits or 8 · 108 · (16+ n) bytes. It is also pos-
sible to split the data into smaller chunks. For example, each chunk has the same first
16 bits of “values”, and we have 216 = 65536 chunks but shorter (16+ 2n)-bit records
or 8 · 108 · (8+ n) bytes in total. So, for n = 16 , the storage requirement is 17.9 GB, for
n = 32 , 48 and 64 we get 29.8, 41.7 and 53.6 GB, respectively.

The human genome contains repeated regions, so there may be extreme cases of many
“keys” or no “keys” for specific “values”. However, by increasing the weight of a seed by
one, we reduce the number of “keys” (positions) for each “value” four times. So, hav-
ing high-weight seeds is our preference. On the other hand, the “patient” genome varies
from the reference genome we know. Therefore the corresponding reads for the “patient”
genome may also have mismatches, insertions, and deletions. Consequently, a candidate
seed should cope with the presence of such deviations. In this paper, we only consider
spaced seeds to deal with a known maximum number of mismatches (single-nucleotide
polymorphisms or SNPs).

The sensitivity of seeds is usually measured using probabilistic approaches. In this
paper, we consider an extreme case of full sensitivity seeds under the assumption that a
read has at most nm mismatches. This means that these seeds should allow us to find all

Page 5 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

candidate positions. Full sensitivity seeds are also known as lossless seeds [24] and were
applied to filtration problems. A lossless filtration means that all fragments will be found
(in the case of lossy filtration, we may miss some of them).

There may be several seeds of the maximum weight. Longer seeds require us to gener-
ate and check fewer index values in the library of records. We observed that most long
high-weight seeds have a periodic structure. However, this structure is not a perfect one
like discussed in [24] where a seed is made of several repetitions of structure A separated
by structure B. We have an integer number of repetitions of structure A and a “remain-
der” of this structure (several first elements of structure A). The size of a periodic block
has a simple relation with the lengths of reads and the seed. It is possible to generate
those periodic blocks within a reasonable time frame (from a fraction of a second for
blocks less than 30 symbols to several hours for cases of 50 symbols).

In the Methods section, we first discuss how to align reads to a reference sequence
when an indexed library of records is used in the presence of possible mismatches. Then,
we touch on ideas of software implementations affecting computational performance
and how they dictate the choice of seeds. Methods to validate candidate seeds and
approaches to speed up validation are proposed. Having a list of all valid short seeds,
we attempt to design longer seeds and explain methods for seed extension. There may
be too many valid seeds, and it is hard to construct them all using the seed extension
approach. Therefore for long reads, it is better to create so-called periodic seeds made
of several same concatenated blocks and a “remainder”. Rules to form these blocks, as
well as whole seeds to be valid, are discussed. In the Results section, we summarise the
properties of periodic seeds, list the most popular spaced seeds and compare them with
seeds designed with the PerFSeeB approach. Software tools are available to create library
of records for given seeds and find candidate positions for reads. By applying the PerF-
SeeB approach to a real dataset, we show that one should check significantly fewer can-
didate positions for several possible mismatches.

Methods
Sequence alignment

Let there be an alphabet A of symbols and two strings x and y of length n consisting
of characters from A . The term distance d(x, y) between two strings x and y was intro-
duced in [25] for binary alphabet A = {0, 1} in the space of 2n points as the number of
mismatches between points x and y. In general, we may introduce a list of elementary
operations which convert a source string x into a target string y. Each function may have
a different cost. The distance is then a sum of all costs. If we cannot transform x into y,
then the cost is ∞ . A good review of possible distances can be found in [26]. The most
common distances are the following ones.

1. Levenshtein (or edit) distance (insertions, deletions, substitutions are allowed at
equal cost of 1) [27]. For example, we may transform word “health” into “shale” as
“health” → “healt” → “heale” → “sheale” → “shale” (2 deletions, 1 substitution, 1
insertion), so d(“health”, “shale”) = 4.

2. Hamming distance (only substitutions) [28].
3. Longest common subsequence distance (insertions/deletions) [29].

Page 6 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

Suppose we have two sequences x = CTTGTCGTTGGAGATCGGAAGAGCA and
y = TAGGTGCTCG of length n1 = 25 and n2 = 10 , respectively. We define
m = n1 − n2 + 1 = 16 and for each index j = 1, . . . ,m we find distance
dj =

n2
k=1 δ(xj+k , yk) , where δ(a, b) = 1 if symbols a and b are different, otherwise

δ(a, b) = 0 . For example, to find d8 we align the corresponding strings and calculate
values for δ(xj+k , yk):

So, d8 = 3 , in a similar way we get d = (6, 5, 9, 7, 6, 9, 9, 3, 7, 8, 7, 8, 8, 8, 7, 7) . We compare
all n2 symbols for both sequences. However, by introducing spaced seeds we may ignore
some symbols. For example, we may use seed of length n2 : 1011011111 (binary nota-
tion used in [8]) or #-##-##### (notation used in [9]), where 1 or # stand for a match
and 0 or - for ‘do not care’. Thus, to find the distance d8 accounting for the spaced seed
we get

or d8 = 1 . Similarly, we get d = (5, 3, 7, 6, 5, 7, 7, 1, 5, 6, 7, 6, 7, 6, 5, 5) . From now, we
will use binary notation as it is closer to binary numbers utilized for storage and
computation.

Now let us consider the library of records. Suppose we have a contiguous seed
s = 1111 of weight w = 4 . So, if we take the first four symbols of vector x, then we
encode string CTTG as 1+ 4 · 3+ 42 · 3+ 43 · 2 = 1+ 12+ 48+ 128 = 189 (if we set
A = 0 , C = 1 , G = 2 , T = 3). Therefore the library of records for the reference sequence
x and seed s has 22 pairs (“key”, “value”):

Similarly, we may find “values” for sequence y:

We may see that no “values” for y can be found in the library generated for x. Therefore
the use of “seed and extend” approach does not allow us to align y with respect to x,
since no candidate positions can be found.

Suppose we use seed s = 101011 (also of weight 4). We generate a new library for x
(now containing 20 pairs):

string 1 CTTGTCGTTGGAGATCGGAAGAGCA

string 2 _______TAGGTGCTCG________

δk _______0100101000________

string 1 CTTGTCGTTGGAGATCGGAAGAGCA

string 2 _______TAGGTGCTCG________

δk _______0100101000________

seed _______#-##-#####________
new δk _______0000001000________

(1,CTTG = 189) (2,TTGT = 239) (3,TGTC = 123) (4,GTCG = 158)
(5,TCGT = 231) (6,CGTT = 249) (7,GTTG = 190) (8,TTGG = 175)
(9,TGGA = 43) (10,GGAG = 138) (11,GAGA = 34) (12,AGAT = 200)
(13,GATC = 114) (14,ATCG = 156) (15,TCGG = 167) (16,CGGA = 41)
(17,GGAA = 10) (18,GAAG = 130) (19,AAGA = 32) (20,AGAG = 136)
(21,GAGC = 98) (22,AGCA = 24)

TAGG = 163,AGGT = 232,GGTG = 186,GTGC = 110,

TGCT = 219,GCTC = 118,CTCG = 157.

Page 7 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

For sequence y we get “values”:

There are three “values” (187, 104 and 122) found in the new library. Therefore we need
to try three positions: 5− 1+ 1 = 5 , 19− 2+ 1 = 18 , 11− 4 + 1 = 8 . For the first posi-
tion (5) we get

and d5 = 6 , the second position (18) cannot be used, since the aligned string y will be
out of the range for string x and the third position (8) gives us

and d8 = 3 . So, the seed 101011 allows us to find the best alignment position of y with
respect to x.

We are interested in aligning genetic sequences. Reference sequences may consist
of several separate sequences. For example, T2T_CHM13v2.0 Telomere-to-Telomere
assembly (see [30]) contains 24 separate sequences of four symbols A, C, G, T. However,
GRCh38.p14 release has 705 separate sequences (chromosomes, genomic scaffolds and
patches) and five symbols (A, C, G, T, and N for unknown symbols). We may always con-
catenate separate sequences into one long sequence by adding extra “void” symbols in
between to avoid forming library records containing symbols from different original
sequences. In the case of the T2T reference genome, we may use two bits to encode each
symbol. For the GRCh38.p14 reference genome, we have five possible values to combine
every three consecutive symbols into a 7-bit number (as 53 = 125 < 128 = 27). So, if we
do not use any data compression, then storing the T2T sequence may require 0.73 GB,
and for GRCh38.p14, we need about 0.84 GB. These numbers are minimal, even for a
budget computer. Therefore we may use more storage space to achieve better perfor-
mance. The 2-bit encoding is preferable even if we need to exclude some substrings con-
taining any character except A, C, G, T.

Modern computers allow users to exploit SIMD (single instruction, multiple data)
properties of CPUs (central processing units). For example, one instruction can be
applied to a 128-, 256- or 512-bit number. CPUs can do various logical and shift opera-
tions very fast. A list of Intel’s SIMD intrinsics designed for various CPU instruction sets
can be found in [31]. Most computers (servers, workstations and home computers) built
for the past decade support the 128-bit instruction set. Thus, we will use 128-bit instruc-
tions. There are similar instructions for 256- and 512-bit numbers, so the ideas discussed
in the paper can also be applied for new architectures.

(1,CTTC = 125) (2,TGCG = 155) (3,TTGT = 239) (4,GCTT = 246)
(5,TGTG = 187) (6,CTGG = 173) (7,GTGA = 46) (8,TGAG = 139)
(9,TGGA = 43) (10,GAAT = 194) (11,GGTC = 122) (12,AACG = 144)
(13,GTGG = 174) (14,ACGA = 36) (15,TGAA = 11) (16,CGAG = 137)
(17,GAGA = 34) (18,GAAG = 130) (19,AGGC = 104) (20,AACA = 16)

TGTG = 187,AGGC = 104,GTCT = 222,GGTC = 122,TCCG = 151.

string 1 CTTGTCGTTGGAGATCGGAAGAGCA

string 2 ____TAGGTGCTCG___________

δk ____0101001111___________

string 1 CTTGTCGTTGGAGATCGGAAGAGCA

string 2 _______TAGGTGCTCG________

δk _______0100101000________

Page 8 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

We may split the reference sequence into groups of 32 symbols, then form 128 bits
such that the first 32 bits are 1s if the corresponding symbols are A, the second 32 bits
are for symbols C, the third and fourth groups of 32 bits are for G and T, respectively. For
example, the string CATAGNCAC GTG ATC CTA GNCAT GTT ACC TGT of 32 symbols has the
following components

If an element is N symbol, then the corresponding bits of all four 32-bit numbers are
zeros. We use symbol “|” for logical OR operation, similarly, symbol “&” is for logical
AND operation.

Let there be two sequences of length 32. We want to find how many symbols are the
same for them (if one symbol is N, then there is no match).

There are nine such symbols. We may apply logical AND operation for corresponding
32-bit components of m1 and m2

Since 0x00221000 | 0x00008000 | 0x00000000 | 0x21410400 =
0x21639400, then the number of 1-bits in 0x21639400 equals 9 and is the total
number of matches. Now we approach the main goal of the manuscript, i.e. how to
design seeds that will allow us to find candidate positions.

Choice of seeds

Suppose there is a short sequence we want to align (read) for a known long reference
sequence. The length of the read is nr . We may always assume that a read contains only
four symbols (A, C, G and T). While there may be cases of reads containing symbols N
for unknown letters, the number of such cases is often negligible. Let there be a seed s of
length ns (total number of all bits, 1s and 0s) and weight w (the number of 1s). If we have
1-bit, then the corresponding symbol for a given sequence is taken into account; other-
wise (in the case of 0-bit), it is ignored. We may also assume that a seed’s first and last
bits are 1-bits. Contiguous seeds have only 1-bits, and the lengths and weights of these
seeds are equal. Spaced seeds have at least one 0-bit.

Seeds allow us to form a shorter sequence from a longer one. We apply a seed of
length ns to a sequence of the same length and form a new sequence of length w when
symbols of the original sequence are in front of 1-bits of the seed. We consider the
new shorter sequence as a characteristic/signature of the longer sequence. In the case

sequence CATAGNCACGTGATCCTAGNCATGTTACCTGT 32-bit number
A 01010001000010000100010000100000 0x0422108a

C 10000010100000110000100000011000 0x1810c141

G 00001000010100000010000100000010 0x40840a10

T 00100000001001001000001011000101 0xa3412404

A|C|G|T 11111011111111111110111111111111 0xfff7ffdf

m1 CATAGNCACGTGATCCTAGNCATGTTACCTGT

m2 GCCTCAGTTTTCACTCTATCAATATGTAATAA

m1 & m2 __________T_A__CTA___AT_T____T__

A C G T

m1 0x0422108a 0x1810c141 0x40840a10 0xa3412404

m2 0xd8b21020 0x0008a816 0x02000041 0x25454788

m1 & m2 0x00221000 0x00008000 0x00000000 0x21410400

Page 9 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

of a 4-letter alphabet, we may perform one-to-one mapping of the short sequence and
a 2w-bit number. We use these numbers to find pairs of (“key”, “value”) in the library
of records generated for the reference sequence. These pairs should have “value”-
components equal to our 2w-bit numbers. We may generate only (nr − ns + 1) 2w-bit
numbers for each read since the first and last bits of a seed should be within the read’s
boundaries.

Suppose we have a seed of weight four, and by applying it at some reads’ position, we
get “value” ACGT . Let there be N pairs in the reference library with the same “value”.
Now we expand the original seed and assume the new seed at the chosen position will
also be within reads’ boundaries. This means that the new seed may provide us with four
new “values” (ACGTA , ACGTC , ACGTG , ACGTT). The number of (“key”, “value”) pairs
found for the new seeds will be less or equal to N. For example, if the reference sequence
is AGT GAC GT, then we have one pair for ACGT and no pairs for the 5-symbol sequences.
Of course, it might happen that the number of pairs in the library generated for “value”
ACGTA is N, and there are no pairs found for ACGTC , ACGTG and ACGTT . However, we
may often think that the number of pairs for each 5-symbol sequence is around N/4.

For a library of records generated for a reference sequence we may estimate the total
number of pairs found for a given “value” as α/4w , where α is a constant. We gener-
ate (nr − ns + 1) numbers (“values”) for a read. Based on the above empirical rule, we
should expect to consider about α(nr − ns + 1)/4w candidate positions in the reference
sequence where we try to align the given read. Each “value” is found for a substring of
a read with a given shift. Since the goal is to pre-align the read, the “keys” we found
should be corrected by the corresponding shifts of a substring to the read’s first element.
For example, if a read has an exact match within a read, then all its “values” should also
have an exact match. So, in the best scenario, we should have about α/4w unique can-
didate positions (when a read can be placed exactly at several locations of the reference
sequence). However, it is better to estimate the number of candidate positions from the
above as

This number indicates what steps we should perform to reduce the number of candi-
dates’ locations and thus improve performance of sequence alignment algorithms. The
steps are

1. find seeds of maximum weight,
2. among the found seeds choose seeds of maximum length.

Of course, the trivial approach is to maximise ns and w. So, a contiguous seed of length
nr is the best candidate. However, there are restrictions as we should account for various
mismatches between the reference and “patient” sequences. In this paper we consider
only pointwise mismatches (SNPs) and suppose all reads have at most nm mismatches.
Hereafter, we assume that all seeds we try to find meet this rule.

(1)α
nr − ns + 1

4w
.

Page 10 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

• Let there be two arbitrary reference and read sequences such that the read can be
aligned with no more than nm mismatches. Then at least one “value” for the read should
be paired with the records from the library generated for the reference sequence.

Suppose there are two seeds s1 and s2 and we may align s1 with respect to s2 in such a way
that all 1-bits of seed s1 are also present in s2 . Then s1 is a subset of s2 and can be denoted as
s1 ⊂ s2 . For example, if s1 = 10111 , s2 = 11011101 , then by shifting s1 by one element to
the right we get

Note that there may be multiple possible shifts and s1 may have more 0-bits. For exam-
ple, s3 = 10101 ⊂ s1 and we get two possible alignments

Seed s4 = 1101011 �⊂ s2.
The human genome has many repeated regions, so several candidate seeds have similar

weights/lengths. Therefore, it is reasonable to choose a seed with a more uniform distribu-
tion of 1-bits rather than seeds with grouped 1-bits. In any case, if we have many repeated
experiments providing us with reads of the same length for a known reference sequence, it
is worth performing a statistical analysis of the “keys” distribution to avoid cases when for
some “values” we have thousands of “keys”.

According to [24], we may consider two main alignment problems: lossless alignment
when we detect all locations in the reference sequence and lossy alignment when we may
miss some of them. As for any statistical analysis, we may have true-positive (TP), true-
negative (TN) and false-positive (FP) and false-negative (FN) events. We aim to find seeds
that provide us with lossless alignment. Therefore for a given read and seed, we construct
all “values” according to the procedure described above, and then we do not miss any can-
didate location. Thus the number of false negative events is zero. Since

then for our seeds FN = 0 and sensitivity = 100% . So, our seeds have full sensitivity or
we have lossless seeds.

Seed validation

Let us consider an example. We check if seed s = 110101011001011 is a full sensitivity
seed for reads of length 20 and at most two mismatches. The length of s is 15. Therefore
there are (20− 15+ 1) = 6 possible positions of the seed with respect to a read. We shift
the seed and pad it with zeros (five extra zeros for each row). Thus we get the following six
rows of length 20:

s2 11011101

s1 _10111__

s2 11011101

s3 _10101__

s3 ___10101

(2)sensitivity =
TP

TP+ FN
,

Page 11 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

A seed is valid if for any two positions of mismatches within a read, there is at least one
row of the matrix with both 0-elements at the given columns. For example, we choose
columns 7 and 12, then we may pick up the third row with both 0-elements (underlined):

Note that 0-elements can be from the original seed or the padded ones. For example, if
we choose columns 5 and 16, then the last row of the matrix has both 0-elements (the
first 0-element is the padded element):

However, if we choose columns 4 and 13, then for each row of the matrix there is at least
one 1-element:

Therefore seed s = 110101011001011 is not a valid full sensitivity seed for nm = 2 ,
nr = 20 . To check validity we should check all possible combinations, for the above
example we have to check C2

20 ≡ 20!/2!(20− 2)! = 190 cases, where m! ≡ 1 · 2 · 3 · · ·m .
For example, we have two sequences AAA AAA AAA AAA AAA AAA AA (reference sequence)
and AAA TAA AAA AAA TAA AAA AA (read). For the reference sequence we create its library
of records:

i.e. all “values” are the same. The read provides us with the following six “values”:

There is no read’s “value” equal to “values” in the library.
Now consider a general case. Let there be a seed s of length ns . We want to check if

the seed meets the full sensitivity requirement for any read of length nr and a maxi-
mum number of nm mismatches. Suppose nm and nr are set. Then we create nm-vector
of indices ik , k = 1, 2, . . . , nm such that 1 ≤ ik ≤ nr . By definition, the length of a seed
is not greater than the length of a read, ns ≤ nr . We may shift the first element of a

L1 = 11010101100101100000,

L2 = 01101010110010110000,

L3 = 00110101011001011000,

L4 = 00011010101100101100,

L5 = 00001101010110010110,

L6 = 00000110101011001011.

00110101011001011000

00000110101011001011

11010101100101100000

01101010110010110000

00110101011001011000

00011010101100101100

00001101010110010110

00000110101011001011

(1,AAAAAAAAA), (2,AAAAAAAAA), (3,AAAAAAAAA),

(4,AAAAAAAAA), (5,AAAAAAAAA), (6,AAAAAAAAA),

AATAAAAAA, AAAAAATAA, ATAAAAAAA,

TAAAAAAAA, AAAAATAAA, AAAATAAAA.

Page 12 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

seed by δ with respect to the first element of the read. As the last element of the seed
should be within the read’s elements, then δ can vary from 0 to (nr − ns) . For each
value of δ , we check that none of the 1-elements of the seed shifted by δ has indices
ik , k = 1, 2, . . . , nm . If for any possible combination of indices ik , there is at least one
value of δ (depending on ik , k = 1, . . . , nm), the requirement is met, then the seed is a
valid seed for given nm and nr.

Parameter δ has (nr − ns + 1) values. By padding the seed vector with 0-elements from
left and right, we can form (nr − ns + 1) vectors of length nr . We pad from left and right
and the total number of 0-elements to be used for each vector is (nr − ns) . One may per-
form padding differently; however, it may be more convenient to have the first element of
the seed aligned with the first element of the read for the first vector. The next vectors are
just the previous vectors padded by one 0-element from the left (as is done above). Or we
may align the last elements of the seed and read and pad by 0-element from the right.

In any case, for a given seed, we form (nr − ns + 1) vectors of length nr . We generate all
possible combinations of ik indices. There are nm indices, and we want them to be different.
Thus we get

such combinations. If, for any of these combinations, all (nr − nm + 1) vectors/rows con-
tain at least one 1-element for chosen indices ik , then the seed cannot be used. Other-
wise, the seed meets the requirements, i.e. it is a valid seed.

Now we discuss how to perform seed validation as vector operations. As it is shown
above, by padding seed s of length ns with 0-elements from the left and right, we create
(nr − ns + 1) rows Lp of length nr . If there are nm mismatches, then we need to process
Cnm
nr

 cases. We create a vector V for each case, so all its elements are 1s except nm elements,
which are 0-elements. For the first example, we choose elements 7 and 12, so one can
write the corresponding V1 vector as V1 = 11111101111011111111 . Then one needs
to check that V |Lp equals V for at least one index p = 1, . . . , (nr − ns + 1) . For the above
example, we check L3:

so we get V1|L3 = V1 . Note that logical OR operations are bitwise, i.e., applied to each
element of a vector.

The third example (elements 4 and 13) gives us vector V3 = 11101111111101111111 ,
then for all vectors Lp , p = 1, . . . , 6 , we find V3|Lp:

(3)Cnm
nr

≡
nr !

nm!(nr − nm)!

V1 = 11111101111011111111,
L3 = 00110101011001011000,
V1|L3 = 11111101111011111111,

V3|L1 = 11111111111101111111 �= V3,
V3|L2 = 11101111111111111111 �= V3,
V3|L3 = 11111111111101111111 �= V3,
V3|L4 = 11111111111101111111 �= V3,
V3|L5 = 11111111111111111111 �= V3,
V3|L6 = 11111111111111111111 �= V3.

Page 13 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

Therefore, one cannot use the seed for the given combination of indices, and, as a result,
it cannot provide us with full sensitivity. Only when the procedure is successful for all
Cnm
nr

 combinations, then the seed is valid.
It is clear that if we pad all vectors Lp and V with 1-elements, then the validation crite-

rion is still valid since 1|1 = 1 . Therefore we may use various SIMD intrinsics to perform
logical OR operations on 128-bit numbers.

There is an alternative approach to validating seeds. We create nr binary vectors (col-
umns) Ut , t = 1, . . . , nr , of length (nr − nm + 1) , see Fig. 1. As before, we may pad them
with 1-elements to form numbers of a given length, e.g. 32-, 64- or 128-bit numbers. The
task is to consider all Cnm

nr
 combinations of columns Ut , perform logical OR operations,

i.e.

and check if the resultant column has all 1-elements (let us call it the saturated vector).
Now we try to reduce the number of columns. We may identify the same columns and

leave only different ones (remove 10 out of 36 columns in the example in Fig. 2). So, as
nm = 4 and nr = 36 , then instead of C4

36 = 58905 combinations, we should check only
C4
26 = 14950 . The next step is identifying those columns that are subsets of other col-

umns. We denote Uk ⊂ Um if Uk |Um is Um . This means that all 1-elements of column Uk
are also 1-elements of Um (however, there may be positions such that element q of Um
is 1-element but element q of Uk is 0-element). For example, U14 = (0010000100)T ,
U19 = (0010001100)T and U14 ⊂ U19 . If there is a combination of vectors Uk that
includes U14 and provides us with the saturated resultant vector, then the same combi-
nation but with U19 also provides us with the saturated vector. So, we may exclude U14 .
Removing columns that are subsets of other columns allows us to decrease the number
of combinations further. For the example in Fig. 2, we excluded extra 16 columns, so the
total number of combinations is C4

36−10−16 = C4
10 = 210 , i.e. the number of combina-

tions we need to check is 280 times fewer compared to the original case.
We may use similar approaches when forming resultant columns. Suppose nm > 2 . As

Ui1 |Ui2 = Ui2 |Ui1 and Ui1 |Ui1 = Ui1 , then we vary i1 from 1 to (nr − 1) and then i2 from
(i1 + 1) to nr , so we consider n(n− 1)/2 combinations. Ut are binary vectors, so the

(4)Uj1 |Uj2 | . . . |Ujnm ,

Fig. 1 Seed validation based on columns. When the requirement is met, the row is in green colour,
otherwise, in red colour

Page 14 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

resultant vectors or OR operations. So all vectors can be considered as numbers in binary
representation and sorted in ascending/descending order. Likely, some of the n(n− 1)/2
resultant vectors are the same, so we exclude them. Therefore by keeping resultant vectors
for intermediate steps and checking if new vectors (i.e. Ui3) are subsets of vectors from the
set of intermediate resultant vectors (i.e. Ui3 ⊂

(

Ui1 |Ui2

)

), we may speed up processing.

Seed expansion

The first and last elements of a seed are 1-elements. There is only one seed of length 1 (1),
one seed of length 2 (11), two seeds of length 3 (101, 111), four seeds of length 4 (1001,
1011, 1101, 1111). Therefore for a read of length nr , there are

(5)1+ 1+ 2+ 4 + . . .+ 2nr−2 = 2nr−1

Fig. 2 Reducing the number of combinations when checking seed’s validity

Page 15 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

seeds in total. As validation of each seed is also quite time-consuming, we
should identify ways to reduce the number of candidate seeds. For example, seed
10001110100100011101 is valid for nr = 30 and nm = 3 . Any subset of this seed is
also valid (seeds of a lower weight). So, 1110100100011101 (the first four elements
of the original seed are removed), 100011101001000111 (the last two elements),
10001010100100010101 (two random 1-elements are removed) are also valid seeds.
Therefore, we can implement the following procedure.

1. Suppose we have already found all valid seeds of length less or equal to k.
2. We pad all these seeds with 0-elements from their right ends, so we get vectors of

length k.
3. We concatenate them with 1-element (also at the right ends of the padded seeds).
4. Before applying the validation procedure, we form a seed by removing the first 1-ele-

ment and all 0-elements from the left end and checking that the seed is in the list of
valid seeds.

For example, if an original valid seed was 100111011 (of length 9), and we aim to find
valid seeds of length 13, then the extended seed is 1001110110001, and we need to
check if 1110110001 is already in the list of valid seeds.

Clear that a seed is valid if and only if the reverse seed (the order of elements is
reversed) is valid. So, seeds 1001110110001 and 1000110111001 are valid (or are
not valid) simultaneously.

Periodic seeds

The above procedure allows us to reduce the number of candidate seeds. However, there
are still a lot of seeds to be validated, so finding all possible seeds for a read’s length of
more than 45 is very slow. However, we can observe a very important property. When
for given nr and nm we find all seeds of maximum weight, then there are almost always
periodic seeds such that

where T is the size of the periodic block. Such seeds have a whole number nb of
these periodic blocks and the “remainder” (the first nd > 0 elements of the block), so
ns = nb · T + nd.

For example, for nr = 17 and nm = 3 we get three pairs of seed: 111011, 1101000011,
1100100011 (and the reversed seeds). For the first seed, we have 111011 = 1110+ 11 ,
so T = 4 and ns = 6 . We check that ns + T − 1 = 6+ 4 − 1 = 9 �= 17 = nr . How-
ever, for the second seed we get 1101000011 = 11010000+ 11 , T = 8 , ns = 10 , so
ns + T − 1 = 10+ 8− 1 = 17 = nr . Thus, for four seeds Eq. (6) is met but for other two
seeds it is not.

There may be seeds of different period T for the same length nr of a read. For example,
in Fig. 3 there are seeds found for nr = 43 , nm = 4 . The maximum weight is w = 12 . We
get two pairs of seeds for T = 19 , three pairs for T = 17 and one for T = 13.

Note that when one can find such seeds, other (shorter) seeds are often available.
There are also several exceptions from the observation. For example, for some values

(6)nr = ns + T − 1,

Page 16 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

of nr and nm , we may have seeds such that (6) is valid for smaller values of nr , e.g.
nr − 1 , nr − 2 . However, there may be cases when the formula is not true for the best
seeds. See Table 1. For example, if nr = 16 , nm = 5 the best seeds are 1101 and 1011
(ns = 4 and T = 3), so ns + T − 1 = 4 + 3− 1 = 6 �= 16 . However, for 80% of read
lengths, formula (6) is valid for a given value of nr , for 87% is true for smaller values
of nr.

Suppose there is a periodic seed such that ns = nbT + nd and formula (6) is true. We
want to check if a seed is valid for a given nm ; see Fig. 4. We need to generate indices jk ,
k = 1, . . . , nm such that 1 ≤ jk ≤ nr and check if the resultant column Uj1 |Uj2 | . . . |Unm
is the saturated vector. A periodic block should meet the same requirements if the
seed is valid. For this purpose, we choose jk such that (1+ T) ≤ jk ≤ 2T . Now we

Fig. 3 All seeds of maximum weight (12) found for reads of length 43, number of mismatches is 4. Reversed
seeds are not shown

Table 1 Exceptions from the observed formula

If the formula is valid for shorter reads, then the corresponding nr is in parentheses, otherwise (×)

nm nr , min nr , max Exceptions (nr values)

2 12 42 no

3 11 42 11 (×), 13 (12), 39 (38)

4 20 52 no

5 13 50 13 (12), 16 (×), 17 (×), 19 (18), 20 (×), 47 (46)

6 14 53 15 (14), 17 (16), 19 (18), 23–26 (×), 34 (×), 38 (×), 39 (×),
47 (×), 48 (×), 52 (×)

7 16 46 17 (16), 19 (18), 21–23 (×), 25 (24), 26 (×), 27 (×), 29 (28),
43 (×), 45 (44)

8 18 46 19 (18), 21 (20), 23–26 (×), 28–32 (×), 34 (33), 42–44 (×)

Page 17 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

assume that the resultant column for the periodic block is not the saturated one for
all possible combinations of indices. For any index jk , 1 ≤ jk ≤ nr , we may write down
jk = j∗k +m · T , where (1+ T) ≤ j∗k ≤ 2T and m is an integer number. Therefore
Ujk ⊂ Uj∗k

 and instead of Ujk we may consider Uj∗k
.

Periodic blocks

We validate a periodic block as the whole seed:

• generating all possible combinations of indices jk , k = 1, . . . , nm , such that
1 ≤ jk ≤ T ;

• checking if the resultant column is the saturated one.

A periodic block is valid if and only if its reverse is valid. We may also perform a
cyclic rotation of elements of the block; those new blocks are valid at the same time.
As a result, we have groups of 2T periodic blocks of length T (some may be identical)
that are valid/not valid simultaneously. We call them equivalent blocks. Therefore it
is enough to consider the validity of only one block. To reduce the number of blocks
to be considered, we require that the first element is always 0-element and the last
element is always 1-element. See examples of equivalent blocks generated for a given
periodic block in Fig. 5.

We need a procedure to choose only one block instead of 2T blocks. Of course, for
some blocks (e.g. 00101101), there may be cases of identical blocks obtained via rever-
sion/cyclic rotation. By varying indices jk , we create patterns of 0-elements. Those pat-
terns should be within the periodic block (or one of the equivalent blocks obtained by
cyclic rotation) since there should be a row such that the corresponding elements of the
chosen columns are all 0-elements. Therefore each periodic block must have a contigu-
ous chunk of nm 0-elements. Thus when we generate various periodic blocks, we may
always assume that the first nm elements are 0-elements.

To choose one block, we pick up the one with the highest number of 0-elements at the
beginning. Among blocks obtained for the reverse block, there will also be a block with
the maximum number of 0-elements. Then, we need to perform a further comparison.
We may count the number of 1-elements in contiguous blocks from the left/right side
of the zero-block and choose the block with fewer 1-elements. If the contiguous blocks

Fig. 4 A seed is valid only when its periodic block is valid

Page 18 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

are the same, then consider neighbouring blocks of 0-elements (and choose the smallest
one). We repeat the procedure if it is needed.

Algorithm 1 allows us to validate a block, i.e. check if it can be used for reads of at
most nm mismatches. Suppose we have a binary vector s of length T. By performing
a cyclic rotation of the vector when the last n elements of the vector become the first
elements of a new vector (the order of elements is preserved), we generate T vectors
ηi of length T. Then we just need to consider all possible combinations of nm vectors
and check if the resultant vector obtained by applying logical bitwise OR operation is
the saturate vector, i.e. the vector with all 1-elements. For this purpose we create nm
indices kp , p = 1, . . . , nm . When we have nm binary vectors and apply OR operation,
then the order of vectors does not matter. Therefore we may assume that kp < kp+1 ,
p = 1, . . . , (nm − 1) . So, we initialise the indices as kp = p , p = 1, . . . , nm , and to create
a new set of indices we increment the last index knm . When knm reaches the maximum
value (T), we start incrementing the previous index knm−1 and reset knm to the smallest
value permitted. This procedure is applied in a similar way to other indices. Clearly, that
if after incrementing of kp by one we get kp equal to (T + p− nm + 1) , then we should
increment kp−1 are reset all other indices kp, kp+1, kp+2,

Fig. 5 Equivalent periodic blocks generated for block 101110100100010011100001101010001010
1. Only blocks with the first 0-element and last 1-element are shown. The bottom part is for the reverse block.
The circled block is the one we choose from the group

Page 19 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

The algorithm should stop when p− 1 = 0 . However, we may stop earlier when
p− 1 = 1 . This means that we may actually always set k1 = 1 . Suppose that we have an
arbitrary combination of ordered indices kp , p = 1, . . . , nm and form a resultant vector v
after applying bitwise OR operations. However we may create another set of indices k̄p
such that k̄p ≡ (kp − k1)%T + 1 . The resultant vector found for kp indices is the resultant
vector found for k̄p indices but after the cyclic shift by (k1 − 1) elements was performed.
So, both resultant vectors are (or are not) saturated at the same time.

We store intermediate nm resultant vectors up and perform bitwise OR operation with
the corresponding ηkp to find up+1 . If ηkp is a subset vector for up , then as it was discussed
in previous subsections we may ignore ηkp and consider other vectors.

As we want to find seeds of maximum weight, it is reasonable to find periodic blocks
of maximum weight. Suppose there are blocks found for weight w. By replacing 1-ele-
ments with 0-elements we form periodic blocks of weight (w − 1) . However, there may
also be blocks of weight (w − 1) that cannot be formed by replacing 1-elements in blocks
of weight w. For example, there are five blocks for T = 11 , nm = 2 and weight w = 7 :
00011011111, 00101011111, 00101110111, 00101111011, 00110101111.
Block 00010110111 of weight w = 6 cannot be formed from those blocks. Seeds are

Page 20 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

formed of an integer number of periodic blocks and a “remainder”. Therefore, there is a
possibility that the best seeds are formed of blocks of non-maximum weight. However,
when we generated seeds of non-maximum weight, they never formed seeds of weight
larger than seeds formed from maximum-weight blocks.

Thus to generate all seeds of maximum weight for blocks of length T and nm mis-
matches we set maximum weight w (at most T − nm) and consider all binary vectors
such that the first nm elements are zeros and the last element is one. Then validate these
seeds using Algorithm 1. If no seeds are found for a given w, then reduce w by 1 and gen-
erate a new set of candidate vectors.

All ideas mentioned above allow us to reduce the number of blocks to be validated. It
is also possible to parallelise processing so each CPU thread validates only specific seeds
from a pre-generated list. Together with SIMD instructions for validation steps, we sped
up the generation of periodic blocks. It may take less than a second for nr < 35 , however,
finding periodic blocks for nr ≈ 50 may still take hours as trillions of blocks should be
validated.

Algorithm 1 for validation of seed blocks can be implemented on various compu-
tational architectures. The authors implemented it using various SIMD operations.
The algorithm’s performance will depend on input parameters and possible optimisa-
tion done by a compiler and specific elementary operations. This algorithm has five
major operations: OR, XOR, binary shift and extraction of a number applied to 128-
bit numbers (all SIMD operations) and elementary addition (as increment/decrement
operations) for 32-bit numbers. We may ignore the time spent on other operations. In
principle, the number of XOR, binary shift and extraction operations is the same for this
algorithm. So, validating a single block will take about O(nOR + 3nXOR + nadd) elemen-
tary operations. Thus, we mention only OR (nOR), XOR (nXOR) and elementary addition
(nadd) operations. These numbers are in Table 2. We may see that the ratio nXOR/nOR is
almost the same (≈ 0.92), while nadd/nOR is increased with nm (from 0.3 for nm = 2 to
0.9 for nm = 9). The total number of OR operations may differ for different T; however,
we usually see a five-fold increase when nm is increased by one. The main issue when
generating all possible seed blocks is exponential (as a function of T, different functions
for different values of nm , e.g. ∼ T 12 or T 20) increase of the number of blocks to be vali-
dated even after various procedures to reduce the number of candidate blocks.

The times needed to generate periodic blocks depend on CPU architecture. Run times
for Intel Core i5-9600K processor (6 cores, 12 threads, base frequency 3.70 GHz) can be
found in Table 3 and Fig. 6. One may see that calculations for nm = 4 are the slowest,
and in this case, the run times increase exponentially as 2.85 · 10−10 · 2.03T (in seconds).
If blocks are less than 30, we can perform all calculations in less than a second. When
blocks have 40 elements, we need an hour to complete the task, while 50 elements may
require us to spend a week or use a CPU with tens of cores.

Forming periodic spaced seeds

The final step of PerFSeeB approach (periodic full sensitivity blocks) is to form
spaced seeds of maximum weight. For this purpose, we consider all periodic blocks

Page 21 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

formed for a given number nm of mismatches. As ns = nbT + nd , nb ≥ 1 , 1 ≤ nd < T ,
and nr = ns + T − 1 , then nr = nbT + nd + T − 1 = (nb + 1)T + (nd − 1) ≥ 2T or
T ≤ nr/2 . For each periodic block we form all equivalent blocks and check if

1. the first symbol of the equivalent block is 1-element,
2. the nd-th element is also 1-element.

In principle, there is no need to consider blocks obtained from the reverse periodic
block as the final seed will be a reverse of seeds formed from the original block. Once
the seed is formed we count its weight. By processing all periodic blocks we find seeds

Table 2 Number of operations used for Algorithm 1: number of mismatches (nm), length of a
periodic block (T), total number of seeds to be validated (# tests), averaged numbers of SIMD OR
(nOR), XOR (nXOR) and standard addition (nadd) operations for each binary block as an absolute
number or as percentage of nOR operations

nm T # tests nOR nXOR % of nOR nadd % of nOR

2 30 2391 218 194 89 74 34

2 35 6259 174 150 86 51 29

2 40 66,542 206 182 88 67 33

2 50 330,586 161 137 85 45 28

2 60 7,780,954 169 145 86 49 29

3 25 6296 459 419 91 188 41

3 29 88,578 955 906 95 464 49

3 33 595,263 387 350 90 145 37

3 38 14,780,813 571 532 93 241 42

4 25 4989 2858 2724 95 1630 57

4 29 68,931 3405 3274 96 1893 56

4 33 966,747 4292 4153 97 2361 55

4 38 32,240,220 1501 1437 96 730 49

5 25 780 105,377 97,501 93 77,081 73

5 29 13,668 30,507 28,945 95 19,946 65

5 33 229,001 14,869 14,342 96 8865 60

5 38 9,574,775 6432 6238 97 3566 55

6 25 283 80,726 74,048 92 61,606 76

6 30 7520 32,220 30,638 95 21,071 65

6 35 200,437 29,377 28,254 96 18,128 62

6 38 502,937 320,811 305,715 95 208,510 65

7 25 83 176,631 158,692 90 146,921 83

7 30 6205 7026 6672 95 4362 62

7 33 5173 717,404 665,819 93 526,252 73

7 38 448,976 31,566 30,395 96 19,488 62

8 30 728 92,676 85,827 93 70,045 76

8 35 1909 32,199,261 29,015,989 90 26,230,401 81

9 30 177 2,632,939 2,267,998 86 2,547,863 97

9 35 1784 1,722,183 1,556,851 90 1,419,823 82

Page 22 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

of maximum weight. The detailed procedure is shown in Algorithm 2. We assume
that we already have files with periodic blocks found for a set of lengths, from Tmin to
Tmax , and valid for at most nm mismatches. After application of Algorithm 2 we get a
list � of nsol periodic seeds of maximum weight. Note that for the same weight w and
the number of mismatches nm we may have seeds made of periodic blocks of differ-
ent length/weight. Time required to run Algorithm 2 is the sum of times to process
all blocks available for given values of nm and T. While the number of valid blocks is
different for a pair of nm and T (from single entries to a million), it takes at most 5 s on
Intel’s i5-9600K CPU to find the best seed for a given length of a read.

Fig. 6 Times required to generate periodic blocks of maximum weight for a given number of mismatches nm
and a known block size

Table 3 Calculation times (in seconds) for Algorithm 1 for Intel Core i5-9600K processor (nm is the
number of mismatches, T is the size of the periodic block)

T nm = 2 nm = 3 nm = 4 nm = 5 nm = 6 nm = 7 nm = 8 nm = 9

25 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.01

30 0.05 0.69 1.10 0.28 0.16 0.05 0.04 0.35

35 0.05 10.45 16.11 5.87 2.43 2.09 15.82 1.08

38 0.41 73.85 141.16 48.25 45.46 5.73 22.41 3.64

40 0.63 48.71 551.05 203.14 106.70 27.52 32.51 8.40

42 0.93 849.18 2257.21 809.38 235.92 88.09 53.71 34.19

45 1.60 6105.13 19,009.34 6611.98 2797.29 1058.58 315.64 136.01

Page 23 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

Results
Periodic seeds and their properties

We have written a code to generate the best periodic blocks of size T for a given number
nm of mismatches. A user can specify an initial number n1 of 1-elements in those blocks.
If no valid blocks are found for a given n1 , then the value of n1 is incremented by one and
the procedure restarts until at least one valid block is found. The code was applied for nm
values from 2 to 9, and for T values from 10 to 50 (and from 10 to 70 for nm = 2). Maxi-
mum weight n1 and density of best blocks (defined as n1/T) are shown in Table 4.

Note that while values n1 and ρ tend to increase with the block size, they are not
monotonic in general. See examples for nm = 5 and nm = 8 in Fig. 7 (more figures are in
Additional file 1).

When all maximum-weight blocks are found for a given range of T, we may find peri-
odic spaced seeds of the maximum weight for any given value of nr . Of course, there
may be cases of seeds composed of periodic blocks of different sizes. For example, if the
length of reads is nr = 35 , the maximum weight of possible seeds is w = 17 and there are
seeds formed for blocks of sizes 7, 10, 11, 13, e.g.

Page 24 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

• T = 7 , nb = 4 , nd = 1 , b = 1011100 , s = 10111001011100101110010111001;
• T = 10 , nb = 2 , nd = 6 , b = 1101111000 , s = 11011110001101111000110111;
• T = 11 , nb = 2 , nd = 3 , b = 11111000110 , s = 1111100011011111000110111;
• T = 13 , nb = 1 , nd = 10 , b = 1011111011100 , s = 10111110111001011111011.

Table 4 Maximum weight n1 and density ρ of periodic blocks (period T, number of mismatches nm)

T nm = 2 nm = 3 nm = 4 nm = 5 nm = 6 nm = 7 nm = 8

n1 ρ , % n1 ρ , % n1 ρ , % n1 ρ , % n1 ρ , % n1 ρ , % n1 ρ , %

10 6 60.0 4 40.0 3 30.0 2 20.0 1 10.0 1 10.0 1 10.0

11 7 63.6 5 45.5 3 27.3 2 18.2 1 09.1 1 9.1 1 9.1

12 8 66.7 5 41.7 3 25.0 3 25.0 2 16.7 2 16.7 1 8.3

13 9 69.2 6 46.2 4 30.8 3 23.1 2 15.4 1 7.7 1 7.7

14 9 64.3 6 42.9 4 28.6 4 28.6 3 21.4 2 14.3 1 7.1

15 10 66.7 8 53.3 5 33.3 4 26.7 2 13.3 2 13.3 2 13.3

16 11 68.8 8 50.0 5 31.3 4 25.0 3 18.8 3 18.8 1 6.3

17 12 70.6 8 47.1 6 35.3 4 23.5 3 17.6 2 11.8 2 11.8

18 13 72.2 9 50.0 6 33.3 5 27.8 3 16.7 3 16.7 3 16.7

19 14 73.7 10 52.6 7 36.8 5 26.3 4 21.1 3 15.8 2 10.5

20 14 70.0 10 50.0 8 40.0 6 30.0 4 20.0 4 20.0 3 15.0

21 16 76.2 11 52.4 8 38.1 6 28.6 5 23.8 4 19.0 4 19.0

22 16 72.7 12 54.5 8 36.4 7 31.8 5 22.7 5 22.7 3 13.6

23 17 73.9 12 52.2 9 39.1 7 30.4 5 21.7 4 17.4 3 13.0

24 18 75.0 14 58.3 9 37.5 8 33.3 5 20.8 5 20.8 4 16.7

25 19 76.0 14 56.0 10 40.0 7 28.0 6 24.0 5 20.0 4 16.0

26 20 76.9 14 53.8 10 38.5 9 34.6 6 23.1 6 23.1 4 15.4

27 21 77.8 15 55.6 11 40.7 9 33.3 6 22.2 5 18.5 5 18.5

28 22 78.6 16 57.1 11 39.3 9 32.1 8 28.6 6 21.4 4 14.3

29 22 75.9 16 55.2 12 41.4 9 31.0 7 24.1 6 20.7 5 17.2

30 23 76.7 17 56.7 13 43.3 10 33.3 8 26.7 8 26.7 6 20.0

31 25 80.6 18 58.1 16 51.6 10 32.3 8 25.8 6 19.4 5 16.1

32 25 78.1 19 59.4 14 43.8 11 34.4 8 25.0 8 25.0 5 15.6

33 26 78.8 20 60.6 14 42.4 11 33.3 8 24.2 7 21.2 7 21.2

34 27 79.4 20 58.8 15 44.1 12 35.3 9 26.5 8 23.5 6 17.6

35 28 80.0 21 60.0 15 42.9 12 34.3 10 28.6 8 22.9 6 17.1

36 29 80.6 22 61.1 16 44.4 13 36.1 10 27.8 9 25.0 8 22.2

37 30 81.1 22 59.5 17 45.9 13 35.1 10 27.0 8 21.6 6 16.2

38 30 78.9 23 60.5 18 47.4 14 36.8 10 26.3 10 26.3 7 18.4

39 32 82.1 24 61.5 18 46.2 14 35.9 10 25.6 9 23.1 9 23.1

40 32 80.0 27 67.5 18 45.0 14 35.0 11 27.5 10 25.0 8 20.0

41 33 80.5 25 61.0 19 46.3 14 34.1 11 26.8 9 22.0 8 19.5

42 34 81.0 26 61.9 19 45.2 16 38.1 13 31.0 11 26.2 10 23.8

43 35 81.4 26 60.5 20 46.5 15 34.9 12 27.9 10 23.3 8 18.6

44 36 81.8 28 63.6 21 47.7 16 36.4 12 27.3 11 25.0 9 20.5

45 37 82.2 28 62.2 21 46.7 17 37.8 13 28.9 11 24.4 10 22.2

46 38 82.6 29 63.0 22 47.8 17 37.0 13 28.3 12 26.1 9 19.6

47 39 83.0 30 63.8 23 48.9 17 36.2 13 27.7 11 23.4 9 19.1

48 40 83.3 31 64.6 23 47.9 18 37.5 14 29.2 14 29.2 10 20.8

49 41 83.7 31 63.3 26 53.1 18 36.7 15 30.6 12 24.5 10 20.4

50 42 84.0 32 64.0 24 48.0 19 38.0 15 30.0 14 28.0 10 20.0

Page 25 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

For a given length nr of reads, we plot sizes of corresponding periodic blocks, see
Fig. 8. We see that sizes of best blocks tend to work in a specific range of nr values.
Best blocks are often those having peak density values. For example, if nm = 8 , the
most frequent block sizes are T = 18, 21, 33, 36, 39 (Fig. 8), we see peak density values
for them in Fig. 7. Note that values of T also increase with the length of reads. So,
while we can find seeds for any nr , they may not be the densest as there we have not
generated periodic blocks for large values of T.

The final goal is to set the weight w of seeds, then find the minimum length of reads
that have valid seeds of this weight and choose the longest seeds when several seeds
are available. In Table 5, we present examples of these seeds for weights w (multiples
of 8). As seeds may be very long, we show only periodic blocks, number nb of these
blocks and values of “remainders” nd ; see Tables 6 and 7. The complete list of spaced
seeds found for various values of nr and w (nr ≤ 400 , w ≤ 320) is in Additional file 1.
Users can generate their seeds using codes (https:// github. com/ vtman/ PerFS eeB).

We plot weights of the best seeds as a function of reads’ length in Fig. 9. Based on
lemmas in [32], it is possible to show that for a contiguous seed of weight/length q, the
minimum length of reads when the seeds are valid is K = q(nm + 1) , so the ratio is
r = q/K → r∞ = 1

nm+1 when q → ∞ . The corresponding values of r∞ are also shown in

Fig. 7 Maximum numbers of 1-elements per length of periodic blocks, nm = 5 and nm = 8

https://github.com/vtman/PerFSeeB

Page 26 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

Fig. 9 (dashed lines). Depending on values of nm and nr , the spaced seeds are denser (per
read’s length) compared to contiguous seeds by 20–68% (nr = 50), 40–95% (nr = 100),
60–113% (nr = 150), 70–128% (nr = 200).

Other seeds

To compare the quality of spaced seeds generated with the PerFSeeB approach, we pre-
sent a list of the most popular seeds in Tables 8 and 9. These seeds are generated for
given sensitivity levels. When there were several seeds presented in a paper, we chose a
seed obtained for the highest sensitivity levels. We may see that the seeds are usually rel-
atively short and of smaller weight. Unlike the PerFSeeB approach, the other algorithms
did not usually put any restrictions on the number of mismatches. Several seeds were
generated for a multiple-seed approach.

Comparison of seeds

To estimate performance characteristics, we develop software tools for real reference
sequences and reads. For a reference sequence, we choose the T2T data [30]. Then, we
randomly selected a relatively small dataset (ERR263486 [39], part of the 1000 Genomes
Projects [40]): it is a paired-end data, and we use only the first dataset, ERR263486_1.

Fig. 8 Sizes of best periodic blocks for a given length of reads

Page 27 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

Table 5 Various longest periodic spaced seeds of the maximum weight for a given number of
mismatches nm and weight w

nm w nr Longest spaced seed

2 16 32 10111001011100101110010111

2 20 39 101110010111001011100101110010111

2 24 44 11111100110101111110011010111111

2 28 51 11011111000110111110001101111100011011111

2 32 56 11111011100101111101110010111110111001011111

2 36 62 10111110111001011111011100101111101110010111110111

2 40 68 11111011100101111101110010111110111001011111011100101111

2 44 73 1111101110010111110111001011111011100101111101110010111110111

3 16 41 100110101111000100110101111

3 20 48 1111000100110101111000100110101111

3 24 56 100110101111000100110101111000100110101111

3 28 63 1111000100110101111000100110101111000100110101111

3 32 71 100110101111000100110101111000100110101111000100110101111

3 36 78 1111000100110101111000100110101111000100110101111000100110101111

4 16 54 11110010000001000111100100000010001111

4 20 64 1101110100000010000110111010000001000011011101

4 24 70 1110111110010011000010110101000111011111

4 28 79 1100111110001101110101000010010110011111000110111

4 32 88 1001011001111100011011101010000100101100111110001101110101

4 36 96 111110001101110101000010010110011111000110111010100001001011001111

5 16 62 1110011010100000010010000011100110101

5 20 76 1100011010111110000000000000000110001101011111

5 24 86 1110011010100000010010000011100110101000000100100000111001101

6 16 75 10011010111100000000000000000000100110101111

6 20 91 1000011100000010000011000010100001110000001000001100001010000111

6 24 102 110011010101111110000000000000000000000000011001101010111111

7 16 82 10000010100010001010101000000010000010100010001010101

7 20 96 1010101000000010000010100010001010101000000010000010100010001010101

Table 6 Blocks for spaced seeds (nm = 2)

w nr Periodic block nb nd

16 32 1011100 3 5

24 44 1111110011010 2 6

32 56 1111101110010 3 5

40 68 1111101110010 4 4

48 80 1111101110010 5 3

56 91 1110110111111111000 3 16

64 102 1111111110001110110 4 8

72 112 111111111010111100110 4 8

80 123 110111111111010111100 4 19

88 133 111111111010111100110 5 8

96 144 110111111111010111100 5 19

Page 28 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

1. There are 1734496 reads of length 100; we removed reads containing N symbols.
Thus we get 1731924 reads. For each read, we also create its counterpart, i.e., flip the
sequence and change A ↔ T , C ↔ G , so for ATC CCA AAG TGC TTT we generate AAA
GCA CTT TGG GAT . Therefore we use 3463848 sequences.

2. For a given seed, we generate the corresponding library of records (“key”, “value”)
where “key” is the position within the reference sequence and sort it by “values”.

3. For a chosen seed of length ns we create (101− ns) “values” for each read. For each
“value” we find the list of all “keys” in the library (if the “value” is present). Knowing
the relative position of the seed to the read, we use the found seed to create a new
list. All elements of this list are possible candidate positions at the start of the read.
As we have at most (101− ns) such lists, we merge them into one list and remove all
duplicated entries. We count the total number of possible candidate positions of the

Table 7 Blocks for spaced seeds (nm = 6)

w nr Periodic block nb nd

16 75 10011010111100000000000000000000 1 12

24 102 1100110101011111100000000000000000000000000 1 17

32 133 1000001100001010000111000000 3 22

40 161 1000001100001010000111000000 4 22

48 188 1100110101011111100000000000000000000000000 3 17

56 213 111100000010000011000010100000110001001000 4 4

64 239 110000011000010100001110000111000000100000 4 30

72 266 100001110000111000000100000110000011000010 5 15

80 295 110000011000010100001110000111000000100000 6 2

88 316 110000101000011100001110000001000001100000 6 23

96 343 100011110000001000001100001010000011000100 7 8

Fig. 9 Weights of the best spaced seeds per reads’ lengths (solid lines). Maximum ratios for contiguous seeds
(dashed lines)

Page 29 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

read with respect to the reference sequence. Those candidate positions may be used
for proper read alignment. Ideally, we do not want to miss any position that may pro-
vide us with proper alignment (accounting for known restrictions), but at the same
time, we what to keep the number of these positions to a minimum to increase the
performance of a sequence alignment code.

4. Our goal is to see how seeds perform under our restrictions (when only at most a
given number of SNPs is possible). We check all candidate positions for each read
and its counterpart and find the maximum number of matches. If two seeds are to be
compared, then the best seed should provide us with more matches. Of course, there
may be several positions when the number of matches attains its maximum value
(possible for the given seed). If two seeds provide the same maximum number of
matches for a read, then the best seed should provide us with a longer list of the best
candidate positions.

To assist a reader, we developed software tools to deal with users’ seeds and provide
them with lists of all and best candidate positions and information about the total
number of items in the lists and the maximum number of matches attained. The soft-
ware is also available at (https:// github. com/ vtman/ PerFS eeB):

1. fna2bin and ref2m128—convert input FNA file for the T2T reference data into
binary files;

2. fastq2bin and bin2m128—convert FASTQ files into binary files;

Table 8 Examples of most popular spaced seeds

[33] Diamond [34] BFAST

D1 111101011101111 B1 1111111111111111111111

D2 111011001100101111 B2 1111010010110110101110010110111011

D3 1111001001010001001111 B3 11111011011101111011111111

D4 111100101000010010010111 B4 1011110101101001011000011010001111111

B5 1111101110111010100101011011111

[8] PatternHunter B6 10111001101001100100111101010001011111

P1 111010010100110111 B7 111111100101001000101111101110111

[17] PatternHunter II B8 111101101011011001100000101101001011101

P2 111100110010100001011 B9 11110101110010100010101101010111111

P3 110100001100010101111 B10 1111011010001000110101100101100110100111

P4 1110111010001111

[35] rasbhari

[36] Quadratic Residues R1 1111011110011010111110101011011

Q1 101100001 R2 1110101011101100110100111111111

Q2 1011000010101111001 R3 1111110101101011100111011001111

[37]

S1 111111111100011101100100100111010011100010100101000010100110000101111000000011

S2 11110111111011001111000110101100111010110000001110100011010010100111110011

S3 111011010100110101100100100101010110001

S4 11111111111111110001111111000011001100011100111100001110000000111101110000011

S5 1100000101011110100100000000110111111111100011000010111110010111011101011000101

S6 1110001000011110110101100000100010000111010110110110111101011011000100100101011

https://github.com/vtman/PerFSeeB

Page 30 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

3. createList—create files for an unsorted records for the given reference sequence and
seed;

4. sortList—sort the records in ascending order for “values”;
5. searchPositions—find all candidate positions of reads by using the library of records

(we also get a total number of “values” for each read and all possible and unique posi-
tions of the seed);

6. countMatch—for each read, we check all candidate positions in the reference
sequence and report the maximum number of matching symbols and all positions
where the maximum is attained.

We create several seeds using PerFSeeB tools. The output files for the ERR263486 data-
set can be found in https:// github. com/ vtman/ PerFS eeB. For reads’ length nr = 100 , we
use seeds listed in Additional file 1 (see Table 10). We use for comparison seeds N2 , N3 ,

Table 9 Spaces seeds for MegaBLAST [38]

M1 1111101101011001101100011110010101011101111

M1
2

111111010111011110111011011011101111

M2
2

11111101110011001101001011010111010111111

M1
4

11111110111110111101111101111111

M2
4

11111101101011011100100011111001010111111

M3
4

11110111010011001010111101101110011110111

M4
4

11111010111000111011011010001011111101111

M1
8

11111010111011101111011110111011111

M2
8

11100111111010111101100101111101110111

M3
8

111101111011111000110010110101111101111

M4
8

1111111001011110110011101001110110101111

M5
8

11110110111010110110101011100011011011111

M6
8

11111011011100101000111111101100010111111

M7
8

11110101100110011111010111001001111011111

M8
8

11101110100100110111110001111110101101111

M1
16

11111101111011111011111011111111

M2
16

11101011111101101111111110011110111

M3
16

111110111110111110001101110111011111

M4
16

111101110111111011110100011110111111

M5
16

111111100011011110111011110111110111

M6
16

1111110111110101011011011011100111111

M7
16

11110111011001001111011111110101011111

M8
16

111111011011110010011110101010011111111

M9
16

111110111100101110010111101101101101111

M10
16

1111100111011101111101001110010010111111

M11
16

1111011011011111110100011010110101101111

M12
16

11110101101110110000111001110110111101111

M13
16

11111110010010111111011101001001110101111

M14
16

11110111010100011101101000111111100111111

M15
16

11111011000110100110001011111111011011111

M16
16

11111011110101100011101110000111010111111

https://github.com/vtman/PerFSeeB

Page 31 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

N4 from the table and seeds S1 and S3 from Table 8 (S3 is for multiple seeds S1 , S2 , S4 , S5 ,
S6 ; S3 is excluded as a seed of low weight). We may see in Table 11 that the total number
of reads attaining a given number of matches is the same for all seeds and 98, 99, 100
matches (or, equivalently, for the number of mismatches nm = 2, 1, 0). However, if we
want to find reads fully matching the reference sequence at some positions, then to do
this, we need 1,140,090,415 candidate positions to be checked for S1 , and 1,980,598,089
for five multiple seeds S3 . At the same time seed N2 requires only 306,980,283 candidate
positions (3.7 and 6.5 times less compared to S1 and S3). We also see that the average
ratio of all to best candidate positions is 10 and 22 times smaller for N2 . And reads with
two or fewer mismatches are 95% of all reads in the dataset.

Note that we may also apply new seeds as multiple seeds. For example, we may use
seed N2 and find all reads with at least 98 matches. Then for the remaining reads, we
may use another seed. Let the total number of candidate positions to be processed for
seed N2 be β . If we consider seed N2 followed by seed N3 (denote it as N2 ∪ N3), then we
find all reads that have at least 97 matches, and in this case, we should process ≈1.026β .
However, if we use N3 alone, then we require 2.056β candidate positions to be processed
(see numbers in Table 11). For other combinations with N2 we get 1.133β for N2 ∪ N4 ,
2.099β for N2 ∪ N5 , 2.570β for N2 ∪ N6 , 5.029β for N2 ∪ N7 , 7.871β for N2 ∪ N8 . How-
ever, if we use all seeds one by one, i.e. N2 ∪ N3 ∪ . . . ∪ N8 , we get 4.434β.

The proposed seeds or their combinations allow us to process a relatively small num-
ber of candidate positions and find all reads having not more than a given number of
mismatches. In Table 12, we provide a number of candidate positions to be processed for
each seed. We see that for seed N2 applied to the real-life data, we need around 208 posi-
tions to be checked. All other seeds require significantly higher numbers of positions to
be processed. The other good seeds are S1, . . . , S6 , but they have been discussed above.

Our goal is to have full-sensitivity seeds. Therefore we aim to check how the other
seeds work under such requirements (full sensitivity for a given maximum number nm
of mismatches). For each seed, we vary the length nr of reads and check if the seed is

Table 10 Seeds generated with PerFSeeB for nr = 100 (seeds’ weight is in the second column)

N2 62 11111011100101111101110010111110111001011111011100101111101110010
1111101

 →110010111110111

N3 47 11010111100010011010111100010011010111100010011010111100010011010
1111000

 →100110101111

N4 39 11101111100100110000101101010001110111110010011000010110101000111
01111

N5 27 10001001011000111010000000100010010110001110100000001000100101100
011101

N6 23 11000010100001110000001000001100001010000111000000100000110000101
0000111

N7 21 10001010101000000010000010100010001010101000000010000010100010001
010101

N8 16 10000010010010000000010000010010010000000010000010010010000000010
0000100

 →1001

Page 32 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

valid. At the same time, we may use the found size nr and design seeds according to
the PerFSeeB procedure. Their weights are also found and compared to the weights
of the original seeds. The weights are usually 30–40% higher compared to the weights
of the original seeds. See Table 13. We may see that seeds generated directly with
the extension procedure (usually nr < 45) and seeds developed with the PerFSeeB
approach (they are all called “best” seeds in Table 13) are valid for shorter reads: by
approximately 15% for w ≤ 12 , by 20% for w = 20, 22 and by 32% for w = 39–46.

Table 11 For each read and its counterpart, we find the number of unique candidate positions
found for given seeds and the number of positions having the maximum number of matches with
the read

(a) Percentage of reads attaining at least a given number of matches (higher values are better). (b) The total number of
positions attaining the maximum number of matches (we add up numbers for all reads, higher values are better). (c) The
total number of candidate positions to be checked (smaller values are better). (d) For each read attaining the given number
of matches, we find the ratio of all candidate positions to the number of best positions (averaged; smaller values are better)

S1 S3 N2 N3 N4

Percentage of reads having at least given number of matches

95 96.49413 96.55955 95.88331 96.41693 96.54956

96 96.23315 96.26387 95.77562 96.20613 96.26404

97 95.81032 95.81777 95.56522 95.81777 95.81777

98 94.98875 94.98875 94.98875 94.98875 94.98875

99 92.66636 92.66636 92.66636 92.66636 92.66636

100 81.17036 81.17036 81.17036 81.17036 81.17036

Total number of positions having the maximum number of matches

95 24,673 30,124 5,743 18,078 29,184

96 88,548 95,152 28,715 76,571 96,154

97 271,116 272,204 165,624 272,204 272,204

98 1,072,182 1,072,182 1,072,182 1,072,182 1,072,182

99 6,505,597 6,505,597 6,505,597 6,505,597 6,505,597

100 52,432,760 52,432,760 52,432,760 52,432,760 52,432,760

Total number of candidate positions to be checked

95 2,999,321 7,694,425 62,080 534,856 5,075,260

96 6,484,344 15,560,907 183,070 1,785,944 10,215,791

97 16,738,989 35,342,085 975,884 6,106,930 23,375,078

98 49,957,296 94,777,228 6,591,836 22,966,268 66,288,831

99 206,562,418 374,668,653 42,466,387 101,753,217 268,804,889

100 1,140,090,415 1,980,598,089 306,980,283 593,471,736 1,467,713,805

Averaged ratio of candidate positions to best positions

95 334.88 790.87 10.37 50.87 535.79

96 414.02 1039.40 7.57 100.63 677.69

97 493.92 1164.11 14.72 115.13 744.46

98 486.19 1087.47 22.87 137.82 704.10

99 465.90 1001.87 31.37 140.65 662.25

100 412.66 848.60 38.46 137.69 575.35

Page 33 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

Discussion
The PerFSeeB approach allows us to generate long, high-weight spaced seeds for a maxi-
mum number of mismatches. The analysis of performance for the read alignment algo-
rithm was based on the simplistic approach: a user generates a list of possible “values”
and finds all candidate positions mapped with these “values” in the reference sequence.
For each position of a seed to a read, we get “value” and a list of positions in the refer-
ence sequence. Thus for a read of length nr and a seed of size ns , we get (nr − ns + 1)
“values” and the same number of lists. If a read can be perfectly positioned in the refer-
ence sequence (100% match), then all (nr − ns + 1) lists of candidate positions should
have all the same positions. Therefore we may start dealing with the intersection of all
lists. Since each “value” may provide us with lists of different lengths (some “values” may
have thousands of “keys”), intersecting lists may significantly reduce the number of can-
didate positions. If some “values” provide us with empty lists, this may help us to iden-
tify possible positions of a mismatch by analysing the location of “do not care” symbols
within the seed and how lists of candidate positions vary with starting positions of the
seed.

Modern data collection procedures have paired-end reads such that the distance
between reads can be roughly estimated, e.g. within a thousand symbols. Therefore, one
can analyse lists obtained for two reads within a pair to further reduce the number of
candidate positions. This may be extremely helpful when one of the reads has insertions
and deletions, as we may start working with a read not containing indels. Of course, can-
didate positions for relatively long reads with a small number of indels can also be found
with the proposed seeds. However, proper seed design dealing with indels is still needed,
so we must catch all of them. For example, seeds with relatively big chunks of “do not
care” symbols inside may be processed with reads split into several parts and each part
shifted by a couple of characters. If the number of reads is big, one may also try to align
reads with respect to each other by comparing starting/ending chunks.

Of course, one can use the PerFSeeB approach for long reads. For example, seeds gen-
erated with the PerFSeeB approach and listed in Additional file 1 can be used for reads

Table 12 The average number of candidate positions required to be checked for each read. Index
“all” is used when all seeds in a group are used, and the corresponding lists of candidate positions
are merged and duplicate positions removed from the final list

B1 33030 B2 35709 B3 29874 B4 28531 B5 41961 B6 34353

B7 30830 B8 27054 B9 27023 B10 33030 Ball 98503

M1 9245 M1
2

11672 M2
2

9657 Mall
2

16102

M1
4

13509 M2
4

9742 M3
4

9690 M4
4

9665 Mall
4

23645

M1
8

12351 M2
8

10968 M3
8

10194 M4
8

10456 M5
8

9758 M6
8

9669

M7
8

9928 M8
8

9524 Mall
8

29170

M1
16

13467 M2
16

12357 M3
16

11835 M4
16

11832 M5
16

11812 M6
16

11247

M7
16

10754 M8
16

10597 M9
16

10619 M10
16

10502 M11
16

10168 M12
16

9762

M13
16

9753 M14
16

9751 M15
16

9723 M16
16

9724 Mall
16

39922

N2 208 N3 423 N4 1062 N5 4283 N6 6888 N7 11529

N8 22254 R1 36532 R2 35816 R3 36393 Rall 59239 S3 37046

S1 825 S2 674 S4 504 S5 624 S6 706 S3 1451

Page 34 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

up to 500 symbols. However, high-weight seeds also require almost proportionally larger
storage. Therefore dealing with shorter chunks of long reads may be more practical as
this may also help to avoid possible insertions/deletions.

Table 13 Minimum read lengths are required to achieve full sensitivity for a given number nm of
mismatches

For comparison with offered seeds, we also provide numbers for the best seeds found with the PerFSeeB approach. The
corresponding weights are in parentheses, and the shortest possible reads’ length for w and nm are in bold for each “best”
row

Seed w nm = 2 nm = 3 nm = 4 nm = 5 nm = 6 nm = 7

Q1 4 14 (5) 16 (4) 21 (5) 24 (4) 28 (4) 30 (4)

best 11 14 17 20 23 26
Q2 10 28 (13) 37 (14) 44 (12) 52 58 65

best 22 29 37 44 52 58
P1 11 27 (12) 40 (15) 46 (13) 51 62 68

P2 32 (16) 37 (14) 50 (14) 58 63 72

P3 31 (15) 37 (14) 48 (14) 55 62 70

P4 28 (13) 38 (15) 44 (12) 52 60 68

best 23 31 40 46 56 62
D1 12 33 (16) 38 (15) 51 (15) 56 69 74

D2 31 (15) 41 (16) 49 (14) 58 67 76

D3 30 (15) 39 (15) 55 (16) 60 66 77

D4 33 (16) 40 (15) 56 (17) 63 (16) 68 (17) 76

best 25 33 43 50 59 66
S3 20 51 (28) 76 (34) 85 (31) 95 (26) 114 (27)

best 39 48 64 76 91
B1 22 66 (38) 88 (40) 110 (44) 132 (39) 154 (38)

B2 49 (27) 68 (31) 80 (28) 94 (26) 111 (25)

B3 55 (31) 82 (38) 90 (32) 102 (28) 127 (31)

B4 51 (28) 70 (31) 88 (32) 97 (27) 112 (26)

B5 54 (30) 65 (29) 82 (29) 94 (26) 110 (25)

B6 49 (27) 76 (34) 84 (30) 97 (27) 119 (28)

B7 54 (30) 72 (32) 89 (32) 100 (27) 116 (27)

B8 58 (33) 68 (31) 91 (32) 101 (27) 117 (27)

B9 54 (30) 69 (31) 90 (32) 97 (27) 111 (25)

B10 55 (31) 73 (32) 88 (32) 102 (28) 113 (26)

R1 54 (30) 68 (31) 85 (31) 99 (27) 112 (26)

R2 54 (30) 74 (32) 86 (31) 98 (27) 117 (27)

R3 50 (27) 70 (31) 81 (29) 97 (27) 114 (27)

best 42 52 68 82 97
S1 39 98 (61) 121 (58) 160 (69) 176 (54)

best 67 83 100 132
S6 40 107 (68) 131 (65) 163 (72) 179 (54)

best 68 86 101 134
S5 42 100 (62) 149 (77) 172 (76) 189 (59)

best 70 91 105 138
S2 43 96 (60) 123 (60) 163 (72) 180 (55)

best 72 92 107 140
S4 46 115 (74) 151 (78) 187 (82) 223 (71)

best 78 97 114 153

Page 35 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

Some ideas used in the paper have already been discussed for other projects. Loss-
less seeds were introduced in [9] and generalised in [24]. In [36] structure of seeds for
nm = 2 and 3 was studied in depth. In [15], the periodic spaced seeds were also dis-
cussed. However, full sensitivity seeds of maximum weight are considered for at most
three mismatches. At the same time, seeds’ weights were very small, e.g. the number of
1 s in a periodic block was at most five. For this paper, we designed an optimised publicly
available code to generate all possible seeds continuously. We have extensively computed
all possible periodic blocks of the maximum weight for a given size T of a block and the
number of mismatches nm . For example, for nm = 2 and T = 70 , we found all blocks of
weight 60; for nm = 4 and T = 50 , we get blocks of weight 24. In [41], the authors pre-
sented a method for fast computation of optimal multiple-spaced seeds of weight 11. In
addition, they introduce overlap complexity, a measure which correlates with sensitiv-
ity. In the PerFSeeB approach, we design single lossless seeds (but also showed that the
consequent application of several seeds reduces the number of candidates). Meanwhile,
our approach does not account for a common or prohibited small substring in reference
sequences. This approach was proposed in [42]. It can, in principle, be combined with
the PerFSeeB approach when seeds or periodic blocks of maximum (or near maximum)
weights are generated and applied to reference sequences to have the number of “keys”
in library of records more evenly distributed.

Conclusions
The PerFSeeB approach proposed in this paper is based on designing periodic blocks.
When several mismatches are set, resulting spaced seeds are guaranteed to find all posi-
tions within a reference sequence. Each periodic seed consists of an integer number of
periodic blocks and a “remainder” (a number of the first symbols of the block). The size
of the periodic block is the difference between the read’s and seed’s lengths plus one.
This relation is empirical and was observed for seeds generated by iterative extension
procedure for reads of length less than 45.

Periodic blocks are found for the number mismatches nm from 2 to 9 and block’s
length T up to 50 (or 70 for nm = 2); they can in be accessed at https:// github. com/
vtman/ PerFS eeB. Those blocks can be used to generate spaced seeds required for any
given length of reads. The best periodic seeds are seeds of maximum possible weight
since this helps us to reduce the number of candidate positions when we try to align
reads to the reference sequence. If one can generate several best seeds, we choose seeds
of maximum length because this helps us reduce the number of entries to be checked in
the library found for the reference sequence.

The seeds found with the PerFSeeB approach might be of lower weight for long reads
(>200) as we have to generate longer periodic blocks; nevertheless, they meet the
requirements. Furthermore, codes used to create periodic blocks and final seeds are
designed to account for SIMD instructions, can work in a multithreading environment
and are publicly available at (https:// github. com/ vtman/ PerFS eeB). While the authors
did their best to minimise the number of candidate blocks to be validated, there may be
trillions of them to be checked for periods T around 50.

The proposed approach allows us to check significantly fewer alignment positions
for each read than other published seeds. This, in turn, can be exploited in sequence

https://github.com/vtman/PerFSeeB
https://github.com/vtman/PerFSeeB
https://github.com/vtman/PerFSeeB

Page 36 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

alignment algorithms to improve performance and ensure not to miss positions due to
mismatches.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05517-4.

Additional file 1: Maximum density of best periodic blocks as a function of block’s size and block sizes as a function
of read’s length (for 2 to 9 mismatches).

Acknowledgements
The authors would like to thank Dr. Laurent Noé for fruitful discussion of the ideas and his comments.

Author Contributions
VT and ST conceived the ideas for the study. VT wrote codes to generate the seeds. Both authors wrote the manuscript
and approved its final version.

Funding
Not applicable.

Availability of data and materials
The codes to generate periodic blocks and seeds are publicly available at https:// github. com/ vtman/ PerFS eeB.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 November 2021 Accepted: 2 October 2023

References
 1. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence

of two proteins. J Mol Biol. 1970;48(3):443–53. https:// doi. org/ 10. 1016/ 0022- 2836(70) 90057-4.
 2. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7. https://

doi. org/ 10. 1016/ 0022- 2836(81) 90087-5.
 3. Durbin R, Eddy SR, Krogh A, Mitchison G. Biological sequence analysis: probabilistic models of proteins and nucleic

acids. Cambridge: Cambridge University Press; 1998. https:// doi. org/ 10. 1017/ CBO97 80511 790492.
 4. Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P. Library construc-

tion for next-generation sequencing: overviews and challenges. Biotechniques. 2014;56(2):61–77. https:// doi. org/
10. 2144/ 00011 4133.

 5. Wang B, Kumar V, Olson A, Ware D. Reviving the transcriptome studies: an insight into the emergence of single-
molecule transcriptome sequencing. Front Genet. 2019;10:384. https:// doi. org/ 10. 3389/ fgene. 2019. 00384.

 6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
https:// doi. org/ 10. 1016/ S0022- 2836(05) 80360-2.

 7. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. https:// doi. org/ 10. 1093/
nar/ 25. 17. 3389.

 8. Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homology search. Bioinformatics. 2002;18(3):440–5.
https:// doi. org/ 10. 1093/ bioin forma tics/ 18.3. 440.

 9. Burkhardt S, Kärkkäinen J. Better filtering with gapped q-grams. In: Amir A, editor. Combinatorial pattern matching.
Berlin: Springer; 2001. p. 73–85.

 10. Choi KP, Zeng F, Zhang L. Good spaced seeds for homology search. Bioinformatics. 2004;20(7):1053–9. https:// doi.
org/ 10. 1093/ bioin forma tics/ bth037.

 11. Brejová B, Brown DG, Vinař T. Vector seeds: an extension to spaced seeds. J Comput Syst Sci. 2005;70(3):364–80.
https:// doi. org/ 10. 1016/j. jcss. 2004. 12. 008.

 12. Mak D, Gelfand Y, Benson G. Indel seeds for homology search. Bioinformatics. 2006;22(14):341–9. https:// doi. org/ 10.
1093/ bioin forma tics/ btl263.

 13. Csűrös M, Ma B. Rapid homology search with neighbor seeds. Algorithmica. 2007;48(2):187–202. https:// doi. org/ 10.
1007/ s00453- 007- 0062-y.

https://doi.org/10.1186/s12859-023-05517-4
https://github.com/vtman/PerFSeeB
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1017/CBO9780511790492
https://doi.org/10.2144/000114133
https://doi.org/10.2144/000114133
https://doi.org/10.3389/fgene.2019.00384
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1093/bioinformatics/bth037
https://doi.org/10.1093/bioinformatics/bth037
https://doi.org/10.1016/j.jcss.2004.12.008
https://doi.org/10.1093/bioinformatics/btl263
https://doi.org/10.1093/bioinformatics/btl263
https://doi.org/10.1007/s00453-007-0062-y
https://doi.org/10.1007/s00453-007-0062-y

Page 37 of 37Titarenko and Titarenko BMC Bioinformatics (2023) 24:396

 14. Lin H, Zhang Z, Zhang MQ, Ma B, Li M. ZOOM! Zillions of oligos mapped. Bioinformatics. 2008;24(21):2431–7. https://
doi. org/ 10. 1093/ bioin forma tics/ btn416.

 15. Chen Y, Souaiaia T, Chen T. PerM: efficient mapping of short sequencing reads with periodic full sensitive spaced
seeds. Bioinformatics. 2009;25(19):2514–21. https:// doi. org/ 10. 1093/ bioin forma tics/ btp486.

 16. Leimeister C-A, Boden M, Horwege S, Lindner S, Morgenstern B. Fast alignment-free sequence comparison using
spaced-word frequencies. Bioinformatics. 2014;30(14):1991–9. https:// doi. org/ 10. 1093/ bioin forma tics/ btu177.

 17. Li M, Ma B, Kisman D, Tromp J. PatternHunter II: highly sensitive and fast homology search. J Bioinform Comput Biol.
2004;2(3):417–39. https:// doi. org/ 10. 1142/ S0219 72000 40006 61.

 18. Sun Y, Buhler J. Designing multiple simultaneous seeds for DNA similarity search. J Comput Biol. 2005;12(6):847–61.
https:// doi. org/ 10. 1089/ cmb. 2005. 12. 847.

 19. Brown DG. 6. A survey of seeding for sequence alignment. Hoboken: Wiley; 2008. p. 117–42. https:// doi. org/ 10.
1002/ 97804 70253 441. ch6.

 20. Noé L. Spaced seeds. Accessed 30 October 2022, 2022.
 21. What is discontiguous Mega BLAST? https:// blast. ncbi. nlm. nih. gov/ doc/ blast- topics/ disco ntmeg ablast. html.

Accessed 30 July 2023.
 22. Gambin A, Lasota S, Startek M, Sykulski M, Noé L, Kucherov G. Subset seed extension to protein BLAST. In: Proceed-

ings of the International Conference on Bioinformatics Models, Methods and Algorithms (BIOSTEC 2011)—BIOIN-
FORMATICS, SciTePress, Rome, Italy 2011;149–158. https:// doi. org/ 10. 5220/ 00031 47601 490158. INSTICC.

 23. Noé L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucl Acids Res. 2005;33(suppl-2):540–3.
https:// doi. org/ 10. 1093/ nar/ gki478.

 24. Kucherov G, Noe L, Roytberg M. Multiseed lossless filtration. IEEE/ACM Trans Comput Biol Bioinf. 2005;2(1):51–61.
https:// doi. org/ 10. 1109/ TCBB. 2005. 12.

 25. Hamming RW. Error detecting and error correcting codes. Bell Syst Tech J. 1950;29(2):147–60. https:// doi. org/ 10.
1002/j. 1538- 7305. 1950. tb004 63.x.

 26. Navarro G. A guided tour to approximate string matching. ACM Comput Surv. 2001;33(1):31–88. https:// doi. org/ 10.
1145/ 375360. 375365.

 27. Levenshtein VI. Bounds for codes ensuring error correction and synchronization. Probl Inf Transm. 1969;5:1–10.
 28. Kruskal JB. An overview of sequence comparison: time warps, string edits, and macromolecules. SIAM Rev.

1983;25(2):201–37. https:// doi. org/ 10. 1137/ 10250 45.
 29. Apostolico A, Guerra C. The longest common subsequence problem revisited. Algorithmica. 1987;2(1):315–36.

https:// doi. org/ 10. 1007/ BF018 40365.
 30. T2T Consortium: T2T CHM13v2.0 Telomere-to-Telomere assembly of the CHM13 cell line. Accessed 30 October 2022,

2022.
 31. Intel: Intel Intrinsics Guide. Accessed 30 October 2022, 2022.
 32. Pevzner PA, Waterman MS. Multiple filtration and approximate pattern matching. Algorithmica. 1995;13(1):135–54.

https:// doi. org/ 10. 1007/ BF011 88584.
 33. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.

https:// doi. org/ 10. 1038/ nmeth. 3176.
 34. Homer N, Merriman B, Nelson SF. BFAST: an alignment tool for large scale genome resequencing. PLoS ONE.

2009;4(11):1–12. https:// doi. org/ 10. 1371/ journ al. pone. 00077 67.
 35. Hahn L, Leimeister C-A, Ounit R, Lonardi S, Morgenstern B. rasbhari: optimizing spaced seeds for database searching,

read mapping and alignment-free sequence comparison. PLoS Comput Biol. 2016;12(10):1–18. https:// doi. org/ 10.
1371/ journ al. pcbi. 10051 07.

 36. Egidi L, Manzini G. Better spaced seeds using quadratic residues. J Comput Syst Sci. 2013;79(7):1144–55. https:// doi.
org/ 10. 1016/j. jcss. 2013. 03. 002.

 37. Salmela L, Mukherjee K, Puglisi SJ, Muggli MD, Boucher C. Fast and accurate correction of optical mapping data via
spaced seeds. Bioinformatics. 2019;36(3):682–9. https:// doi. org/ 10. 1093/ bioin forma tics/ btz663.

 38. Ilie S. Efficient computation of spaced seeds. BMC Res Notes. 2012;5(1):123–11237. https:// doi. org/ 10. 1186/
1756- 0500-5- 123.

 39. IGSR: Biosample 124940. Accessed 30 October 2022, 2013.
 40. Fairley S, Lowy-Gallego E, Perry E, Flicek P. The International Genome Sample Resource (IGSR) collection of open

human genomic variation resources. Nucleic Acids Res. 2019;48(D1):941–7. https:// doi. org/ 10. 1093/ nar/ gkz836.
 41. Ilie L, Ilie S. Multiple spaced seeds for homology search. Bioinformatics. 2007;23(22):2969–77. https:// doi. org/ 10.

1093/ bioin forma tics/ btm422.
 42. Frith MC, Noé L, Kucherov G. Minimally overlapping words for sequence similarity search. Bioinformatics.

2020;36(22–23):5344–50. https:// doi. org/ 10. 1093/ bioin forma tics/ btaa1 054.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btn416
https://doi.org/10.1093/bioinformatics/btn416
https://doi.org/10.1093/bioinformatics/btp486
https://doi.org/10.1093/bioinformatics/btu177
https://doi.org/10.1142/S0219720004000661
https://doi.org/10.1089/cmb.2005.12.847
https://doi.org/10.1002/9780470253441.ch6
https://doi.org/10.1002/9780470253441.ch6
https://blast.ncbi.nlm.nih.gov/doc/blast-topics/discontmegablast.html
https://doi.org/10.5220/0003147601490158
https://doi.org/10.1093/nar/gki478
https://doi.org/10.1109/TCBB.2005.12
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://doi.org/10.1137/1025045
https://doi.org/10.1007/BF01840365
https://doi.org/10.1007/BF01188584
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1371/journal.pone.0007767
https://doi.org/10.1371/journal.pcbi.1005107
https://doi.org/10.1371/journal.pcbi.1005107
https://doi.org/10.1016/j.jcss.2013.03.002
https://doi.org/10.1016/j.jcss.2013.03.002
https://doi.org/10.1093/bioinformatics/btz663
https://doi.org/10.1186/1756-0500-5-123
https://doi.org/10.1186/1756-0500-5-123
https://doi.org/10.1093/nar/gkz836
https://doi.org/10.1093/bioinformatics/btm422
https://doi.org/10.1093/bioinformatics/btm422
https://doi.org/10.1093/bioinformatics/btaa1054

	PerFSeeB: designing long high-weight single spaced seeds for full sensitivity alignment with a given number of mismatches
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	Sequence alignment
	Choice of seeds
	Seed validation
	Seed expansion
	Periodic seeds
	Periodic blocks
	Forming periodic spaced seeds

	Results
	Periodic seeds and their properties
	Other seeds
	Comparison of seeds

	Discussion
	Conclusions
	Anchor 21
	Acknowledgements
	References

