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Abstract
A nonlinear 4-dimensional drift island theory derived in (Imada et al 2019 Nucl. Fusion 59
046016 and references therein) provides qualitative predictions of the plasma response to a
stationary neoclassical tearing mode (NTM) magnetic island in a low beta, large aspect ratio
tokamak plasma. (Dudkovskaia et al 2021 Plasma Phys. Control. Fusion 63 054001) refines a
model for the magnetic drift frequency and exploits the limit of rare collisions, reducing this
theory to 3-dimensional and thus providing a more accurate treatment of the trapped-passing
boundary layer. The drift island theory is further improved in (Dudkovskaia et al 2023 Nucl.
Fusion 63 016020) by introducing plasma shaping and finite beta effects. In the present paper,
an improved model is adopted to resolve the drift island separatrix boundary layer, allowing one
to investigate the polarisation current contribution that exists around the magnetic island
separatrix, including in the presence of the background electric field. In particular, different
magnetic topologies from both sides of the separatrix generate a radial discontinuity in the
distribution function gradient there, when collisions are neglected. Allowing for collisional
dissipation in the leading order distribution function around the separatrix resolves this
discontinuity, smoothing the density distribution. The overall effect of the polarisation current
on the NTM threshold is then combined from the outer contributions that exist outside the layer,
as well as the separatrix layer piece, and self-consistently accounts for the electrostatic
potential reconstructed from plasma quasi-neutrality. The corresponding NTM threshold is
quantified and compared with previous predictions of (Dudkovskaia et al 2021 Plasma Phys.
Control. Fusion 63 054001, Dudkovskaia et al 2023 Nucl. Fusion 63 016020).
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1. Introduction

Neoclassical tearing modes (NTMs) [1–3] impose a limit on
fusion gain, as well as plasma confinement time in tokamaks.
Resulting from filamentation of the current density that flows
through the tokamak plasma, they change the equilibrium
magnetic topology, leading to a new one, characterised by a
chain of magnetic islands. When magnetic islands are large,
i.e. much larger than the trapped ion banana orbit width, ρbi,
the plasma thermal pressure is flattened across them. This
therefore reduces the total core plasma pressure, resulting in
a drop in fusion power [4] in a burning plasma tokamak, like
ITER. Furthermore, the pressure profile flattening across the
island creates a hole in the bootstrap current density close to
the island centre, enhancing the current density filamentation
and amplifying the island further. This provides the main driv-
ing mechanism for island growth.

The NTM behaviour significantly differs from the above
description when magnetic islands are small, i.e. w∼ ρbi (a
few cm), where w is the magnetic island half-width. Indeed,
experimental observations [5–7] found that there is some
critical (threshold) magnetic island width, 2wc ≈ (2− 3)ρbi,
below which the pressure gradient is sustained across the
island, providing magnetic island ‘self-healing’. wc is a key
parameter for quantifying the NTM control system (e.g. [8]):
the amount of microwave power that must be injected to sta-
bilise the mode, as well as how radially localised it has to
be. An accurately quantified wc will help optimise NTM con-
trol systems on existing fusion devices, as well as extrapolate
these requirements on current drive to design NTM control
techniques or avoidance and mitigation strategies for ITER,
DEMO and future tokamak power plants.

There are a few approaches aimed to explain the origin
of the NTM threshold. Broadly, these can be split between
the heat transport threshold model and polarisation-bootstrap
threshold model. According to the first one based on [9], the
hole in the bootstrap current is the result of the dominant par-
allel transport along the magnetic field lines, and hence the
threshold island width can be estimated by balancing the par-
allel transport against the perpendicular one, provided the per-
pendicular gradient length scales are estimated via w. The
second model is based on [10] and employs a kinetic the-
ory to calculate the current density perturbation parallel to
the magnetic island. In particular, [10] finds wc by balan-
cing the bootstrap current drive and the polarisation current
contribution4. The polarisation current induced by the mag-
netic island propagation is found to be stabilising for ω< 0

4 Due to a difference in the ion and electron banana orbits, ions and elec-
trons experience a different electrostatic potential, which, in turn, results
in different E×B drifts for ions and electrons, generating a current that

or ω > ωdia,i (1+ Ln/LTi) [10], where ωdia,i is the ion diamag-
netic frequency and ω is the island propagation frequency
with ω< 0 corresponding to the electron diamagnetic direc-
tion; Ln and LTi denote the density and ion temperature equi-
librium gradient length scales, respectively. The theory of [10]
allows for w∼ ρϑi = ε−1/2ρbi but requires w≫ ρbi, where ρϑi
is the ion poloidal Larmor radius and ε= rs/R0 is the toka-
mak inverse aspect ratio with rs corresponding to the location
of the rational surface and R0 being the tokamak major radius.
While [10] quantifies the polarisation contribution that exists
outside the magnetic island separatrix, it does not account for
a narrow layer in the vicinity of its separatrix [11–17]5. Some
previous works (e.g. [13, 14]) demonstrated that inclusion of
the latter can reverse the effect of the polarisation contribution
on the magnetic island stability (which is important for islands
rotating with frequencies comparable to the ion/electron dia-
magnetic frequency) found in [10]. In particular, in [13] there
is a non-resolved discontinuity in the electron density gradient
across the magnetic island separatrix due to different topolo-
gies inside and outside the magnetic island which results in a
spike in the polarisation current there, large enough to reverse
the overall effect of the polarisation current. Inclusion of the
cross-field diffusion [17] resolves this discontinuity, smooth-
ing the density distribution across the magnetic island separat-
rix and decreasing the destabilising contribution to the polar-
isation current from the separatrix layer. Therefore, whether
the polarisation current effect is stabilising or destabilising
depends on a subtle balance of these two contributions (one
that exists outside the magnetic island and the other one that
arises from the thin separatrix layer), and how this balance
changes with the island width.

In [18–20] we have introduced a drift island formalism to
quantify the plasma response to magnetic islands of width
close to threshold. According to the drift island formalism,
when collisions are rare (with the particle collision frequency
being much less than the free streaming along the equilibrium
magnetic field lines/characteristic drift frequency), the ions
and electrons follow streamlines in phase space. For passing
ions and electrons, these streamlines lie on surfaces of the
same topology as the flux surfaces of the magnetic island
but (1) are shifted radially by an amount that scales with the
ion/electron poloidal Larmor radius and, (2) being associated

flows perpendicular to the magnetic field (i.e. the polarisation current). Since
the polarisation current is not divergence-free, there is also a current that
flows parallel to the magnetic field that (1) ensures that the total current is
divergence-free and (2) contributes to the magnetic island evolution. This con-
tribution is to be referred to as the ‘polarisation’ current contribution.
5 Note that most of thesemodels consider a simplified (sheared slab) geometry
[13, 16, 17] and/or employ a model electrostatic potential [14, 15] of [10].
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Table 1. DK (Drift Kinetic)- and RDK-NTM (Reduced Drift Kinetic-NTM) codes and their features. ‘numerical’ denotes the solution of the
orbit averaged drift kinetic equation: equation (32) of [19] for DK-NTM, equation (20) of [20] for RDK-NTM (v.1), equation (30) of [21]
for RDK-NTM (v.2) and equation (19) of the present paper with included boundary layer effects as discussed below in section 3.1 for
RDK-NTM (v.3). ‘analytic’ is based on the analytic results of [10] for the electron response, see [19] for details regarding its numerical
implementation in the 4D (DK-NTM) formulation. Spatial variables are pϕ, ξ (helical angle) or S; velocity variables are λ (pitch angle),
V (particle speed) with σ being the sign of the velocity component parallel to the equilibrium magnetic field.

DK-NTM RDK-NTM (v.1) RDK-NTM (v.2) RDK-NTM (v.3)

Dimensionality 4D 3D 3D 3D
Coordinates {pϕ , ξ ,λ,V;σ} {S,λ,V;σ} {S,λ,V;σ} {S,λ,V;σ}
Treatment of ions Numerical Numerical Numerical Numerical
Treatment of electrons Analytic Numerical Numerical Numerical
Plasma is quasi-neutral Yes Yes Yes Yes
Plasma beta Low Low Finite Finite
Geometry (aspect ratio) Large Large Finite (D-shaped) Finite (D-shaped)
Trapped-passing boundary layer physics captured Yesa Yes Yes Yes
Separatrix layer physics captured Yesa No No Yes
Optimal plasma collisionality ⩾10−3 < 5.10−2 < 5.10−2 < 5.10−2

Magnetic island propagation frequency
dependence allowed

No No No Yes

a While both dissipation layers are allowed in the DK-NTM formulation from the mathematical perspective, it is numerically challenging to properly resolve
both layers simultaneously when the problem is 4-dimensional.

withmagnetic drifts, this shift depends on the sign of the paral-
lel velocity component, u, i.e. is in opposite direction for u≷ 0.
We therefore refer to these structures as drift islands. The
passing particle distribution function is then found to be a ‘drift
surface’ quantity with its profile being flattened across the
drift islands rather than the magnetic island. When w≫ ρϑi,
the radial shift of drift islands relative to the magnetic island
is negligible, and hence drift island contours almost coincide
with the flux contours of the magnetic island, resulting in the
density profile flattening across themagnetic island (in accord-
ance with the conventional theory of large magnetic islands,
e.g. [2]). At w≳ ρϑi, flattening of the passing ion distribution
function across the u≷ 0 drift islands partially restores the
ion density gradient across the magnetic island centre. Note
that since ρϑe ≪ ρϑi ≲ w (ρϑe is the electron poloidal Larmor
radius), the drift island effect is less significant for electrons,
and the electron density profile is still flattened across the
magnetic island (in the absence of an electrostatic potential).
This difference in the ion and electron density profiles gen-
erates a perturbed electrostatic potential to restore the elec-
tron density gradient inside the magnetic island, maintaining
plasma quasi-neutrality and providing a physics basis for the
NTM threshold.

Imada et al [18, 19] solve a 4D drift kinetic equation for
ions (two spatial and two velocity variables) in a low beta,
large aspect ratio tokamak plasma, employing the analytic
results of [10] for the electron response. The ion and elec-
tron responses to the magnetic island are then coupled via the
electron–ion collisions and the electrostatic potential required
for quasi-neutrality. Reference [20] also exploits the low beta,
large aspect ratio tokamak limit, as well as the limit of rare
collisions, working in terms of the drift island stream func-
tions and hence solving a 3D drift kinetic equation for ions
and electrons (one spatial and two velocity variables) con-
sistent with quasi-neutrality. Note that a transition from the
toroidal component of the canonical angular momentum, pϕ,

employed for the radial variable in [18, 19] to the drift island
stream function, S, of [20] reduces the problem dimensional-
ity from 4D to 3D for rare collisions. There are certain regions
where collisions cannot be treated perturbatively (even in the
limit of rare collisions). These are collisional boundary lay-
ers around the trapped-passing boundary in velocity space and
the drift island separatrix in phase space. The boundary layers
are to be introduced as matching conditions, exploiting their
thinness (see [10, 20] for the trapped-passing boundary layer
solution). This 3D formulation with matching boundary lay-
ers is numerically beneficial as it allows one to resolve fine
structures in boundary layers, not reducing the treatment of
the electron response to analytic. The numerical treatment of
electrons is numerically more challenging for the 4D model
of [18, 19] (even when the particle collision frequency is
only slightly less than the characteristic drift frequency). To
explore these two approaches, two numerical codes have been
developed: 4D DK-NTM [18, 19] and 3D RDK-NTM (v.1)
[20]. Their features are compared in table 1. The results of
[18, 19] and [20] are benchmarked in [20] at plasma collision-
alities ν∗ = 10−2 and 10−3, where the validity regions of the
two formulations overlap.

Considering a stationary isolated magnetic island chain in
a low beta, large aspect ratio plasma in the absence of the
equilibrium radial electric field in the magnetic island rest
frame, [18–20] focus primarily on bootstrap drive, also cap-
turing polarisation effects due to the perturbed electrostatic
potential. The drift island theory is further improved in [21]
by incorporating the effects of plasma shaping and finite beta,
being referred to as RDK-NTM (v.2) in table 1. In the present
paper, we refine the treatment of the drift island separatrix in
the 3D formulation of [20, 21]. Similar to the magnetic island
separatrix layer [11–17], there is a thin boundary layer around
the drift island separatrix due to different topologies inside and
outside the drift island.Whenw≫ ρϑi, bothmagnetic and drift
island boundary layers almost coincide. At w≳ ρϑi, the layer
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around drift islands remains narrow, broadening the layers
from both sides of the magnetic island. As was previously
noted in [20, 21], these separatrix layer effects are expected
to be less significant for non-rotating magnetic islands but
become crucial when the magnetic island propagation fre-
quency is non-zero (or alternatively in the presence of the
equilibrium radial electric field if one works in the magnetic
island rest frame). This current version of RDK-NTM is being
referred to as RDK-NTM (v.3) in table 1.

The paper is organised as follows. In section 2 we define
the magnetic geometry and coordinate system. In section 3 we
describe the problem from amathematical perspective, includ-
ing the drift kinetic equation for bulk ions and electrons, as
well as the corresponding boundary and matching conditions.
Its solution then provides the ion and electron distribution
functions and the corresponding current density perturbation
at eachw and ρϑi. A series of scans inw at each ρϑi then identi-
fies the stationary states of the magnetic island chain, determ-
ining the threshold magnetic island width. The corresponding
results are presented in section 4 for different tokamak geo-
metries. The impact of the background radial electric field
on the polarisation current contribution is also addressed in
section 4. The results obtained are summarised and discussed
in section 5.

2. Coordinate system and magnetic topology

We employ the coordinate system of [21] with the equilibrium
magnetic field written as

B0 = I(ψ )∇ϕ +∇ϕ ×∇ψ, (1)

where ϕ is the toroidal angle and ψ is the poloidal flux with
the surfaces of constantψ forming a set of nested toroidal mag-
netic flux surfaces. I= RBϕ with R being the varying tokamak
major radius and Bϕ the toroidal component of the magnetic
field. The magnetic field perturbation associated with a single
isolated magnetic island chain is introduced as

B1 =∇×
(
A1
∥b0
)
+∇×A1

⊥ (2)

with

A1
∥ =−

ψ̃

R
cos(nξ) , (3)

where b0 = B0/B0 with B0 = |B0|; ψ̃ = (wψ2/4)(q ′/q) with
wψ being the island half-width in ψ space related to w in r
space via w= wψ/(RBϑ) and Bϑ being the poloidal compon-
ent of the magnetic field. The helical angle has been defined as
ξ = ϕ − qsϑ, where qs =m/n is the safety factor, q, evaluated
at the rational surface, i.e. the ratio of the poloidal m to the tor-
oidal n mode number; ϑ is the poloidal angle with∇ψ ·∇ϑ=
ϑ ′R2B2

ϑ. A prime denotes the derivative with respect to ψ.
In [21], it was shown that the second term on the right hand
side of equation (2) associated with the perpendicular com-
ponent of the perturbed vector potential, A1

⊥, results in the

O
(
δ∗∆

2 Vt
L f0
)
corrections in the drift kinetic equation and thus

is to be omitted. Here δ∗ = ρ/L is a small parameter associated
with the drift kinetic ordering (ρ is the particle Larmor radius
and L characterises the system size) [22], Vt is the particle
thermal velocity and f 0 is the equilibrium distribution func-
tion6. Ordering w∼ ρbi ≪ rs (ρbi is the trapped ion banana
orbit width and r= rs is the radius of the rational surface asso-
ciated with the island) ensures the finite orbit width effects of
trapped ions are captured, while providing a small expansion
parameter, ∆= w/rs ∼ ρbi/rs ≪ 1, to simplify the 5D drift
kinetic equation (three spatial and two velocity variables).

The spatial coordinates are ψ which labels magnetic flux
surfaces, ξ which labels the magnetic field lines on a chosen
flux surface and ϑ which measures the distance along a field
line. The velocity vector is

V= u+ s (4)

with

u= ub≡ (V · b)b (5)

parallel and

s= s(e2 cosα− e3 sinα)≡ sŝ (6)

perpendicular to the magnetic field lines, b= B/B with B=
B0 +B1 and B= |B|. The unit vectors (b,e2,e3) [21] form an
orthogonal coordinate system. Note that b= e2 × e3. α is the
gyrophase angle. Theα dependence is removed from the prob-
lem due to gyro-averaging in the drift kinetic formalism [22].
The velocity coordinates are then represented by the magnetic
moment per unit mass, µ, and the total particle energy per unit
mass, U: µ= s2/2B and U= µB+ u2/2+ eZΦ /m≡ V2/2+
eZΦ /m. Here eZ and m are the particle charge and mass, V is
the particle speed, and Φ is the electrostatic potential.

3. Plasma response

Reference [21] provides the mathematical details of how
we employ the drift kinetic equation to describe the plasma
response to the NTM magnetic field perturbation in a real-
istic tokamak geometry characterised by finite beta values and
D-shaped plasmas. A typical drift kinetic problem is 5D, i.e.
{ψ ,ξ ,ϑ,µ,U}. Since we investigate small islands of half-
width w∼ ρbi, the dimension of the problem can be further
reduced by employing ∆ as a small parameter to expand the
solution (e.g. see [21]). We separate the particle distribution
function into the equilibrium Maxwell–Botzmann contribu-
tion and a perturbed piece, g=O(∆f0), that describes how
plasma responds to the magnetic island:

f =

(
1−

eZΦ
T

)
f0 + g. (7)

6 The particle species index, j, is omitted for simplicity and introduced only
when it is necessary to distinguish ions and electrons ( j= i for ions and j= e
for electrons).
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The equilibrium distribution function, f 0, is assumed to
be Maxwellian. The electrostatic potential, Φ, contains the
equilibrium piece, Φeqm =Φeqm (ψ ), associated with f 0 and
perturbation, δΦ =O(∆Φeqm), due to the magnetic island:
Φ = Φ eqm (ψ s)+ Φ ′

eqm

∣∣
ψ=ψ s

(ψ −ψ s)+ δΦ . Here ψ = ψs

denotes the location of the rational surface in ψ space, and
the subscript ‘eqm’ indicates the equilibrium quantities. The
equilibrium plasma quasi-neutrality is satisfied automatically
by the Maxwellian, while δΦ = δΦ (ψ,ξ,ϑ) arises due to the
difference in the ion and electron responses to the magnetic
island. Noting that the radial variation in equilibrium quant-
ities results in the O

(
δ∗∆

2 Vt
L f0
)
corrections in the drift kin-

etic equation, we evaluate f 0 and the equilibrium ion/electron
plasma temperature, T, in equation (7) at ψ = ψs, retaining the
radial variation in perturbed quantities only.

Following [18–21], we work in the island rest frame.
Therefore, the Φ ′

eqm (and hence ωE ≡mΦ ′
eqm/qs) variation

in the island rest frame provides the island propagation fre-
quency, ω, dependence in the reference frame in which the
equilibrium electric field is zero far from the magnetic island
(see section 2.5 of [23]). This then eliminates the time variation
associated with the first order differential operator, i.e. ∂/∂t,
from the drift kinetic equation, replacing it with the parametric
dependence on ωE.

To leading order in∆, the toroidal component of the canon-
ical angular momentum, pϕ = ψ −ψs− Iu/ωc with ωc =
eZB/m being the cyclotron frequency, is approximately con-
stant on a particle orbit as a consequence of approximate tor-
oidal symmetry. This allows further reduction to 4D, provided
pϕ is introduced as the radial coordinate instead of the poloidal
flux. Specifically, to leading order in∆, the plasma response is
independent of ϑ at fixed pϕ. To determine this leading order

response, g(0) = g(0) (pϕ, ξ,µ,V), we proceed to the follow-
ing order in ∆, which also contains the higher order plasma
response, g(1), dependent on ϑ7. To eliminate the g(1) depend-
ent term, we apply the orbit averaging operator, integrating
over ϑ at fixed pϕ:

⟨. . .⟩
pϕ
ϑ =

{
1
2π

´ π

−π
. . .dϑ, 0⩽ λ⩽ λc

1
4π

∑
σ σ
´ ϑb
−ϑb

. . .dϑ, λc < λ⩽ λfin.
(8)

Here σ ≡ u/|u|=±1, λ= 2µ/V2 is the pitch angle and λc
denotes the trapped-passing boundary. λfin is the upper limit
of the λ variation. The bounce points, ϑ= ϑb, are provided
by the condition: u(ϑb) = 0. This then provides four orbit-
averaged drift kinetic equations for g(0) to be solved in a
4D {pϕ, ξ ,λ,V} space, i.e. for passing/trapped ions/electrons,
respectively, involving (1) different averages employed for
passing and trapped particles and (2) different momentum-
restoring components in the collision operator for ions and
electrons [10].

Introducing the dimensionless system of [20, 21]:

ρ̂ϑ =
IVt
ωcwψ

, p̂ϕ =
pϕ
wψ

, ψ̂ =
ψ

wψ
, ŵ=

wψ
ψ s

,

V̂=
V
Vt
, û=

u
Vt
, L̂−1

q =
q ′
s

q
ψ s, L̂−1

B =
ψ s

B0

∂B0

∂ψ
,

Φ̂ =
eΦ
Te
, β̂ =

µ0peqm
B2
0

, (9)

where µ0 is the magnetic permeability of free space, q ′
s is q

′

evaluated at ψ = ψs, Te is the equilibrium electron temperat-
ure and peqm is the equilibrium plasma pressure, we write the
resulting 4D equation as

[
ŵ

L̂q
p̂ϕΘ (λc−λ)− ρ̂ϑω̂D −

1
2

〈
R2B2

0

I2
ρ̂ϑ
û
∂Φ̂

∂ψ̂

∣∣∣∣∣
ϑ,ξ

〉pϕ

ϑ


 ∂g(0)

∂ξ

∣∣∣∣
pϕ ,ϑ,λ,V

+





1
2

〈
R2B2

0

I2
ρ̂ϑ
û
∂Φ̂

∂ξ

∣∣∣∣∣
ψ ,ϑ

〉pϕ

ϑ

+
1
q

〈
ρ̂2ϑ

(
β̂ ′ + 2β̂

ŵ

L̂B

)
V̂2

û

(
û+

λB0

2
V̂2

û

)
∂B0

B0∂ϑ

∣∣∣∣
ψ ,ϕ

〉pϕ

ϑ

−
ŵ

4L̂q

〈
n
B2
ϑ

BϕB0

(
1+

qs
q

B2
ϕ

B2
ϑ

)
sin(nξ )−

1
q

I

R2B2
0

∂ (RB0)

∂ϑ

∣∣∣∣
ψ ,ϕ

cos(nξ )

〉pϕ

ϑ




∂g(0)

∂p̂ϕ

∣∣∣∣
ϑ,ξ ,λ,V

+
λ

q

〈
ρ̂ϑ
ŝ2

û

(
β̂ ′ + 2β̂

ŵ

L̂B

)
∂B0

B0∂ϑ

∣∣∣∣
ψ ,ϕ

〉pϕ

ϑ

∂g(0)

∂λ

∣∣∣∣
pϕ ,ϑ,ξ ,V

= Ĉg(0) +O
(
∆3f0

)
(10)

7 Note that g= g(0) + g(1) +O
(

∆3f0
)

, where g(0) =O(∆f0) and g(1) =O(∆2f0).

5



Nucl. Fusion 63 (2023) 126040 A.V. Dudkovskaia et al

with the normalised magnetic drift frequency, ω̂D, being
defined as

ρ̂ϑω̂D =−
ŵ

L̂q
⟨ρ̂ϑû⟩

pϕ
ϑ +

〈
R2B2

0

I2
ρ̂ϑŵ

L̂B

(
û+

λB0

2
V̂2

û

)〉pϕ

ϑ

+

〈
ϑ̂ ′R

2B2
ϑ

I2
ρ̂ϑ

(
û+

λB0

2
V̂2

û

)
∂B0

B0∂ϑ

∣∣∣∣
ψ ,ϕ

〉pϕ

ϑ

+

〈
R2B2

0

I2
ρ̂ϑû

(
β̂ ′ + 2β̂

ŵ

L̂B

)〉pϕ

ϑ

. (11)

Here β̂ ′ and ϑ̂ ′ have been introduced as β̂ and ϑ differenti-
ated with respect to ψ̂. Θ denotes the Heaviside step function.
Ĉ on the right hand side of equation (10) is the normalised

⟨R
2B0
Iu C⟩

pϕ

ϑ
term related to the collision operator, C. Its expli-

cit representation can be found in appendix A or in appendix
B of [20] in the low beta limit. Note that in the limit of low
beta, large aspect ratio tokamak plasmas, equation (10) with
equation (11) reduces to equations (14), (15)/ equations (20),
(21) of [20].

Equation (10) is to be solved with the following boundary
conditions: (1) at large distances from the magnetic island,
the radial derivative of g(0) must match the radial derivative
of the equilibrium distribution function, i.e. the island phys-
ics, including its impact on the transport processes, is local-
ised around the rational surface; (2) g(0) must be periodic in ξ;
(3) to eliminate divergences at the deeply passing and trapped
limits in λ, we require a mixed boundary condition there that
results from equation (10) (see appendix B). Equation (10)
then provides g(0) = g(0) (pϕ , ξ ,λ,V) = g(0) (ψ ,ξ ,ϑ,λ,V) for
ions and electrons at each ωE. Noting that the electrons
have much narrower Larmor orbits (compared to ions) and
their motion along magnetic field lines significantly exceeds
the guiding centre drifts, the ion and electron responses to
the magnetic island perturbation are different. This differ-
ence violates plasma quasi-neutrality, requiring an electro-
static potential, δΦ, that must be calculated consistently with
the quasi-neutrality condition [10, 18–21].8 This therefore
couples electron and ion physics. As discussed in [20], we
adopt an iteration process such that at each iteration step in

8 Integrating equation (7) over velocity space and then imposing quasi-neutrality provide Φ̂ = (δn̂i − δn̂e)/(1+ τ) that determines δΦ̂ = eδΦ/Te via Φ̂ =
Φ̂ eqm − ω̂E(ŵ/L̂n)x+ δΦ̂, where Φ̂ eqm = eΦ eqm/Te, τ = ZiTe/Ti, Ln is the equilibrium density gradient length scale normalised to ψs, ω̂E is ωE normalised

to the electron diamagnetic frequency and x= (ψ −ψs)/wψ . δn̂i/e is the perturbed ion/electron density associated with g(0)
i/e

of equation (7).

the perturbed electrostatic potential, δΦ (which is a part of Φ̂
in equation (10)) is known. Φ ′

eqm in Φ̂ is an input parameter,
and its variation provides the parametric dependence of the
solution, g(0), on the island propagation frequency, ω.

In addition to δΦ and plasma quasi-neutrality, the ion
and electron responses are coupled via collisions. Following
[10, 18–21], we employ a collision operator, C, that conserves
particles and momentum, equation (62) of [10]. This makes
equation (10) for ions and electrons integro-differential and
couples the electron distribution function to the ion response
via the electron-ion collisions. Therefore, we obtain a nonlin-
ear system of 4D integro-differential equations coupled by (1)
the momentum conservation term in the electron-ion collision
operator and (2) the perturbed electrostatic potential required
for quasi-neutrality.

There are certain numerical challenges associated with
solving equation (10) in pϕ space (being referred to here as
the DK-NTM approach) [24], as it relies on the ability of the
numerical solver to resolve fine structures in boundary layers.
There are two boundary layers: one is in pitch angle space
in the vicinity of the boundary between passing and trapped
particles, and one that surrounds the drift island separatrix
and results from different topologies (and thus averages in
helical angle) inside and outside the island. In [20, 21] we
have introduced a model further reduced in collisions (being
referred to here as the RDK-NTM approach): being valid in
the limit when the particle collision frequency is much less
than the magnetic drift frequency and/or parallel streaming
around the island flux contours, it allows one to better resolve
boundary layers and thus learn more about the physics related
to collisional dissipation, providing an extension to the DK-
NTM formulation to low collisionality plasmas (see table 1
for the DK- and RDK-NTM comparison). In this low collision
frequency limit, the collision operator can be treated perturb-
atively, and one then finds that all the spatial variation can
be captured in a single stream function, S= S(pϕ, ξ,λ,V;σ)
so that g(0) = g(0) (pϕ , ξ ,λ,V) = g(0) (S,λ,V) and the prob-
lem reduces to 3D. Introducing collisions perturbatively at the
following order and averaging over the drift surfaces, labelled
by S, then provides the resulting equation to be solved for g(0)

in S space. Indeed, equation (10) is equivalent to

[
ŵ

L̂q
p̂ϕΘ (λc−λ)− ρ̂ϑω̂D−

1
2

∂

∂p̂ϕ

∣∣∣∣
ϑ,ξ

〈
R2B2

0

I2
ρ̂ϑ
û
Φ̂

〉pϕ

ϑ

]
∂g(0)

∂ξ

∣∣∣∣
S,ϑ,λ,V

= Ĉg(0) −
λ

q

〈
ρ̂ϑ
ŝ2

û

(
β̂ ′ + 2β̂

ŵ

L̂B

)
∂B0

B0∂ϑ

∣∣∣∣
ψ ,ϕ

〉pϕ

ϑ

∂g(0)

∂λ

∣∣∣∣
pϕ ,ϑ,ξ ,V

+O
(
∆3f0

)
,

(12)

6



Nucl. Fusion 63 (2023) 126040 A.V. Dudkovskaia et al

where

S=
ŵ

4L̂q


2
(
p̂ϕ −

ρ̂ϑω̂DL̂q
ŵ

)2

−

〈
B2
ϑ

BϕB0

(
1+

B2
ϕ

B2
ϑ

)
cos(nξ )+

1
m

I

R2B2
0

∂ (RB0)

∂ϑ

∣∣∣∣
ψ ,ϕ

sin(nξ )

〉pϕ

ϑ


Θ (λc−λ)

− ρ̂ϑω̂Dp̂ϕΘ (λ−λc)−
1
2

〈
R2B2

0

I2
ρ̂ϑ
û
Φ̂

〉pϕ

ϑ

−
n
m

〈
ρ̂2ϑ

(
β̂ ′ + 2β̂

ŵ

L̂B

)
V̂2

û

(
û+

λB0

2
V̂2

û

)
∂B0

B0∂ϑ

∣∣∣∣
ψ ,ϕ

〉pϕ

ϑ

ξ , (13)

provided the equilibrium quantities are slowly varying func-
tions of ψ that can be evaluated at ψs and

〈
R2B2

0

I2
ρ̂ϑ
û
∂Φ̂

∂ψ̂

∣∣∣∣∣
ϑ,ξ

〉pϕ

ϑ

=
∂

∂p̂ϕ

∣∣∣∣
ϑ,ξ

〈
R2B2

0

I2
ρ̂ϑ
û
Φ̂

〉pϕ

ϑ

,

〈
R2B2

0

I2
ρ̂ϑ
û
∂Φ̂

∂ξ

∣∣∣∣∣
ψ ,ϑ

〉pϕ

ϑ

=
∂

∂ξ

∣∣∣∣
p̂ϕ ,ϑ

〈
R2B2

0

I2
ρ̂ϑ
û
Φ̂

〉pϕ

ϑ

.

Equation (12) can schematically be written as

A
∂g(0)

∂ξ

∣∣∣∣
S,ϑ,λ,V

= Cg(0), (14)

whereA denotes the coefficient in front of ∂g(0)/∂ξ
∣∣
S,ϑ,λ,V

on
the left hand side of equation (12) and C represents the right
hand side operator of equation (12), acting on g(0). Related to
Ĉ, C contains the pitch angle scattering operator, the diffusion-
type operator in S space, as well as mixed partial derivative
contributions associated with the variable switch from ψ to S
[20]. In the limit of finite beta, C also includes a contribution
that results from the Vlasov operator (second term on the right
hand side of equation (12)). Following [21], we require

ν∗ ∼
1
ε

(
β̂ ′ + 2β̂

ŵ

L̂B

)
≪ 1, (15)

where ν∗ is plasma collisionality and ε is the tokamak inverse
aspect ratio evaluated at ψ = ψs, to allow a perturbative treat-
ment of the right hand side of equation (12). Equation (15)
does not allow for any sharp spatial variations in β̂ ′ (consist-
ent with the assumptions made above about the radial variation
of equilibrium quantities) and allows for β varying between(
10−2 − 1

)
for the typical values of ν∗ in the RDK-NTM for-

mulation, i.e.
(
10−4 − 10−2). In this limit,

A
∂g(0,0)

∂ξ

∣∣∣∣
S,ϑ,λ,V

= 0 (16)

to leading order in collisions, confirming that the leading order
distribution function, g(0,0), is independent of ξ at fixed S.

Thus, we learn that the particle distribution function is almost
constant along the contours of constant S. Proceeding to next
order in collisions, we obtain

A
∂g(0,1)

∂ξ

∣∣∣∣
S,ϑ,λ,V

= Cg(0,0), (17)

where g(0,1) is the first order correction in collisions. g(0,1)

depends on ξ at fixed S. To eliminate the g(0,1) dependent term,
we apply the ξ-averaging operator, ⟨. . .⟩Sξ , integrating over ξ at
fixed S [20], to find

〈
C

A

〉S

ξ

g(0,0) = 0, (18)

i.e. a 3D integro-differential equation that describes how the
distribution function g(0,0) varies with S, λ and V at each ωE.
Note that equation (18) allows for different collisional mod-
els but for the present paper we employ the momentum con-
serving pitch angle scattering model of [10, 18–21]. While the
latter is relatively simple in that it does not include slowing
down effects, it is sufficient for the purposes of this paper9.
Equation (18) then produces

〈
1
A

〉S

ξ

a
(
λ, V̂;σ

) ∂2g(0,0)j

∂λ2

∣∣∣∣∣∣
S,ξ

+

〈
1
A

〉S

ξ

b
(
λ, V̂;σ

) ∂g(0,0)j

∂λ

∣∣∣∣∣∣
S,ξ

+

〈
CSS
A

〉S

ξ

∂2g(0,0)j

∂S2

∣∣∣∣∣∣
λ,ξ

+

〈
CS
A

〉S

ξ

∂g(0,0)j

∂S

∣∣∣∣∣∣
λ,ξ

+

〈
CλS
A

〉S

ξ

∂2g(0,0)j

∂λ∂S

∣∣∣∣∣∣
ξ

+
V̂
2ν̂j

〈
1
AU∥j

(
g(0,0)i ,g(0,0)e

)〉S

ξ

= 0.

(19)

Here ν̂j is νiiR0/Vti for ions and (νee+ νei)R0/Vte for electrons
with Vtj being the thermal velocity of species j, and ν jj and

9 The momentum conserving pitch angle scattering collision operator is less
accurate in situations when energetic particles/ impurities are considered.
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Figure 1. Magnetic island flux contours (in the middle) and
contours of constant S (i.e. drift island flux contours) for σ =+1
(right) and σ =−1 (left). The green contour shows the separatrix of
the magnetic island. The red/blue dashed contour shows the σ =±1
drift island separatrix, shifted by a value proportional to ρϑ relative
to the magnetic island.

νei denoting the corresponding collision frequency ( j= i for
ions and j= e for electrons). The transport-type coefficients,
CSS, CS and CλS (see appendix A for their explicit represent-
ation) result from a variable transformation from ψ to S (via
pϕ to provide additional factorisation, see section D.7 of [23])
and include orbit-averaging at fixed pϕ, i.e. they are there-
fore different for passing and trapped particles in accordance
with equation (8). The corresponding terms in equation (19)
describe transport across surfaces of constant S. a(λ, V̂;σ) and
b(λ, V̂;σ) are the pitch angle scattering weight functions (see
appendix A). U∥j is the momentum-restoring contribution (see
appendix A). For ions,U∥i depends on the perturbed ion distri-

bution function, g(0,0)i , only10. For electrons, electron-ion colli-
sions must be retained as well, and hence U∥e depends on both

g(0,0)i and the perturbed electron distribution function, g(0,0)e .
Based on equations (13) and (15), S has different defini-

tions for passing and trapped particles. For example, in the
absence of the electrostatic potential, S is proportional to p̂ϕ
for trapped particles. For passing particles, the surfaces of
constant S reproduce the magnetic island flux contours but
are radially shifted by an amount ρ̂ϑû+(L̂q/ŵ)ρ̂ϑω̂D, propor-
tional to ρϑ (see figure 1). Being σ dependent, this shift is
in opposite directions for the two streams σ =±1 (u≷ 0).
Therefore, we refer to these structures defined by the con-
stant S contours as drift islands. Inclusion of Φ calculated from
plasma quasi-neutrality is not found to add significant qualit-
ative modifications to the drift island structures [18–21] but is
important quantitatively, and thus its effect is to be retained.
Therefore,

⟨. . .⟩Sξ =
1
2π

ˆ π

−π

. . .dξ (20)

for trapped and

⟨. . .⟩Sξ =

{
1
2π

´ π
−π

. . .dξ , S⩾ Sc
1
4π

∑
σpϕ

σpϕ
´ ξ b2
ξ b1

. . .dξ , Smin ⩽ S< Sc
(21)

10 Ion-electron collisions are considered to be small.

Figure 2. Schematic representation of the solution technique (see
appendix B).

for passing particles. Here S= Sc corresponds to the drift
island separatrix and Smin denotes the lower limit of the S
variation. At the zeroth iteration in δΦ (i.e. δΦ = 0), Sc and
Smin can be determined analytically, e.g. they are provided
by Sc = ŵ/4L̂q and Smin =−ŵ/4L̂q (ωE = 0) and are then to
be updated accordingly at the end of each iteration in δΦ,
based on the numerical solution for g(0,0). ξb1,2 are the max-
imum and minimum values of ξ on the closed surfaces
inside the drift islands (ξ-bounce points) provided by ξ b1,2 =
ξ b1,2

(
S,pϕ0,λ,V;σ

)
with pϕ0 being a stationary point of S as

a function of pϕ at each ξ, λ, V and σ. σpϕ is then the sign of
pϕ− pϕ0.

As was previously shown in [20], the distribution func-
tion is flattened across the drift islands (and not the mag-
netic island). This therefore provides a contribution to the
density gradient associated with passing ions at w∼ ρϑi due
to the summation over σ in the integral over velocity space.
Since ρϑe ≪ w, the drift islands for electrons almost coincide
with the magnetic island, and the electron density gradient
is still flattened across the magnetic island in the absence of
a potential. However, this difference in the electron and ion
responses drives a perturbed electrostatic potential to maintain
plasma quasi-neutrality, restoring the electron density gradient
across the magnetic island as well. Note that inclusion of ωE in
equation (13) impacts the radial shift via Φ ′

eqm
∣∣
ψ=ψ s

(ψ −ψ s)

[23], and therefore, depending on its sign, it can further
enhance or suppress the drift island effect on the NTM drive.

3.1. Boundary layers

The perturbative treatment of collisions becomes invalid in
narrow boundary layers: (1) in the region of pitch angle
that separates trapped and passing particles (vertical blue
area that surrounds λc in figure 2) and (2) in the vicinity
of the drift island separatrix (horizontal red area around Sc
in figure 2). Due to steep gradients in pitch angle around
the trapped-passing boundary, λ= λc, parallel streaming,
A∂/∂ξ |S, there is comparable to collisional dissipation associ-
atedwithDλ∂

2/∂λ2, whereDλ is the diffusion-type coefficient
in λ space, related to the plasma collision frequency (for defini-
tions, see the following subsection). These steep gradients in λ
exist because different orbit-averaging procedures for passing
and trapped particles generate a discontinuity at λ= λc when

8
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collisions are neglected, which can then be resolved by the col-
lisional layer in pitch angle. The corresponding modifications
of the particle distribution function are discussed in [10, 20].
Another boundary layer arises due to steep gradients in S
around the drift island separatrix, S= Sc, where A∂/∂ξ |S is
comparable to the transport term, i.e. DS∂

2/∂S2 with DS being
the diffusion-type coefficient in S space (for definitions, see
the following subsection). Indeed, different ξ-averaging pro-
cedures at fixed S inside and outside the drift island also gen-
erate a discontinuity, and the drift island separatrix boundary
layer resolves it. Topologically this is similar to (and replaces)
the boundary layers introduced by [9] and [12] for magnetic
islands. Indeed, both magnetic and drift island boundary lay-
ers almost coincide when magnetic islands are large, i.e. w≫
ρϑi. When w≳ ρϑi, the layer around drift islands remains nar-
row, therefore broadening the layers from both sides of the
magnetic island. Then there is also a special region where
both boundary layers overlap, i.e. schematically A∂/∂ξ |S ∼
Dλ∂

2/∂λ2 ∼ DS∂
2/∂S2 (see figure 2).

3.1.1. λp ⩽ λ⩽ λc and St ⩽ S⩽ Sp region. This is the region
where both boundary layers overlap, and the collision operator
is dominated by the pitch angle scattering term proportional to
∂2/∂λ2

∣∣
S
, as well as the diffusion-type term associated with

∂2/∂S2
∣∣
λ
:

A(S, ξ ,λ,V;σ)
∂g(0)j

∂ξ

∣∣∣∣∣∣
S,λ,V

=
2ν̂j
V̂
a(λ,V;σ)

∂2g(0)j

∂λ2

∣∣∣∣∣∣
S,ξ,V

+
2ν̂j
V̂
CSS (S,λ,V;σ)

∂2g(0)j

∂S2

∣∣∣∣∣∣
ξ,λ,V

.

(22)

We exploit the narrowness of this region in both S and λ space,
provided the plasma has low collisionality, and fix the coeffi-
cients in equation (22) at λp ≡ λc− ϵλ [20] and Sp/t ≡ Sc± ϵS,
where λc is the trapped-passing boundary, Sc corresponds to
the location of the drift island separatrix, and ϵλ and ϵS provide
the widths of the trapped-passing boundary layer and the drift
island separatrix layer, respectively11. Thus, equation (22)
reduces to

∂g(0)j

∂ξ

∣∣∣∣∣∣
S,λ,V

= D̂in/out
λ

∂2g(0)j

∂λ̃2

∣∣∣∣∣∣
S,ξ,V

+ D̂in/out
S

∂2g(0)j

∂S̃2

∣∣∣∣∣∣
ξ,λ,V

(23)
with

D̂in/out
λ =

2ν̂j
V̂

a(λp,V;σ)
A
(
Sp/t, ξ ,λp,V;σ

) (24)

11 Following [23], ϵλ ≈
√

(2ν̂j/V̂)a(λc,V;σ) and ϵS ≈
√

(2ν̂j/V̂)CSS (Sc,λp,V;σ).

and

D̂in/out
S =

2ν̂j
V̂

CSS
(
Sp/t,λp,V;σ

)

A
(
Sp/t, ξ ,λp,V;σ

) . (25)

In equations (24) and (25), the superscript ‘in’ indicates the
phase space region inside the drift island, i.e. evaluated at St,
while ‘out’ corresponds to the region outside the drift island,
i.e. evaluated at Sp. Here we have introduced λ̃= λ−λc and
S̃= S− Sc, which are such that λ̃= 0 defines the trapped-
passing boundary and S̃= 0 indicates the location of the drift
island separatrix. λ̃ < 0 corresponds to the passing region; S̃≶
0 corresponds to the phase space inside/outside the drift island,
respectively. Equation (23) is to be solved in the region of
passing particles for each σ at σpϕ =±1. Equation (23) allows
for an analytic solution of the Fourier form (to be interpreted
similar to equation (97) of [10] where the trapped-passing
boundary layer in pitch angle space was investigated):

g(0),outj =
∑

k>0

Cout
k e

i+1
2

√

k
D̂out
λ
λ̃− i+1

2

√

k
D̂outS

S̃
eikξ +Cout

0 (26)

outside and

g(0),inj =
∑

k>0

Cin
k e

i+1
2

√

k
D̂in
λ

λ̃+ i+1
2

√

k
D̂inS

S̃
eikξ +Cin

0 (27)

inside the drift island with Cin/out
k = ain/outk + ibin/outk (k⩾ 0).

To ensure continuity across S= Sp and S= St, Cout
0 and Cin

0
are to be provided by drive terms, H+ and H− in equation
(31) of [20], evaluated at S= Sp/t, respectively. The rest of the

Fourier coefficients, ain/outk , bin/outk (k> 0), are unknown and to
be found from matching at S̃= 0 in inverse k space based on

g(0),outj

∣∣∣
S̃=0

= g(0),inj

∣∣∣
S̃=0

,

∂g(0),outj

∂S̃

∣∣∣∣∣∣
S̃=0

=
∂g(0),inj

∂S̃

∣∣∣∣∣∣
S̃=0

(28)

at each σpϕ to ensure continuity of g(0)j and its first derivative in
S across Sc. Substituting the resulting Fourier coefficients into
the above analytic solution, equations (26) and (27), provides
matching across the drift island separatrix, and this is then to be
employed to determine the trapped particle solution in the col-
lisional trapped-passing boundary layer, λc ⩽ λ⩽ λt, as well
as to reconstruct the passing solution at λ < λp (see figure 3
for an example layer solution at λ= λp).

3.1.2. λc ⩽ λ⩽ λt and St ⩽ S≤ Sp region. Following
[10, 20], we impose matching conditions provided by
equations (106)–(108) of [10] at the trapped-passing bound-
ary to ensure continuity of the solution across λ= λc, as well
as the same scattering rate of trapped/passing particles into
passing/trapped orbits. As explained in [20], S has differ-
ent definitions from the side of passing (λ < λc) and trapped

9
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Figure 3. Leading order ion distribution function, g(0,0)i , plotted as
a function of y= (S− Smin)

1/2 at λ= λp, σ =−1 across the
magnetic island O-point, ξ= 0; w= 0.02rs, ρϑi = 1× 10−3rs,
ν∗i = 10−3 (plasma collisionality). The equilibrium geometry
parameters are chosen as in [20]: inverse aspect ratio at the surface
of interest ε= 0.1, plasma elongation κ= 1 and triangularity δ= 0;
safety factor at the surface of interest q= 2, normalised safety factor
gradient length scale L̂q = 1 and the normalised density and ion
temperature gradient length scales Ln/ψs = 1 and LTi/ψs = 1,
respectively. Inset: full solution of equation (22). Note that g(0,0)i is
normalised to neqm/(π3/2V3

ti), where neqm is the equilibrium plasma
density and Vti is the ion thermal velocity. The red dashed line
indicates the location of the drift island separatrix.

(λ > λc) particles, which therefore does not allow for the
continuity of the particle distribution function across λ= λc
in S space without introducing collisional effects in the
trapped-passing boundary layer, and requires matching to
be performed at fixed pϕ [20] (or ψ [10]).12

Since there are no drift islands in the trapped region, in the
interval λc ⩽ λ⩽ λt collisions are dominated by the pitch angle
scattering term proportional to ∂2/∂λ2

∣∣
pϕ
, and hence g(0)j there

is still provided by equation (26) of [20]:

A
(
Ŝ, ξ ,λt,V;σ

) ∂g(0)j

∂ξ

∣∣∣∣∣∣
Ŝ,ϑ,λ,V

=
2ν̂j
V̂
a(λt)

∂2g(0)j

∂λ2

∣∣∣∣∣∣
Ŝ

(29)

with Ŝ= S(λt). As discussed in [20], equation (29) then
reduces to the diffusion-type equation:

∂g(0)j

∂γt

∣∣∣∣∣∣
Ŝ

= Dt ∂
2g(0)j

∂λ
2

∣∣∣∣∣∣
Ŝ

(30)

with Dt = (2ν̂j/V̂)a(λt), λ=

[
<A−1 >

Ŝ
ξ

]−1/2

(λ−λc) and

γt =
1

´ π
−π

dξ
2π |A|

ˆ ξ

0

dξ ′

A
(
Ŝ, ξ ′,V;σ

) . (31)

12 Note that in contrast to S, pϕ has the same definition for passing and trapped
particles.

Note that ⟨. . .⟩Ŝξ = (2π )−1 ¸ . . .dξ for trapped particles.
Equation (30) allows an analytic solution of the form:

g(0),tj =
∑

k>0

Ctke
i+1√

2

√

k
Dt
λ
eikγ

t

+Ct0 (32)

with Ctk = atk+ ibtk (k⩾ 0). Equation (32) must be matched
to equation (26) for Sc ⩽ S⩽ Sp and equation (27) for St ⩽
S< Sc at λ= λc at fixed pϕ, in accordance with equations
(106)–(108) of [10]. To perform matching at fixed pϕ,
equations (26), (27) are to be rewritten in terms of pϕ, using
S= S(pϕ , ξ,λ,V;σ), i.e. g(0),in/outj = g(0),in/outj (S, ξ,λ,V;σ) =

g(0),in/outj [S(pϕ , ξ,λ,V;σ) , ξ,λ,V;σ]. Since equations (26), (27)
are fully determined by matching at S= Sc, as well as S= Sp/t
in the passing region, there are 2N+ 1 unknowns (i.e. asso-
ciated with trapped particles) with k ∈ [0,N] and N being the
Fourier harmonics retained, compared to 6N+ 3 (i.e. associ-
ated with σ =±1 passing and trapped particles) in [20].

According to equations (106)–(108) of [10] and
equations (26), (27) and (32), matching at λ= λc provides

Cout
0 +

∑

k>0

Cout
k e

− i+1
2

√

k
D̂outS

S̃(pϕ )

eikξ

= Cin
0 +

∑

k>0

Cin
k e

i+1
2

√

k
D̂inS

S̃(pϕ )

eikξ = Ct0 +
∑

k>0

Ctke
ikγ t(ξ ),

∑

k>0

Cout
k

√
k

D̂out
λ

e
− i+1

2

√

k
D̂outS

S̃(pϕ )

eikξ

+
∑

k>0

Cin
k

√
k

D̂in
λ

e
i+1
2

√

k
D̂inS

S̃(pϕ )

eikξ

=
4√
2

∑

k>0

Ctk

√
k
Dt e

ikγ t(ξ ) (33)

which then replaces equation (31) of [20] in this region.
Equation (33) provides a set of three equations for 2N+ 1
unknowns, i.e. atk (N unknowns), btk (N unknowns) and Ct0

13.
Similar to [20], due to a difference in definitions of ξ and
γt, matching at λ= λc via equation (33) cannot be performed
in k space. Instead, γt is a function of ξ, in accordance with
equation (31), and hence taking a number of points in ξ space,
Nξ =

2
3N, where N must be selected accordingly, i.e. N= 3n,

n ∈N, and treating γt = γt(Ŝ, ξ ,V) = γt[Ŝ(p̂ϕ , ξ ,V) , ξ ,V], we
solve equation (33) numerically for atk, b

t
k (k> 0), providing

matching at fixed pϕ and ξ. To ensure continuity of the solu-
tion in pϕ space (i.e. at pϕ = pp/t±ϕ defined in accordance
with figure 4), Ct0 is to be provided by the drive term, Ht, of
equation (31) in [20]. Note thatHt also ensures that the solution
matches the Maxwellian equilibrium far from the magnetic
island. Substituting the resulting Fourier coefficients into the
above analytic solution in the trapped region, equation (32),
provides matching across the trapped-passing boundary, and
this is then to be employed as the boundary condition to recon-
struct the trapped solution at λ > λt.

13 Similar to drive terms,H±/t, of [20] and Cin/out
0 of section 3.1.1, Ct0 is real.
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3.1.3. λp ⩽ λ⩽ λt region outside drift island separatrix layer.
In the interval λp ⩽ λ⩽ λc, S> Sp (outside the drift island) and
Smin ⩽ S< St (inside the drift island), as well as at the corres-
ponding pϕ values from the trapped region, λc < λ⩽ λt, the
collision operator is approximated by a diffusion-type term
similar to section 3.1.2 and [20]:

∂g(0)j

∂γ±/t

∣∣∣∣∣∣
Ŝ

= D±/t ∂
2g(0)j

∂λ
2

∣∣∣∣∣∣
Ŝ

, (34)

whereD±/t = (2ν̂j/V̂)a
(
λp/t

)
for passing, σ =±1, and trapped

branches. Here

γ± =
σpϕ

´ π
−π

dξ
2π |A|

ˆ ξ

0

dξ ′

A
(
Ŝ, ξ ′,V;σ

) (35)

for passing particles outside and

γ± =
1

´ ξ b
−ξ b

dξ
π |A|

ˆ ξ

0

dξ ′

A
(
Ŝ, ξ ′,V;σ

) , σpϕ > 0 (36)

with

γ± = π − 1
´ ξ b
−ξ b

dξ
π |A|

ˆ ξ

0

dξ ′

A
(
Ŝ, ξ ′,V;σ

) , σpϕ < 0 (37)

inside the Ŝ island. Note that in this region Ŝ= S
(
λp/t

)

for passing/trapped particles. For trapped particles, γt is

provided by equation (31). λ= [⟨A−1⟩Ŝξ ]
−1/2

(λ−λc) with the

ξ-averaging operator at fixed Ŝ, ⟨. . .⟩Ŝξ , being defined as in [20]
via an average over ξ for passing particles outside the Ŝ island
and trapped particles, and through an integral between ξ-
bounce points, ξb1,2, with a weighted sum over σpϕ for passing
particles inside the Ŝ island. Note that γ±/t has the same fea-
tures as the angle variable of [25], providing continuous solu-
tions across ξ =±ξb1,2. The solution of equation (34) is of the
form:

g(0)j =
∑

k⩾0

C±/t
k e

i+1√
2

√

k

D±/t λeikγ
±/t

(38)

with C±/t
k = a±/tk + ib±/tk , and hence employing again the

matching conditions provided by equations (106)–(108) of
[10], we write

H+ +
∑

k>0

C+
k e

ikγ+

= H− +
∑

k>0

C−
k e

ikγ−
= Ht+

∑

k>0

Ctke
ikγ t ,

∑

k>0

C+
k

√
k
D+

eikγ
+

+
∑

k>0

C−
k

√
k
D−

eikγ
−
= 2
∑

k>0

Ctk

√
k
Dt e

ikγ t ,

(39)

which is then equivalent to the system of equation (31) of
[20]. H±/t is the 0th harmonic, representing the drive terms
[20]. Due to a difference in the definitions of equations (31)
and (35)–(37), the system of equation (39) cannot be solved

Figure 4. Leading order ion distribution function, g(0,0)i , of figure 3
plotted as a function of pϕ. Inset: zoom in the vicinity of the drift
island separatrix based on the full solution of equation (22). The
green dashed line indicates the equilibrium distribution function in
the absence of the magnetic island perturbation. Note that for
passing particles (σ =±1), pp/t+ϕ corresponds to Sp/t at σpϕ > 0,

while pp/t−ϕ corresponds to Sp/t at σpϕ < 0.

in k space. Instead, we solve equation (39) numerically
for a±/tk , b±/tk , taking the number of points in ξ space
as Nξ = 2N+ 1 (N is the number of Fourier harmonics

retained in this region) and treating γ±/t = γ±/t
(
Ŝ, ξ ,V

)
=

γ±/t[Ŝ(p̂ϕ , ξ ,V), ξ ,V]. This provides matching across the
trapped-passing boundary at pϕ values outside the drift island
separatrix (as shown in figure 4). Written in terms of S and
evaluated at λp/t, this solution is then used to recover the
passing/trapped particle solution outside the trapped-passing
boundary layer (as discussed below in appendix B and in [20]).
In the region λp ⩽ λ⩽ λc, it can be transformed back onto the
S grid to provide the Cout/in

0 of section 3.1.1 to ensure a con-
tinuous solution across S= Sp/t. In the region λc < λ⩽ λt, it
provides the Ct0 of section 3.1.2 at the values of pϕ that cor-
respond to the location of the drift island separatrix layer,
pϕ = pp/t±ϕ (see figure 4).

3.1.4. Drift island separatrix layer in the region λ < λp. In
the vicinity of the drift island separatrix outside the colli-
sional trapped-passing boundary layer, St ⩽ S⩽ Sp and λ < λp,
the collision operator is dominated by the diffusion-type term
associated with ∂2/∂S2

∣∣
λ
, and hence

A(S, ξ ,λ,V;σ)
∂g(0)j

∂ξ

∣∣∣∣∣∣
S,λ,V

=
2ν̂j
V̂
CSS (S,λ,V;σ)

∂2g(0)j

∂S2

∣∣∣∣∣∣
ξ,λ,V

,

(40)

which then reduces to

∂g(0)j

∂ξ

∣∣∣∣∣∣
S,λ,V

= D̂in/out
S

∂2g(0)j

∂S̃2

∣∣∣∣∣∣
ξ,λ,V

. (41)
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Here D̂in/out
S and S̃ are defined in accordance with section 3.1.1.

The solution of equation (41) is then provided by

g(0),outj =
∑

k>0

Ĉout
k e

− i+1√
2

√

k
D̂outS

S̃
eikξ + Ĉout

0 (42)

outside and

g(0),inj =
∑

k>0

Ĉin
k e

i+1√
2

√

k
D̂inS

S̃
eikξ + Ĉin

0 (43)

inside the drift island with Ĉin/out
k = âin/outk + ib̂in/outk (k⩾ 0). To

ensure continuity of the solution across λ= λp, Ĉout
0 and Ĉin

0 are
to be provided by Cout

0 and Cin
0 of section 3.1.1, respectively,

via matching equations (42) and (43) to equations (26) and
(27) at λ= λp. Then â

in/out
k , b̂in/outk (k> 0) are to be determined

from equation (28) at each σpϕ to provide continuity of g(0)j
and its first derivative in S across Sc. Substituting the result-
ing coefficients into equations (42) and (43) provides match-
ing across S= Sc. Equations (42) and (43) then provide the
Dirichlet boundary conditions at S= Sp/t to calculate the solu-
tion of the drift kinetic equation, equation (19), outside the
drift island separatrix boundary layer.

3.2. Low collisionality regions

For λ < λp (passing particles, see figure 2) with S> Sp (outside
the drift island) and Smin ⩽ S< St (inside the drift island), as
well as for λ > λt (trapped particles), the collision operator can
be introduced perturbatively and the particle distribution func-
tion is to be found as the solution of equation (19). Boundary
conditions in pitch angle space at λ= 0 and λ= λfin are mixed
and result from equation (19) [23]. This ensures that the solu-
tion is not divergent at the deeply passing/trapped limit. At
the trapped-passing boundary, λ= λc, we match the passing
and trapped branches of the distribution function in accord-
ance with section 3.1. At large distances from the magnetic
island, the radial derivative of the solution must match the
radial derivative of the equilibrium distribution function. This
is provided by the Neumann boundary condition in S space
[23] at S→+∞ (or pϕ →±∞, see figures 3 and 4), which is
typically a feww away from themagnetic island. To ensure that
the solution is continuous in pϕ space across the drift island
centre (i.e. the drift island O-point, pϕ = pϕ0 at each λ, V and
σ, see figure 4 for example), we match the σpϕ =±1 branches
of the passing particle distribution function (see figure 3) in
S space at S= Smin. At the drift island separatrix, S= Sc, we
match the branches of the passing particle distribution func-
tion that exist inside and outside the drift island at each σ in
accordance with section 3.1.

We impose the Dirichlet boundary condition at S= Sp and
S= St to ensure the passing particle solution is continuous
across the drift island separatrix layer. In pitch angle space,
similar to [20], we impose the Dirichlet boundary condition at
λ= λp and λ= λt, provided by the boundary layer matching
solution of section 3.1. Discretising g(0,0) of equation (19):

gσ,p/|σ|,tj =α
σ,p/|σ|,t
j gσ,p/|σ|,tj±1 +β

σ,p/|σ|,t
j (44)

at each λ grid point, j, and calculating α
σ,p/|σ|,t
j and

β
σ,p/|σ|,t
j at j= 0 (passing particles, λ= 0) and j= Np2 (trapped

particles, λ= λfin, see figure 2) from the boundary con-
ditions at the deeply passing/trapped limit14, we find all
α
σ,p/|σ|,t
j s and β

σ,p/|σ|,t
j s at each j up to λ= λp from the

side of passing particles and back to λ= λt for trapped
particles. Substituting the boundary layer solution obtained
in section 3.1 and evaluating it at λ= λp/t in equation (44)

then provide gσ,p/|σ|,tj at each λ grid point between 0⩽ λ <

λp and λt < λ⩽ λfin. The details of the numerical solution
are provided in appendix B. Note that first we iterate over
U∥j of equation (19) to converge the momentum-restoring
contribution in the collision operator. This is inside the
second iteration loop to converge the perturbed electrostatic
potential.

An example solution is shown in figure 3 as a func-
tion of S and in figure 4 as a function of pϕ. For com-
parative purposes, in appendix C we benchmark the solu-
tion of equation (19) with boundary layer effects included
against (1) the DK-NTM solution of [20] and (2) the RDK-
NTM solution of [20] which is obtained in the absence of
the drift island separatrix layer physics but captures the
trapped-passing boundary layer effects. In particular, in
appendix C we consider the ion ‘density moments’ defined
via

∑
σ g

σ
i ≡ g(0,0)i (σ =+1)+ g(0,0)i (σ =−1) and the ‘flow

moments’ via
∑
σ σg

σ
i = g(0,0)i (σ =+1)− g(0,0)i (σ =−1).

Note that the equilibrium plasma parameters in appendix C
are chosen as in [20], i.e. assuming a low beta, large aspect
ratio tokamak plasma.

3.3. Parallel flows in the presence of the magnetic island

While inclusion of the drift island separatrix layer physics is
not found to significantly modify the density moments (see
appendix C), it qualitatively changes the shape of the flow
moments (and hence the flows parallel to the magnetic field)
in the (ψ,ξ) plane (e.g. see figures 5 and 6), compared to the
results of [20] even in the absence of the equilibrium radial
electric field (ωE = 0). Indeed, as the island width decreases
towards ρϑi, we previously observed some negative (stabil-
ising) flows that spread into the magnetic island region near
the X-points (ξ =±π in figure 6(a)) [20]. These flows are
then found to compete with growing positive (destabilising)
flows outside the magnetic island separatrix, contributing to
the NTM threshold. From figure 6(a), it is apparent that these
flows are due to part of the parallel flow that varies on the
flux surface and flux surface averages to zero which is typ-
ically associated with the ion ‘polarisation’ flow. Since ωE = 0
in this case, the only polarisation effect that is present here
is due to the perturbed electrostatic potential. The latter is
expected to be sensitive to how the solution is treated in the

14 The superscripts σ,p and |σ| , t indicate passing and trapped branches of the
solution, respectively.
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Figure 5. Example of the passing ion flow moment in the (ψ,ξ) plane at w/ρϑi = 2.86, ν∗i = 10−3 (plasma collisionality).

Figure 6. Colour contours of the ion parallel flow, u∥i (10
−2), in the (ψ,ξ) plane at ϑ=−π; w/ρϑi = 2.86, ν∗i = 10−3 (plasma

collisionality). u∥i is normalised to the ion thermal velocity. The equilibrium geometry parameters are chosen as in [20]: inverse aspect ratio
at the surface of interest ε= 0.1, plasma elongation κ= 1 and triangularity δ= 0; safety factor at the surface of interest q= 2, normalised
safety factor gradient length scale L̂q = 1 and the normalised density and ion temperature gradient length scales Ln/ψs = 1 and LTi/ψs = 1,
respectively. The green curve indicates the position of the magnetic island separatrix. The corresponding perturbed radial electric field is
shown in figure 7. (a) Adapted from [20]. © The Author(s). Published by IOP Publishing Ltd. CC BY 4.0.

Figure 7. Colour contours of the normalised perturbed electrostatic potential, δΦ (10−3), differentiated with respect to ψ̂ and plotted in the
(ψ,ξ) plane for the parameters of figure 6. δΦ is normalised to Te/e. Note that here ωE = 0. The green curve indicates the position of the
magnetic island separatrix.

vicinity of the island separatrix. In particular, in [20] we con-
sidered the diffusion-type terms in S space as contributions
∼ ν̂j times smaller than free streaming (i.e. ∆≲ ν̂j ≪ 1) in the
drift island separatrix layer, which is refined in the present
paper in accordance with section 3.1, updating the result for
the ion parallel flow (figure 6(b)).

In figure 6(b), we see that the shape of the ion parallel flow
contours is modified by the more accurate treatment of the
drift island boundary layers: (1) negative (stabilising) flows
surrounding X-points and spreading into the magnetic island
in figure 6(a) are replaced with negative (stabilising) flows
inside the magnetic island separatrix in figure 6(b), in addition

13
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to (2) the positive (destabilising) flows outside the separatrix
being further amplified compared to figure 6(a). Therefore, in
figure 6(b) we observe a competition between the outer pos-
itive flows and inner negative flows that determines the NTM
threshold. This is then similar qualitatively to the behaviour
observed in [20] (figure C8(b)) for the DK-NTM ion flow con-
tour at the plasma collisionality, νi = 10−3.

While inclusion of the drift island separatrix layer physics
changes the shape of the flow moments and flows parallel to
the magnetic field line, in the following section we demon-
strate that it has a relatively small impact on the NTM
threshold predictions made in [20] based on the RDK-NTM
approach for a low beta, large aspect ratio tokamak and
in [21] with plasma shaping and finite beta effects being
incorporated.

4. Neoclassical drive. Polarisation contribution

In the previous section we described the procedure to calcu-
late the leading order ion and electron responses to a single
isolated chain of magnetic islands, as well as the corres-
ponding perturbed electrostatic potential required for quasi-
neutrality. Velocity space integration with appropriate weight
functions then provides the current density perturbation par-
allel to the magnetic field, j∥, based on these ion and elec-
tron responses. The magnetic island growth/ decay rate is
then reconstructed from Ampère’s law [10]. Schematically,
this reads (2τR/r2s )dw/dt=∆ ′ (w)+∆neo (w) [20], where τR
is the resistive diffusion time with ∆ ′ being the classical
tearing mode stability parameter determined by the global
equilibrium properties [26] and∆neo incorporating all the local
neoclassical tokamak physics, which primarily includes boot-
strap, polarisation and curvature effects [27, 28]:

∆neo =−µ0R
2ψ̃

ˆ

R

dψ
ˆ π

−π

j̄∥ cos(nξ )dξ,

where j̄∥ is the ϑ average of the current density perturbation,
j∥. Note that generally there might be additional contributions
to the magnetic island evolution equation, such as those asso-
ciated with the NTM control systems [8], coupling to other
modes [29–31] or additional nonlinear corrections to∆ ′ asso-
ciated with the equilibrium current density profile [32, 33]
when magnetic islands are much larger than the resistive layer
width (not relevant to the situation considered in the present
paper). The NTM threshold island half-width is then obtained
as a stationary point of dw/dt as a function ofw, i.e. when∆ ′ is
balanced against∆neo:∆ ′ +∆neo( j∥) = 0. Defining the ‘polar-
isation’ current density as part of j∥ that varies on the magnetic
island flux surface (and averages to zero over a flux surface)
and ‘bootstrap’ current density as part of j∥ that is constant on
a flux surface, we split ∆neo =∆pol+∆∗

bs with

∆∗
bs =−µ0R

2ψ̃

ˆ

R

dψ
ˆ π

−π

⟨̄j∥⟩
Ω

ξ
cos(nξ )dξ ,

Figure 8. Polarisation contribution, ∆pol, plotted as a function of
ωE/ωdia,e, where ωdia,e is the electron diamagnetic frequency;
w/ρϑi = 20, νi = 10−3 (plasma collisionality), ε≈ 0.1. Note that
∆pol < 0 is stabilising. Inset: zoom in the vicinity of ωE = 0. Red
dashed curves at ωE/ωdia,e <−0.7 and ωE/ωdia,e > 0.5 indicate a
parabolic approximation; red dashed line close to ωE = 0 indicates
the linear best fit.

respectively. Here ⟨. . .⟩Ωξ represents the magnetic island flux
surface average (e.g. see equation (35) of [20]):

⟨. . .⟩Ωξ =

¸

. . . [Ω+ cos(nξ )]−1/2dξ
¸

[Ω+ cos(nξ )]−1/2dξ

with Ω= 2(ψ −ψ s)
2/w2

ψ − cos(nξ) denoting the magnetic
island flux contours, in agreement with equations (2) and (3).
Note that ∆∗

bs generally includes additional effects, such as
effects of plasma shaping, and reduces to the conventional
bootstrap drive term proportional to 1/w in the limit of large
w (e.g. [34]). With the assumptions made in [20, 21], ∆∗

bs
reduces to a combination of bootstrap and curvature contri-
butions, ∆bs+∆cur, of [20, 21].

Note that the drift kinetic theory of [18–21], including the
present paper, quantifies ∆neo only. ∆ ′ being governed by the
global equilibrium properties is typically derived from ideal
MHD and hence can be considered as an input parameter in
our formalism15. Therefore, instead of evaluating the experi-
mental marginal island width, we introduce the threshold as a
critical island half-width, wc, below which the localised NTM
drives provided by ∆neo are stabilising. We note though that
∆neo is typically much larger than ∆ ′ at island widths that
differ only slightly from 2wc, which then almost removes the
distinction between 2wc calculated here and the actual experi-
mental threshold (e.g. see [7]).

In figure 8 we plot ∆pol as a function of ωE, which charac-
terises the equilibrium radial electric field. Note that this ωE
dependence also describes how ∆pol depends on the island
propagation frequency, ω, in the reference frame where the

15 We note though that when magnetic islands are much larger than threshold
values, the radial variation of ψ should also be taken into account when quan-
tifying∆ ′. The latter can be reconstructed from the resistive MHD equations
[35].
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Figure 9. Neoclassical contributions,∆neo =∆∗
bs+∆pol, plotted as a function of w at different ρϑi; ωE = 0, νi = 10−3 (plasma

collisionality), ε≈ 0.1 based on (a) the RDK-NTM model of [20] in the absence of the drift island separatrix layer effects and (b) the
RDK-NTM result obtained in the present paper with included boundary layer effects. Red, green and purple curves correspond to∆neo,∆∗

bs

and ∆pol, respectively, with circle, square and diamond markers corresponding to ρϑi = 10−3, 2× 10−3 and 3× 10−3. The cyan ‘+’ curve
in (b) indicates the prediction of (a) for ∆neo. The blue dashed/solid curve in (a) indicates the analytic theory prediction of large islands for
the bootstrap/polarisation contribution. Note that ∆neo < 0 is stabilising; w, ρϑi are normalised to rs. (a) Adapted from [20]. © The
Author(s). Published by IOP Publishing Ltd. CC BY 4.0.

equilibrium radial electric field is zero at large distances from
the magnetic island. Figure 8 is qualitatively close to figure
2 of [14] that shows the actual (perpendicular) polarisation
current around the magnetic island as a function of ω (see
footnote 4). First, ∆pol =∆pol(ω) is approximated by a para-
bolic function at large ω, which was previously reported, e.g.
in [10] (with ∆pol being stabilising in the absence of the mag-
netic island separatrix layer physics) and [14] (with∆pol being
destabilising with the separatrix layer incorporated). Second,
∆pol is a linear function of ω around ω= 0. In [14, 15] the latter,
as well as the consequent sign reversal of the polarisation cur-
rent, is explained by the competition between the toroidal drift
of trapped ions and electric drift. However, the sign reversal at
ω ≈ ωdia,e is more interesting (ωE =−0.89ωdia,e in figure 8) as
it is in a frequency range characteristic of island rotation (e.g.
[10, 36]). The value of ωE, at which this sign reversal occurs,
is not found to change significantly with w/ρϑi. Therefore,
whether the polarisation contribution is stabilising or destabil-
ising is sensitive to the precise value of the island propagation
frequency.

In figure 9 we plot ∆neo, ∆∗
bs and ∆pol as functions of w for

different values of the ion poloidal Larmor radius. Figure 9(a)
is based on the RDK-NTM model of [20], while figure 9(b)
captures the drift island separatrix layer physics in accord-
ance with section 3.1. Strictly speaking, [20] considered the
diffusion-type terms associated with ∂2/∂S2

∣∣
λ
as corrections

of order ν̂j ≪ 1 for the entire range of S variation, including the
drift island separatrix layer, therefore capturing the destabil-
ising effects of the polarisation currents, but only partially. As
one would expect from previous theory models (e.g. [14]) and
as can be seen from figure 9, allowing for the S diffusion-
type terms being comparable to free streaming enhances the
destabilising influence of ∆pol near the threshold. The latter
changes the balance between∆pol and∆∗

bs, slightly decreasing
the NTM threshold in figure 9: from 0.78ρϑi (figure 9(a)) to
0.52ρϑi (figure 9(b)).

Figure 10. Ratio of the critical island width, 2wc, to ρbi plotted as a
function of plasma triangularity, δ, for the equilibrium parameters
employed in [21] (figure 5(d)) with ε≈ 0.1 and plasma elongation
κ≈ 1 at the q= 2 rational surface. ‘RDK-NTM’ corresponds to the
result of figure 5 of [21] obtained in the absence of the drift island
separatrix layer effects. ‘RDK-NTM (layer)’ indicates the
RDK-NTM result obtained in the present paper with included
boundary layer effects. Adapted from [21]. © The Author(s).
Published by IOP Publishing Ltd. CC BY 4.0.

4.1. Threshold island width

In [21] we investigated effects of plasma shaping on wc. In
particular, we found that a higher triangularity plasma is more
prone to NTMs. Plasma triangularity, δ, influences the trapped
particle distribution function primarily through the bounce
points in ϑ, as well as passing particles through equation (11),
changing the radial shift of the drift islands. ω̂D increases
with decreasing δ, i.e. positive triangularity amplifies pos-
itive (destabilising) flows outside the magnetic island sep-
aratrix, while negative triangularity amplifies negative (stabil-
ising) flows inside the magnetic island (see figure 6). Inclusion
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Figure 11. Ratio of the marginal (critical) magnetic island width [7] to ε1/2ρϑi plotted against ε1/2 evaluated at the rational surface (green
square, round, triangle and diamond markers represent the NSTX and DIII-D data at different q95 and m/n mode numbers)16. ‘2/1
RDK-NTM ε≪ 1 scaling’ indicates the prediction of [20] for the 2/1 NTM obtained in the limit of ε≪ 1 with ε= 0.1, δ= 0, κ= 1. ‘2/1
RDK-NTM finite ε scaling’ denotes the prediction of [21] for the 2/1 NTM with included plasma shaping effects: ε= 0.3, δ= 0 and 0.4,
κ= 1.6. ‘2/1 RDK-NTM (ε≪ 1)’, ‘2/1 RDK-NTM (finite ε)’ and ‘2/1 RDK-NTM (layer)’ indicate the RDK-NTM prediction for the 2/1
NTM (1) with the employed ε≪ 1 approximation (no separatrix layer physics) [20], (2) with finite ε effects being retained (no separatrix
layer physics) [21] and (3) based on the solution of equation (19) with matching in S and λ space provided by the boundary layers in
accordance with section 3.1, respectively, for the equilibrium shown in figure 12 and table 2: blue markers (ε= 0.13), purple markers
(ε= 0.27) and red markers (ε= 0.54). The black dashed/solid lines indicate the linear best fit with the corresponding one sigma
uncertainties; the linear correlation coefficient is 0.72. The red vertical dashed line indicates ε= 0.3, i.e. a threshold ε value [21]
characterised by a transition from wc ∝ ε1/2ρϑi at ε< 0.3 to wc ∝ ρϑi at ε> 0.3. Adapted from [7], with the permission of AIP Publishing.

Figure 12. Magnetic flux surface contours for the equilibrium used in figure 11. The experimental equilibrium is fitted to the Miller
parametrisation [37]. For a detailed description of the Miller parametrisation process, see appendix C of [38]. The EAST experimental
equilibrium reconstruction is based on the EAST discharge number 91972 (5300 ms) [21, 39]. The KSTAR experimental equilibrium
reconstruction is based on the KSTAR discharge number 32129 (2300 ms). The MAST-U experimental equilibrium reconstruction is based
on the MAST-U discharge number 45272 (475 ms) [40].

of the separatrix layer physics changes the balance between
stabilising and destabilising flows (compare figures 6(a) and
(b)), and hence the balance between∆∗

bs and∆pol (see figure 9),
slightly decreasing the NTM threshold in figure 9. Positive tri-
angularity amplifies further this destabilising effect of the sep-
aratrix layer close to threshold (e.g. see figure 10 where we
show an artificial δ parameter scan; note that here δ is the tri-
angularity of the flux surface where the NTM is located, and
the value of δ consistent with the equilibrium parameters at the
surface of interest is δ≈ 0.1 in figure 10).

In figure 11 we show the ratio of the critical magnetic
island width to ε1/2ρϑi at certain values of ε1/2. Experimental

16 Reproduced from LA HAYE R.J., BUTTERY R.J., GERHARDT
S.P., SABBAGH S.A. AND BRENNAN D.P. 2012 ASPECT RATIO
EFFECTS ON NEOCLASSICAL TEARING MODES FROM
COMPARISON BETWEEN DIIII-D AND NATIONAL SPHERICAL
TORUS EXPERIMENT PHYS. PLASMAS 19 062506, https://aip.scitation.
org/doi/10.1063/1.4729658; FIGURE 6, with the permission of AIP
Publishing. The figure has been adapted from the original.
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Table 2. Some equilibrium quantities used in figures 11 and 12. Note that the elongation shear, sκ, and triangularity shear, sδ , are defined as
in [37]. All equilibrium quantities are evaluated at the flux surface of interest, q= 2, in accordance with figure 12.

Parameter EAST KSTAR MAST-U

ε 0.128 0.267 0.54
κ 1.25 1.34 1.66
sκ 1.07 0.82 0.48
δ 0.08 0.16 0.13
sδ 0.19 0.30 0.27
L̂q 0.29 0.39 0.95
β̂/2 0.0086 0.014 0.06
Bϑ/B0 at ϑ= π 0.077 0.149 0.293
Bϑ/B0 at ϑ= 0 0.088 0.229 0.441

Figure 13. Threshold 2/1 magnetic island width plotted as a function of poloidal beta, βϑ. Experimental data points (EAST, discharge
number 91972) [39]17 and the RDK-NTM theory prediction (‘RDK-NTM, Bϕ < 0’) reproduce the results of figure 9 of [21]. ‘RDK-NTM
(layer)’ indicates the RDK-NTM result obtained in the present paper with included boundary layer effects. Note ‘RDK-NTM (layer),
Bϕ < 0 eqm’ is characterised by κ≈ 1.2, δ≈ 0.077, ∂rψ ≈ 0.3 [37], while ‘RDK-NTM (layer), Bϕ < 0 eqm’ has κ≈ 1.2, δ≈ 0.088,
∂rψ ≈ 0.4. Note that B0(δ) determines ∂rψ via the safety factor. The green area is between the upper (δ= 0) and lower (δ evaluated at the
last closed flux surface) limits of the theoretical 2wc variation found in [21]. Adapted from [21]. © The Author(s). Published by IOP
Publishing Ltd. CC BY 4.0.

data reproduces figure 6 of [7], where effects of finite aspect
ratio were studied at DIII-D and NSTX. The rest is the theory
prediction based on the RDK-NTM formalism (1) without
plasma shaping and separatrix layer effects based on [20],
(2) extended to a finite beta, finite aspect ratio tokamak limit
of [21] and (3) described in the present paper with plasma
shaping included, as well as the boundary layer physics. The ⋆
marker denotes the RDK-NTM scaling of [20] obtained in the
limit of small inverse aspect ratio. The −⋆ and ⋆− markers
indicate the RDK-NTM prediction for the geometry para-
meters characteristic of [7]: elongation κ≈ 2, inverse aspect
ratio ε≈ 0.3 without (δ= 0) and with (δ≈ 0.4) triangularity
effects, in close agreement with experiment. In figure 11 we
also show the RDK-NTMpredictions for three different aspect
ratios to investigate the impact of plasma shaping, as well
as the separatrix layer effects, in a wider range of ε vari-
ation. The latter is supported by the equilibrium reconstruc-
tions of figure 12 and table 2. We note that the correspond-
ing KSTAR and MAST-U experiments were not designed to
measure the threshold island width, and hence figure 11 shows
only the theory prediction for these equilibria. According to
figure 11, the difference between (1), (2) and (3) is minimal

when the inverse aspect ratio (and also triangularity) is small
and grows with increasing ε and δ. Therefore, we have not
found any significant quantitative difference in the wc vari-
ation with poloidal beta obtained in [21] for the EAST plasma
with ε= 0.13 at the q= 2 rational surface (e.g. see figure 13).
Inclusion of finite aspect ratio effects visibly decreases the
NTM threshold prediction at ε> 0.3, in agreement with
[21]. Interestingly, a resolved separatrix layer decreases the
threshold even further at larger ε (e.g. see ε1/2 ≈ 0.7 in
figure 11).

17 Experimental magnetic island width threshold is reconstructed as αψ1/2
r

schematically. Here α is a constant value provided by ECE (electron cyclo-
tron emission) [41, 42], and hence it accounts for the distance between the
two ECE channels, which is less than 2cm in EAST experiments, resulting in
a constant error value of less than 40%. Being constant, α does not impact the
qualitative behaviour of 2wc as a function of βϑ observed in experiment but
might quantitatively influence the entire functional dependence. ψr , in con-
trast, results from the noise level of diagnostics (saddle coils), and hence is
responsible for error bars (random error) of a few% in the experimental data
of figure 13.
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5. Discussion and future work

The theory and simulations presented here have primarily been
motivated by the importance of the separatrix layer physics
[11–17] in quantifying effects associatedwith polarisation cur-
rent and hence determining the threshold island width. We
have therefore extended the RDK-NTM approach of [20, 21]
to incorporate the physics associated with a narrow colli-
sional boundary layer that exists around the drift island sep-
aratrix and resolves a discontinuity in the drift island stream
function S derivatives that arises due to different topologies
(and hence ξ-averaging) inside and outside the drift island.
As explained earlier, the DK-NTM approach of [18, 19] cap-
tures both the trapped-passing boundary layer, as well as
the separatrix boundary layer, from a mathematical perspect-
ive. However, being a 4D problem, it depends on the abil-
ity of the DK-NTM code [20] to resolve these boundary
layers, which is challenging numerically and therefore also
requires the analytic treatment of the electron plasma com-
ponent. Introducing the drift island formalism [20] and work-
ing in terms of the drift island stream functions, S, when col-
lisions in a plasma are rare (plasma collisionality ν∗ ≲ 10−2),
reduces the problem dimensionality to 3D, which then allows a
more accurate resolution of the boundary layers, as well as the
numerical drift kinetic treatment of the electron distribution
function.

References [18–20] quantify the bootstrap drive, also (par-
tially) capturing polarisation effects that arise due to the per-
turbed electrostatic potential. Dudkovskaia et al [21] extends
[18–20], introducing plasma shaping and finite beta effects.
In addition to already quantified bootstrap and curvature
contributions to island evolution, the present paper cap-
tures polarisation effects: those that exist outside the mag-
netic island separatrix, as well as the polarisation con-
tribution that results from the separatrix boundary layer.
This therefore provides the final ingredient in quantifying
∆neo =∆∗

bs+∆pol, i.e. a contribution to the magnetic island
evolution that is associated with the local resistive layer
currents18.

Based on the results presented, we summarise

• Inclusion of the drift island separatrix layer physics qualitat-
ively changes the shape of the passing ion flowmoment con-
tours and hence contours of the ion parallel flow, compared
to the RDK-NTM results of [20]. In particular, it changes
part of the parallel flow that varies on the magnetic island
flux surface, i.e. the ‘polarisation’ flow. The latter was anti-
cipated (see section 7 of [20]) since the polarisation flow
is known to be sensitive to the separatrix layer physics and
the perturbed electrostatic potential there (e.g. compare [13]
with a non-resolved discontinuity in the electron density
gradient and [17] where the discontinuity is resolved by the
cross-field diffusion).

18 These currents exist in the vicinity of the magnetic island rational surface.

• This is then found to change the balance between the part of
the current density perturbation parallel to the magnetic field
that varies on the magnetic island flux surface (and hence
∆pol) and the part that is constant on a flux surface (and
hence∆∗

bs), modifying the total contribution associated with
the resistive (neoclassical) layer currents,∆neo, compared to
the RDK-NTM results of [20, 21].

• When effects of the magnetic island separatrix are included,
the polarisation contribution, ∆pol, is found to have a relat-
ively complex dependence on the background radial electric
field (or alternatively on the island propagation frequency
in the reference frame where the equilibrium electric field
is zero), e.g. in agreement with [14]. It is important to note
that ∆pol reverses its sign at frequencies comparable to the
electron diamagnetic frequency, i.e. the impact of ∆pol on
magnetic island stability depends on the exact value of the
island propagation frequency.

• At low inverse aspect ratio (ε< 0.3) (characteristic of con-
ventional tokamaks) and low triangularity, the impact of the
drift island separatrix layer physics on ∆neo and thus on the
threshold magnetic island width is found to be minimal.
Therefore, the RDK-NTM prediction of [20], i.e. 2wc =
2.85ρbi, is reliable in this region (e.g. see figure 11 for the
EAST equilibrium reconstruction shown in figure 12).

• As we approach ε≈ 0.3 (figure 11) and/or increase δ

(figure 10), effects of plasma shaping start playing a role,
decreasing the radial shift of the drift islands [21] and
reducing the threshold. Inclusion of the separatrix layer
effects broadens and amplifies the destabilising ion flows
outside the magnetic island separatrix (figure 6), reducing
the threshold further (e.g. see figure 11 for the MAST-U
equilibrium reconstruction shown in figure 12).

The (R)DK-NTM theory provides ∆neo =∆neo(w), i.e. the
contribution to magnetic island growth/ decay due to neoclas-
sical currents localised to the vicinity of the rational surface.
This can then be used directly as an input to quantify the NTM
control system, in particular the NTM threshold island width
in terms of the electron cyclotron deposition width (for the
electron cyclotron NTM stabilisation) to calculate the NTM
stabilisation criteria. An alternative approach is to include the
current drive source term in the electron drift kinetic equation
in addition to the momentum conserving collision operator of
[10] to enable plasma-wave interactions [43].

The theory presented here is subject to certain limitations.
First, it describes bulk, thermal ions and electrons and how
their distribution functions are influenced by the presence of
the magnetic island. To make the theory representative of a
burning tokamak plasma (e.g. as in ITER or STEP), one needs
to introduce a population of fusion produced alpha particles.
Second, the drift kinetic approach generally limits the applic-
ability of the (R)DK-NTM formalism, imposing a limit on
Bϑ/B0 (as discussed in [21]). The latter makes any drift kin-
etic theory potentially questionable for a spherical tokamak
plasma characterised by Bϑ ≲ B0, including the ‘MAST-U
equilibrium’ case of figure 11 (see table 2 for Bϑ/B0). To
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allow for Bϑ ∼ B0, one needs to retain the finite ion Larmor
orbit effects19, which therefore requires the theory extension
to gyrokinetics. Extension to gyrokinetics is also desirable as
finite Larmor radius effects might potentially be important in
the separatrix layer, and it will allow one to investigate the
impact of plasma turbulence on the NTM physics close to
threshold when the time dependent small scale fluctuations
are included. Third, equilibrium quantities have been con-
sidered slowly varying functions of ψ, whichmight be violated
in certain plasma regions, particularly in spherical tokamaks.
To allow for sharper equilibrium radial profile variations and
associated equilibrium neoclassical currents that exist in the
absence of the NTMmagnetic island, one would need to retain
departures from a Maxwellian in the equilibrium distribution
function up to O(δ2∗f0) (see section 4 of [44]), as well as fully
capture contributions due to ∇ψ̃× b0 in the NTM magnetic
field perturbation (e.g. see [45] for the radial variation of the
perturbed flux function) together with resolving Bϑ ∼ B0 for
consistent ordering. The∇ψ̃× b0 contribution in the later case
will also likely require a more realistic (radially asymmetric
[46, 47]) magnetic island geometry.
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Appendix A. Right hand side operator in S space

Following [20] and employing the collision operator of [10],
we find
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with R̂= R/R0, where R0 is defined as in [37, 48]. Note that
λB0 is dimensionless. The momentum-restoring contribution,
U∥j, is defined as
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for electrons. Here V̂j = Vj/Vtj is the normalised ion
(j= i)/ electron (j= e) velocity, and ν̂ee = νeeR0/Vte and
ν̂ei = νeiR0/Vte with ν̂e = ν̂ee+ ν̂ei. In the low beta limit,
equation (A.1) provides the results of appendix B of [20].

Appendix B. Numerical algorithm in low
collisionality regions

Employing the finite difference scheme for the derivatives with
respect to λ [23], we rewrite equation (19) in a matrix form:

Pσ,pj gσ,pj+1 +Qσ,pj gσ,pj +Rσ,pj gσ,pj−1 +Aσ,pj

(
gσ,pj

)
= 0 (B.1)

for passing particles (σ =±1) inside (Smin ⩽ S< St) and out-
side (S> Sp) the drift island and

P|σ|,t
j g|σ|,tj+1 +Q|σ|,t

j g|σ|,tj +R|σ|,t
j g|σ|,tj−1 +A|σ|,t

j

(
g|σ|,tj

)
= 0

(B.2)

for trapped particles. Here gσ,pj /g|σ|,tj is a vector solution of
length Ny in the passing/trapped region at each λ grid point,
j. Pσ,p/|σ|,tj , Qσ,p/|σ|,tj and Rσ,p/|σ|,tj are square tri-diagonal

matrices of size Ny×Ny, and A
σ,p/|σ|,t
j is the right hand side

vector of length Ny associated with the momentum conser-
vation term in the collision operator. Ny is the number of
points in the y direction: Ny = Nin

y at Smin ⩽ S< St (λ < λp),
Ny = Nout

y at S> Sp (λ < λp) and Ny = Nt
y at λ > λt. Note that

y= (S− Smin)
1/2 for passing particles and y= S for trapped

particles in accordance with equation (13). The matrix ele-
ments of Pσ,p/|σ|,tj , Qσ,p/|σ|,tj and Rσ,p/|σ|,tj contain the appro-
priate coefficients of equation (19) and boundary conditions in
S (or y) space (see [23]), as well as spacing in λ and y direction.

B.1. Mixed boundary condition at λ= 0 (deeply passing limit)

In λ space, the distribution function and its first derivative
must be finite at λ= 0 and λ= λfin. As noted in [18–20, 23],
the coefficient in front of ∂2/∂λ2 in equation (19) vanishes at
λ= 0 and λ= λfin, generating a mixed boundary condition at
the deeply passing/trapped limit. For deeply passing particles
at λ= 0 (j= 0, see figure 2), this boundary condition can be
written as

P̂
σ,p
0 gσ,p0 + Q̂

σ,p
0 gσ,p1 + R̂

σ,p
0 gσ,p2 + Â

σ,p
0 = 0, (B.3)

where P̂
σ,p
0 , Q̂

σ,p
0 , R̂

σ,p
0 are defined similarly to the matrices

in equation (B.1), containing the appropriate coefficients of
the drift kinetic equation and grid spacing in λ and y. Â

σ,p
0 =

Â
σ,p
0
(
gσ,p0

)
is due to the momentum conservation term in

the collision operator. Note that we use second order cent-
ral differencing formulas for the equation and second order
one-sided differencing formulas for the boundary conditions
(backward for passing branch and forward for trapped branch).
Assuming a linear relation between gσ,pj at jth and ( j+ 1)th grid
points, we write

gσ,pj =α
σ,p
j gσ,pj+1 +β

σ,p
j (B.4)

in the region of passing particles, λ⩽ λp. Hereασ,pj is a square
matrix of size Ny×Ny and β

σ,p
j is a vector of length Ny.

Combining equations (B.1) and (B.4), we obtain the follow-
ing recurrence relation:

α
σ,p
j =−

[
Qσ,pj +Rσ,pj α

σ,p
j−1

]−1
Pσ,pj ,

β
σ,p
j =−

[
Qσ,pj +Rσ,pj α

σ,p
j−1

]−1 [
Rσ,pj β

σ,p
j−1 +Aσ,pj

]
.

(B.5)

Combining equations (B.3)–(B.5), we obtain α
σ,p
0 and β

σ,p
0 at

λ= 0:

α
σ,p
0 =

[
E −

(
P̂
σ,p
0

)−1
R̂
σ,p
0
(
Pσ,p1

)−1
Rσ,p1

]−1

×
[
−
(
P̂
σ,p
0

)−1
Q̂
σ,p
0 +

(
P̂
σ,p
0

)−1
R̂
σ,p
0
(
Pσ,p1

)−1
Qσ,p1

]
,

(B.6)

β
σ,p
0 =

[(
P̂
σ,p
0

)−1 [
P̂
σ,p
0 α

σ,p
0 + Q̂

σ,p
0

]

×
[
Qσ,p1 +Rσ,p1 α

σ,p
0

]−1
Rσ,p1 −E

]−1

×
[(
P̂
σ,p
0

)−1
Â
σ,p
0 −

(
P̂
σ,p
0

)−1 [
P̂
σ,p
0 α

σ,p
0 + Q̂

σ,p
0

]

×
[
Qσ,p1 +Rσ,p1 α

σ,p
0

]−1
Aσ,p1

(
gσ,p1

)]
, (B.7)

where E is a 2D arraywith ones on themain diagonal and zeros
elsewhere. Then employing equation (B.5) we reconstruct all
α
σ,p
j s and β

σ,p
j s at each j up to the trapped-passing boundary

layer, λ= λp ( j= Np1), as shown in figure 2.
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B.2. Mixed boundary condition at λ= λfin (deeply trapped
limit)

Similar to λ= 0, for deeply trapped particles at λ= λfin ( j=
Np2 , see figure 2), the boundary condition is given by

P̂
|σ|,t
Np2 g

|σ|,t
Np2

+ Q̂
|σ|,t
Np2 g

|σ|,t
Np2−1 + R̂

|σ|,t
Np2 g

|σ|,t
Np2−2 + Â

|σ|,t
Np2 = 0. (B.8)

Here P̂
|σ|,t
Np2 , Q̂

|σ|,t
Np2 , R̂

|σ|,t
Np2 are defined similarly to the matrices

in equation (B.2), containing the appropriate coefficients of
the drift kinetic equation, boundary conditions in S (or y)

space and grid spacing in λ and y. Â
|σ|,t
Np2 = Â

|σ|,t
Np2 (g|σ|,tNp2

) arises
due to the momentum conservation term in the collision
operator. In contrast to passing particles, the contribution of
trapped particles to the momentum conservation integral is
small primarily because of the sum over σ in the orbit aver-
aging operator at fixed pϕ for trapped particles, i.e. their dis-
tribution function g(0)j (pϕ , ξ ,λ,V) = g(0)j (ψ ,ξ ,ϑ,λ,V;σ) with
pϕ = pϕ (ψ ,ϑ,λ,V;σ).

Similarly, employing

g|σ|,tj =α
|σ|,t
j g|σ|,tj−1 +β

|σ|,t
j , (B.9)

and substituting this into equation (B.2), we obtain

α
|σ|,t
j =−

[
P|σ|,t
j α

|σ|,t
j+1 +Q|σ|,t

j

]−1
R|σ|,t
j ,

β
|σ|,t
j =−

[
P|σ|,t
j α

|σ|,t
j+1 +Q|σ|,t

j

]−1 [
P|σ|,t
j β

|σ|,t
j+1 +A|σ|,t

j

]
.

(B.10)

Combining equations (B.8)–(B.10), we calculate α
|σ|,t
Np2

and

β
|σ|,t
Np2

in the deeply trapped limit:

α
|σ|,t
Np2

=

[

E −
(

P̂
|σ|,t
Np2

)−1
R̂
|σ|,t
Np2

(

R|σ|,t
Np2−1

)−1
P|σ|,t
Np2−1

]−1

×

[

−
(

P̂
|σ|,t
Np2

)−1
Q̂

|σ|,t
Np2 +

(

P̂
|σ|,t
Np2

)−1
R̂
|σ|,t
Np2

(

R|σ|,t
Np2−1

)−1
Q|σ|,t
Np2−1

]

,

(B.11)

β
|σ|,t
Np2

=

[
E −

(
P̂
|σ|,t
Np2

)−1 [
P̂
|σ|,t
Np2 α

|σ|,t
Np2

+ Q̂
|σ|,t
Np2

]

×
[
P|σ|,t
Np2−1α

|σ|,t
Np2

+Q|σ|,t
Np2−1

]−1
P|σ|,t
Np2−1

]−1

×
[(
P̂
|σ|,t
Np2

)−1 [
P̂
|σ|,t
Np2 α

|σ|,t
Np2

+ Q̂
|σ|,t
Np2

]

×
[
P|σ|,t
Np2−1α

|σ|,t
Np2

+Q|σ|,t
Np2−1

]−1
A|σ|,t
Np2−1

(
g|σ|,tNp2−1

)

−
(
P̂
|σ|,t
Np2

)−1
Â
|σ|,t
Np2

]
, (B.12)

and using equation (B.10) we recover all α|σ|,t
j s and β

|σ|,t
j s

back to λ= λt (j= 0).
Then the layer solution in the vicinity of the trapped-

passing boundary, equation (38) with the Fourier coefficients

provided by equation (39), evaluated at λ= λp (for Smin ⩽

S⩽ St and S> Sp) together with α
σ,p
j and β

σ,p
j at each j up

to Np1 (see figure 2) provide gσ,pj at each j back to j= 0 via
equation (B.4). For trapped particles, equation (38) evaluated
at λ= λt together with α

|σ|,t
j and β

|σ|,t
j at each j between

λt ⩽ λ⩽ λfin provide g
|σ|,t
j up to j= Np2 via equation (B.10).

Appendix C. Benchmarking of the (4D) DK- and
(3D) RDK-NTM (with/without drift island separatrix
layer matching) approaches

In figure C1 we plot the DK- and RDK-NTM ion density
moments as functions of pϕ for two different ξ values in the
passing region of λ variation for the equilibrium parameters
of [20]. The DK-NTM results are those presented in [20] for
a low beta, large aspect ratio tokamak plasma. In figure C1
we also show two RDK-NTM solutions: obtained in [20] with
non-resolved separatrix layer and obtained in the present paper
that accounts for the boundary layer physics. As can be seen
from figure C1, the impact the separatrix layer has on the ion
density moments is not particularly large but it becomes cru-
cial for flowmoments, especially near the magnetic island sep-
aratrix well in the passing region (figure C2) and at w/ρϑi ≳ 1
(figure C3).

At w/ρϑi ≫ 1 (figure C2) the ion flow moment is expec-
ted to be zero across the magnetic island, in accordance
with the conventional theory of large magnetic islands with
no sinks or sources within the island. The DK-NTM res-
ult of [20] used here for benchmarking slightly differs from
this conventional prediction at ρϑi ≪ w in the deeply passing
limit (figures C2(a) and (d)), which can be anticipated due
to larger numerical errors in the 4D DK-NTM model at this
length scale (as discussed in appendix C of [20]). Apart from
the deeply passing limit (λ= 0), the flow moments presen-
ted in figure C2 are in close agreement. Note that inclu-
sion of the separatrix layer effects significantly reduces the
jump in the RDK-NTM ion flow moment across the sep-
aratrix (figures C2(a)–(c)) compared to the case of [20]
(figures C2(d)–(f )).

In figure C3 we plot the ion flow moments as functions
of ψ at two different ξ values, while varying λ in the passing
region. The RDK-NTM result here includes the resolved sep-
aratrix boundary layer. The flow moments in figure C3 agree
well (figures C3(a), (b), (d) and (e)) up to the trapped-passing
boundary layer (figures C3(c) and (f )). While flow moments
in figures C3(c) and (f ) still agree reasonably well, there are
certain small discrepancies in the DK- and RDK-NTM res-
ults, in particular in the vicinity of the magnetic island sep-
aratrix (ψ ≈±0.02 in figure C3). As discussed in [20], it is
computationally challenging to resolve both layers (one that
surrounds the trapped-passing boundary and one in the vicin-
ity of the island separatrix) simultaneously in DK-NTM with
the 4-dimentional solution.
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Figure C1. The ion density moments, comparing the results of (R)DK-NTM models, plotted as a function of pϕ for different ξ and λ at w= 0.02rs, ρϑi = 7× 10−3rs, ν∗i = 10−2 (plasma
collisionality). The equilibrium geometry parameters are chosen as in [20]: inverse aspect ratio at the surface of interest ε= 0.1, plasma elongation κ= 1 and triangularity δ= 0; safety factor at
the surface of interest q= 2, normalised safety factor gradient length scale L̂q = 1 and the normalised density and ion temperature gradient length scales Ln/ψs = 1 and LTi/ψs = 1, respectively.
Note that ξ= 0/ ξ =±π corresponds to the magnetic island O-point / X-point. ‘RDK-NTM’ denotes the RDK-NTM solution of [20] in the absence of the drift island separatrix layer effects.
‘RDK-NTM (layer)’ captures the drift island separatrix layer via matching described in section 3.1. Adapted from [20]. © The Author(s). Published by IOP Publishing Ltd. CC BY 4.0.
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Figure C2. The ion flow moments, comparing the results of (R)DK-NTM models, plotted as a function of ψ for different λ (similar to figure C1) across the magnetic island O-point, ξ= 0, at
w= 0.02rs, ρϑi = 1× 10−3rs, ν∗i = 10−2 (plasma collisionality). The equilibrium geometry parameters are chosen as in [20]: inverse aspect ratio at the surface of interest ε= 0.1, plasma
elongation κ= 1 and triangularity δ= 0; safety factor at the surface of interest q= 2, normalised safety factor gradient length scale L̂q = 1 and the normalised density and ion temperature
gradient length scales Ln/ψs = 1 and LTi/ψs = 1, respectively. ‘RDK-NTM’ denotes the RDK-NTM solution of [20] in the absence of the drift island separatrix layer effects. ‘RDK-NTM
(layer)’ captures the drift island separatrix layer via matching described in section 3.1. Adapted from [20]. © The Author(s). Published by IOP Publishing Ltd. CC BY 4.0.
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Figure C3. The ion flow moments, comparing the results of (R)DK-NTM models, plotted as a function of ψ for different λ (similar to figure C1) and ξ at w= 0.02rs, ρϑi = 7× 10−3rs,
ν∗i = 10−2 (plasma collisionality). The equilibrium geometry parameters are chosen as in [20]: inverse aspect ratio at the surface of interest ε= 0.1, plasma elongation κ= 1 and triangularity
δ= 0; safety factor at the surface of interest q= 2, normalised safety factor gradient length scale L̂q = 1 and the normalised density and ion temperature gradient length scales Ln/ψs = 1 and
LTi/ψs = 1, respectively. Note that ξ= 0/ ξ =±π corresponds to the magnetic island O-point / X-point. ‘RDK-NTM’ denotes the RDK-NTM solution of [20] in the absence of the drift island
separatrix layer effects. ‘RDK-NTM (layer)’ captures the drift island separatrix layer via matching described in section 3.1.
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