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Autonomous systems are often used in applications where environmental and internal changes may lead to
requirement violations. Adapting to these changes proactively, i.e., before the violations occur, is preferable
to recovering from the failures that may be caused by such violations. However, proactive adaptation needs
methods for predicting requirement violations timely, accurately, and with acceptable overheads. To address
this need, we present a method that allows autonomous systems to predict violations of performance, depend-
ability and other nonfunctional requirements, and therefore take preventative measures to avoid or otherwise
mitigate them. Our method for predicting these autonomous system disruptions (PRESTO) comprises a de-
sign time stage and a run-time stage. At design-time, we use parametric model checking to obtain algebraic
expressions that formalise the relationships between the nonfunctional properties of the requirements of in-
terest (e.g., reliability, response time, and energy use) and the parameters of the system and its environment.
At run-time, we predict future changes in these parameters by applying piece-wise linear regression to on-
line data obtained through monitoring, and we use the algebraic expressions to predict the impact of these
changes on the system requirements. We demonstrate the application of PRESTO through simulation in case
studies from two different domains.
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6:2 X. Fang et al.

1 INTRODUCTION

Autonomous systems must operate resiliently in environments where change is commonplace. To
that end, they need to adapt and evolve in order to mitigate the disruptions (i.e., the requirement
violations) that may be caused by changes in their internal and environmental parameters. Ideally,
this self-adaptation should be proactive, that is, the system should respond to potential disruptions
before they happen [24]. Proactive adaptation is particularly beneficial in circumstances where its
execution is associated with high cost [58] or latency [53]: prevention is better than cure.

Despite its clear benefits, proactive adaptation is currently underrepresented in the repertoire of
self-adaptative solutions for autonomous systems. This is largely due to the difficulty of predicting
potential disruptions: (i) accurately enough, so that the gains of avoiding requirement violations
thanks to true positives outweigh the unnecessary cost of responding to false positives; and (ii) effi-
ciently at run-time, so that these solutions can be used with acceptable overheads [53, 67]. Previous
solutions have assumed that disruption occurs when one or more monitored parameters exceed a
predetermined threshold. e.g., [1, 47]. However, the impact of such threshold violations on system-
level properties is not considered. For autonomous systems, complex nonlinear behaviours mean
that large changes in some parameters may be innocuous, while small changes in others may lead
to significant disruptions [38]. Therefore, ineffective adaptations may occur when the impact of
these changes is disregarded. What the autonomous systems used in many applications need are
proactive adaptation mechanisms that can operate effectively and robustly, and that can be config-
ured for deployment in a wide range of adaptation scenarios.
To help address this need for system-level proactive adaptation solutions, we introduce amethod

for predicting autonomous system disruptions (PRESTO) associated with the violation of
performance, dependability and other nonfunctional requirements. These requirements specify
quantitative bounds for nonfunctional system properties. For example, wemay require that a robot
used in autonomous farming shall “complete the picking of a fruit successfully with the probability
of at least 0.8” or, for an assistive-care robot tasked with dressing a frail user, we may require “the
expected time for the robot to complete the dressing shall not exceed 38 seconds”.
PRESTO is intended for use during the monitoring and analysis steps of theMonitor-Analyse-

Plan-Execute over a shared Knowledge (MAPE-K) feedback control loop [3, 7] of autonomous
systems. The method predicts disruptions caused by gradual degradation in the system and/or the
environment characteristics1 through a process comprising a design-time stage and a run-time
stage. In the former stage, PRESTO uses parametric model checking [22, 31] to derive algebraic
expressions that formalise the relationship between the nonfunctional properties from the system
requirements (i.e., the probability of successful fruit picking, and the expected dressing time for
the earlier examples) and the relevant parameters of the system and its environment. In the latter
stage, PRESTO uses online data obtained from monitoring the relevant system and environmental
parameters, first to predict the future evolution of these parameters, and then to establish whether
and when the predicted parameter changes will lead to requirement violations.
The main contributions of our article include:

(1) The integration of parametric model checking and time-series analysis to provide an end-
to-end framework that allows the accurate prediction of autonomous system disruptions at
run-time.

1Complementary methods are available for the detection of sudden changes that affect autonomous systems, e.g., [28, 70];
predicting such changes remains the subject of future research.
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(2) The introduction of a piece-wise linear regression technique that supports the prediction of
nonlinear changes in system and environmental parameters.

(3) The evaluation of PRESTO in case studies from two different application domains, which
shows that our disruption prediction method can deliver significant reductions in system
adaptation costs across a range of scenarios.

These contributions extend our preliminary PRESTO research [32] in several important ways. First,
we extend the PRESTO theoretical foundation of our method with a definition of the applicable
disruption prediction problem. We provide a formal description of the PRESTO algorithm for the
online prediction of nonfunctional requirement violations, and with an analysis of the complexity
of this algorithm. Second, we extend the applicability of PRESTO by replacing the simple linear
regression employed by the work-in-progress PRESTO variant from [32] with piece-wise linear
regression to handle nonlinear parameter changes. Finally, we evaluate PRESTO extensively, with
the inclusion of a new case study from the robotic assistive-care domain, and we provide an anal-
ysis of threats to the validity for our disruption prediction method.
The remainder of the article is structured as follows. Section 2 introduces key concepts and nota-

tion associated with the techniques used within the PRESTO framework: parametric model check-
ing and piece-wise linear regression. Section 3 presents the two stages of the PRESTO method.
Section 4 details the case studies, the research questions answered and the experiments used to
evaluate PRESTO. This section also discusses threats to validity. We conclude the article with a
comparison of PRESTO to related research in Section 5 and a brief summary in Section 6.

2 PRELIMINARIES

2.1 Parametric Model Checking

A discrete-time Markov chain (DTMC) is a stochastic process comprising a set of states S as-
sociated with relevant configurations of the system under analysis, together with probabilities
P (s, s ′) that model the transitions between the system configurations associated with every pair
of states s, s ′ ∈ S , where

∑
s ′∈S P (s, s

′) = 1 for any s ∈ S . To extend the range of nonfunctional
properties that can be analysed using this modelling paradigm, a DTMC can be annotated with re-

ward structures rwd : S → R>0 that specify the values of attributes such as execution time, cost
and resource use for the system configurations corresponding to different DTMC states. A para-

metric discrete-time Markov chain (pDTMC) is a discrete-time Markov chain in which some
or all of the transition probabilities and/or rewards are unknown. These unknowns correspond to
parameters of the modelled system and its environment.
Key to the run-time application of PRESTO, parametric model checking (PMC) [11, 22, 31,

40, 44] is a mathematical technique for the analysis of pDTMCs with properties specified as prob-
abilistic computation tree logic (PCTL) [6, 20, 41] formulae, potentially extended with re-
wards [2]. For instance, the probabilistic reachability formula P≥0.8[F success] and the reward
reachability formula Rtime

≤13 [F done] can be used to formalise the sample requirements from the
previous section, i.e., that a robot completes its task successfully with probability of at least 0.8
and that the mission is performed within at most 13s, respectively. For detailed descriptions of the
PCTL semantics, see [2, 6, 41].

Probabilistic model checkers, such as PRISM [45] and Storm [26], allow the verification of
PCTL-encoded requirements over DTMCs. These tools also support the analysis of quantitative
PCTL formulae in which the bounds from the probabilistic operator P and the reward opera-
tor R are replaced by “=?”, e.g., P=?[F success] and Rtime

=? [F done]. These formulae can be anal-
ysed over a DTMC, yielding a numerical value, or over a pDTMC to provide a PMC expression,
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i.e., a rational function2 over the pDTMC parameters. In this way, PMC allows the formalisa-
tion of the nonfunctional properties of a system as functions that be evaluated at run-time, when
the system and environment parameters associated with the pDTMC unknowns are observed or
predicted.

2.2 Piece-wise Linear Regression

Linear regression is a modelling technique that fits a linear equation of the form ofvalue = at+b,
relating a response or dependent variable (value) with an independent variable (t ) [50]. The linear
equation for a set of n data points {(value1, t1), (value2, t2), . . . , (valuen , tn )} can be obtained by
minimising the sum of squared residuals between the predicted and actual responses:

SSR =

n∑

i=1

(valuei − (a · ti + b))
2
. (1)

Given the slope a and the intercept b, predictions for the response value can be obtained for new
values of t with the assumption of continued linearity. Piece-wise linear modelling does not
assume the same slope and intercept throughout the time series but allows different linear trends
to be fitted to different sections. An appropriate linear trend should result in both negative and
positive residuals, so the fact that residuals have the same sign over a predetermined time period
indicates a poor fit to the data. Thus a threshold on the number of consecutive data points with
residuals having the same sign can be used to trigger an update of the model. Predictions are then
made from the current linear equation.

3 APPROACH

3.1 Problem Definition

PRESTO aims at predicting the occurrence of nonfunctional requirement violations for an au-
tonomous system in order to trigger early adaptation and avoid the actual violations. To produce
its predictions, PRESTO assumes that the following inputs are available:

(1) a pDTMC that models the behaviour of the system and its operating environment, and has
n ≥ 1 parameters x1,x2, . . . ,xn ;

(2) K ≥ 1 PCTL-encoded nonfunctional system requirements Φk ⊲⊳k boundk , 1 ≤ k ≤ K , where,
for each k , Φk is a quantitative PCTL formula, ⊲⊳k∈ {<, ≤, ≥, >} is a relational operator, and
boundk ∈ R≥0;

(3) time series for each of the n pDTMC parameters, 〈xi1,xi2, . . .〉1≤i≤n comprising run-time
observations xi j = (valuei j , ti j ), j=1, 2, . . ., where valuei j represents the value of parameter
xi measured at time ti j , and ti j > ti, j−1 for all j > 0.

PRESTO further assumes that the pDTMC model and K requirements are available prior to the
deployment of the autonomous system, and that the run-time observations xi j are available one at
a time, as soon as a new parameter measurement is obtained by the autonomous system through
monitoring. Under these assumptions, PRESTO does the following after each new observation xi j :

(1) uses the N > 0 most recent observations from each data stream to predict the times
violationTimek , 1 ≤ k ≤ K when each of the K requirements will be violated, with
violationTimek = ∞ used to indicate that the kth requirement will never be violated for
the current parameter evolution trends;

2A rational function is an algebraic fraction whose numerator and denominator are both polynomials.
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Fig. 1. Diagrammatic summary of the two-stage PRESTO prediction of nonfunctional requirement viola-

tions.

(2) triggers an autonomous system adaptation/repair if the predicted violationTimek for any of
the K requirements is within τ > 0 time units from the current time (with a single adapta-
tion/repair triggered if multiple requirements are violated due to the new parameter value).

Any actual adaptations/repairs triggered by PRESTO prediction of requirement violations are out-
side the scope of this article. For a wide range of such adaptations techniques, see [18, 23, 25].
Furthermore, PRESTO is not dealing with the possibility that interfering triggers may lead to con-
flicts in adaptation goals, which represents an open challenge according to recent research into
the “uncertainty interaction problem” that affects self-adaptive systems [14, 16].

The two stages of PRESTO are depicted in Figure 1 and detailed in the following sections.

3.2 Design-time Stage

In the first stage, PRESTO applies parametric model checking to the pDTMC model of the au-
tonomous system and the PCTL formulae Φk , 1 ≤ k ≤ K , from the nonfunctional requirements un-
der verification. This parametric model checking is performed using a probabilistic model checker,
such as PRISM [45] or Storm [26], and yields a set of rational functions

propk (x1,x2, . . . ,xn ) =
Pk (x1,x2, . . . ,xn )

Qk (x1,x2, . . . ,xn )
, 1 ≤ k ≤ K , (2)

that formalise the relationship between the system properties from the K requirements and the n
pDTMC parameters, where Pk (·) and Qk (·) are polynomials.
The left-hand side of Figure 1 illustrates this PRESTO stage for a toy example in which the

workflow performed by a simple system is modelled by a five-state pDTMC. In the initial pDTMC
state (s1), the system performs an operation op1 that succeedswith probabilityp1, taking the system
to state s2, where a second operation, op2, is attempted. This operation succeedswith probabilityp2,
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bringing the system to a success final state s4. If operation op1 fails (which happenswith probability
1 − p1) the workflow is abandoned and the system ends in the final fail state s5. In contrast, if
operation op2 fails (which happens with probability 1 − p2), the system moves to state s3 from
which it can retry the entire workflow with probability p3 or needs to move to the fail state s5
with probability 1 −p3. Two reward structures are defined over this pDTMC, specifying the mean
timesT1,T2, andT3 and energy consumptions e1, e2, e3 required to perform operations op1 and op2
and to initiate a retry, respectively. The example PCTL formula shown in Figure 1 corresponds to
the requirement “The system shall complete its workflow successfully with probability of at least
0.8”, and the corresponding rational function prop(p1,p2,p3) was obtained using the model checker
Storm. Additional requirements specifying upper bounds for time and energy consumption used to
complete the workflow (and referring to the two reward structures, e.g., Rtime

=? [F success ∨ fail] ≤
90s and Renergy

=? [F success ∨ fail] ≤ 1.2KJ) can be defined for the system; for readability, these are
not shown in Figure 1.

3.3 Runtime Stage

In this PRESTO stage, the PMC expressions (2) are provided to the disruption prediction engine

along with the time-series of the model parameters, monitored up to the current time point, as
shown on the right-hand side of Figure 1. Three hyperparameters are used to configure the engine:
the prediction window τ , which specifies the time period within which any disruptions are to be
predicted, the update threshold N , which triggers an update of the linear regression model and a
tailored tolerance ϵ ≥ 0, used to reduce the number of updates required as described later in this
section. The selection of these values and their impact on the results is discussed in Section 4.5.
The PRESTO disruption prediction engine evaluates the system’s compliance with its K non-

functional requirements by executing the function PrestoEval(i, value, now) given in Algorithm 1
each time a new value for parameter xi is obtained at the current time now . This function uses and,
when necessary, updates the global variables described below.

(1) The slope ai and intercept bi for the current linear estimation of each parameter xi , 1 ≤ i ≤

n. We treat each time series as piece-wise linear and use the current model to predict the
parameter values xi = ait + bi . The two variables are initially set to ai = 0 and bi = x0i ,
where x0i represents the nominal (i.e., ideal or expected) value for parameter xi , as provided
in the system specification or by a domain expert.

(2) The counters cntr−i , cntr
+

i for each parameter xi , 1 ≤ i ≤ n. Initially set to zero, these
variables are used to count the current number of consecutive data points above and below
the parameter value estimated by ait + bi respectively (subject to a tolerance).

(3) The tailored tolerance ϵi for each parameterxi , 1 ≤ i ≤ n. A tolerance ϵi = ϵ ·(xi (max)−xi (min) ),
where [xi (min),xi (max)] represents the range of possible value for xi , is used to reduce the
number of data points that are counted.

(4) A threshold N that defines the capacity of a circular bufferi . Initially empty, the buffer is
used to store the last N observed values of parameter xi , 1 ≤ i ≤ n.

(5) The predicted violationTimek for each nonfunctional requirement k , 1 ≤ k ≤ K , initially set
to∞.

The function PrestoEval (Algorithm 1) uses these global variables as follows. The new observa-
tion (value, now) is added to the circular buffer storing the most recent N samples of parameter xi
(line 2) and, if the new value is above or below the estimate ainow +bi by more than the tolerance
ϵi , the counter cntr−i or cntr+i is incremented respectively (lines 3–12). A counter that is not incre-
mented is reset to zero. Lines 13–22) are only executed if the residuals for the last N consecutive
measurements of parameter xi were all greater than epsiloni . When this is the case, the auxiliary
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ALGORITHM 1: PRESTO disruption prediction algorithm

1: function PrestoEval(i, value, now)
2: bufferi .Add((value, now))
3: if value > (ainow + bi ) + ϵi then
4: cntri

+ ← cntri
+
+ 1

5: cntri
− ← 0

6: else if value < (ainow + bi ) − ϵi then
7: cntri

− ← cntri
−
+ 1

8: cntri
+ ← 0

9: else
10: cntri

− ← 0
11: cntri

+ ← 0
12: end if
13: if cntri

+
= N ∨ cntri

−
= N then

14: (ai ,bi ) ← UpdateFitting(bufferi )
15: cntri

− ← 0
16: cntri

+ ← 0
17: for each k = 1,K do

18: if
∂propk (x1,x2, ...,xn )

∂xi
� 0 then

19: violationTimek ← ComputeViolationTime(k, now)
20: end if
21: end for
22: end if
23: return (violationTimek )k=1,K
24: end function

25: function ComputeViolationTime(k, now)
26: polk (t ) ← (Pk (x1,x2, . . . ,xn ) − boundk ·Qk (x1,x2, . . . ,xn )) |x1=a1t+b1, x2=a2t+b2, ..., xn=an t+bn

27: return ComputeNextRoot(polk (t ), now)
28: end function

function UpdateFitting is called to apply linear regression to the N data points from bufferi , and
thus obtain a new slope ai and intercept bi for parameter xi (line 14). The two counters are reset
to zero (lines 15 and 16) and, in the for loop (lines 17–21), the function ComputeViolationTime
recalculates the violation times for any of the K requirements that depend on xi (cf. the check in
line 18). For each requirement k , 1 ≤ k ≤ K , this function first assembles a univariate polynomial
polk (t ) by replacing the parameters xi , 1 ≤ i ≤ n, from the rational function (2) corresponding to
the kth requirement with the linear estimates ait +bi (line 26). Next, ComputeViolation calls the
auxiliary function ComputeNextRoot to obtain the root of polk (t ) that is closest to and larger
than now (line 27), as (assuming that the kth requirement is not violated at time now) this root
represents the time when the requirement will next be violated. The function PrestoEval returns
the predicted violation times for each of the K requirements in line 23.

The auxiliary functions UpdateFitting and ComputeNextRoot are not presented in Algo-
rithm 1. We assume that UpdateFitting implements standard linear regression [50, 66], and that
ComputeNextRoot uses Newton’s or Horner’s method [55] to approximate the roots of polk (t )
and returns the root closest to and larger than now if such a root exists, or returns∞ otherwise.

We note thatmost PrestoEval invocationswill be highly efficient, as lines 13–22will be skipped
most of the time. In the worst-case scenario, these lines will only be executed once every N invo-
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6:8 X. Fang et al.

cations for each of theK requirements, and N ≫ K for the envisaged applications of PRESTO. The
following theorems show the correctness and provide a formal complexity analysis of the PRESTO
algorithm, respectively.

Theorem (Algorithm Correctness). The function PrestoEval terminates and, assuming that

the value of the ith system parameter at any future time t is given byait+bi , returns a tuple containing,

for each requirement k ∈ 1,K : (i) the earliest time in the future when the requirement will be violated,

if such a violation ever occurs; or (ii)∞, otherwise.

Proof. Assuming that the functions UpdateFitting and ComputeNextRoot from lines 14
and 27 of Algorithm 1, respectively, are correctly implemented and therefore terminate, function
PrestoEval will also terminate because its only loop (from lines 17 to 21) has a finite number of
iterations K .
Assume now that the ith system parameter will have the value xi = ait + bi at any future time

t . To prove the correctness of PrestoEval, we will show that, both prior to the first PrestoEval
invocation and after each update from line 19, violationTimek contains the earliest future time
when requirement k will be violated, or ∞ if the requirement will never be violated. For the first
case, i.e., before the first invocation of the function, this result holds because we have xi = x0i
for every parameters i and, in line with the assumption that the system does not violate any of
its requirements when first deployed, violationTimek = ∞. For the second case, we note that,
after each update of the linear approximation xi = ait +bi in line 14, the value of violationTimek is
updated in line 19 unless (see the if statement from line 18) thekth requirement does not depend on
parameter xi (in which scenario the property we want to prove continues to hold for the current
violationTimek value). Finally, if a new violationTimek value is obtained, this value is computed
so that it represents the earliest future time when requirement k will be violated, or ∞ if the
requirement will never be violated. As such, the tuple returned by PrestoEval in line 23 satisfies
the property specified by the theorem. �

Theorem (Algorithm Complexity). The function PrestoEval requires at most O (N + Knd ))

steps, where d = max1≤k≤K degree(polk (t )) represents the maximum degree across the K univariate

polynomials assembled in line 26 of Algorithm 1.

Proof. The statements from lines 2–12 and the check from line 13 of PrestoEval require con-
stant time, and the linear regression applied to the N data points from bufferi in line 14 can be
performed in O (N ) time using a simple linear fitting function [50]. Each of the at most K invoca-
tions of ComputeViolationTime from the for loop in lines 17–21 requires:

— O (n · degree(polk (t ))) time to assemble the polynomial polk (t ) in line 26 by replacing each
occurrence of xi , 1 ≤ i ≤ n, in a polynomial of degree degree(polk (t )) with its linear approx-
imation ait + bi ;

— O (degree(polk (t ))) time to compute the roots of polk (t ), e.g., by using Horner’s method,
whose complexity is linear in the size of the polynomial’s degree [55];

— O (degree(polk (t ))) time to find the root closest to and larger than now.

Accordingly, the for loop from lines 17–21 has complexity O (Knmax1≤k≤K degree(polk (t ))) =

O (Knd ), and therefore the overall complexity of PrestoEval is O (N + Knd ). �

4 EVALUATION

In this section we evaluate the effectiveness, robustness and configurability of our approach.
We introduce the two case studies used to carry out this evaluation (Section 4.1) and illustrate the
application of PRESTO to a scenario associated with the first case study (Section 4.2). Next, we
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Table 1. Key Characteristics of the Case Study Models used for the PRESTO Evaluation

Fruit-picking application RAD application

Application domain Agriculture Health care
Number of model parameters 8 7

Analysed properties

Reachability
Reward × 2

Reachability
Reward
Unbounded until

Property details Table 2 Table 3

Table 2. Non-functional Requirements that the Fruit-picking Robot is Expected to Comply with and the

PCTL Formula used to Encode Them

ID Informal description Requirement (PCTL) Implication of requirement

violations

Type of

requirement

R1 The robot shall complete the fruit
picking successfully with probabil-
ity of at least 0.8

P=?[F “picking success”] ≥ 0.8 Leaving a large number of fruit
unpicked

Reliability

R2 The expected time to complete the
picking process shall not exceed 5
seconds.

R“time′′

=? [F“done” ] ≤ 5s The harvesting takes longer to
complete

Performance

R3 The expected energy consumption
to complete the picking process
shall not exceed 5 kilojoules.

R
“energy′′

=? [F“done” ] ≤ 5KJ The robot needs to be charged
more frequently resulting a longer
time to complete the harvesting

Resource
utilisation

describe our experimental setup (Section 4.3) and summarise the research questions underpinning
the evaluation (Section 4.4). We conclude with a discussion of the experimental results and threats
to validity (Section 4.5).

4.1 Case Studies

The first case study involves a fruit-picking robot, inspired by recent developments in the au-
tonomous farming domain [65, 68], and the second considers a robot-assisted dressing sce-
nario [17] to aid independent living. The models used in both case studies feature multiple tran-
sition probabilities and/or reward parameters that are specified as PMC expressions and changes
in the model parameters reflect gradual degradation of internal or environmental conditions. The
key characteristics of the two case study models are described in Table 1. The nonfunctional re-
quirements for the case studies and the properties they represent are detailed in Tables 2 and 3.
Our approach is applicable for any nonfunctional requirements that can be expressed in PCTL,
including safety, reliability, performance and maintainability requirements [5].

Case study 1: Fruit-picking robot The robot is expected to harvest fruit on a farm by au-
tonomously performing the following three tasks in a reasonable time:

(1) position itself ready for picking;
(2) attempt to pick fruit;
(3) decide whether to retry if picking was unsuccessful.

The behaviour of the robot is referred to as a picking session. To ensure its reliability and perfor-
mance, the robot is expected to comply with the three system-level requirements summarised in
Table 2.

Case study 2: Robot Assisted Dressing System (RAD) The robot is designed to support a user
with restricted mobility to live independently by allowing them to dress without the need for
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Table 3. Non-functional Requirements that the RAD Robot is Expected to Comply with and the PCTL

Formula used to Encode Them

ID Informal description Requirement (PCTL) Implication of requirement

violations

Type of

requirement

R1 The robot shall complete the
dressing task successfully with
probability of at least 0.75

P=?[F “dressing success”] ≥ 0.75 Resetting the system spends
more resources including time

Reliability

R2 The robot shall complete the
dressing task successfully with
probability of at least 0.6 with-
out performing correction task

P=?[¬correction U dressingsuccess] ≥ 0.6 Frequent correction will affect
user experience

Robustness

R3 The expected time to complete
the dressing process shall not
exceed 38 seconds.

R“time′′

=? [F“done” ] ≤ 38s If the dressing task takes
longer than expected, it can
reduce the system’s availability
for other users

Performance

additional healthcare support. For each dressing session, the robot needs to perform five tasks in
sequence with the user:

(1) Look for the garment;
(2) Orient the garment in the correct position;
(3) Move the garment toward the user;
(4) Determine the pose and arm position of the user;
(5) Perform the dressing task.

The RAD also needs to comply with the non-functional requirements presented in Table 3.

4.2 Illustration of the PRESTO Application

Before presenting the results obtained for experiments carried out across a wider range of scenar-
ios, we illustrate the application of PRESTO for a single such experiment taken from our first case
study. We first describe the pDTMC model for a fruit-picking session and then show the execu-
tion of the two stages of our approach. The pDTMC model and other intermediate results for the
second case study are available on our project website [59].

Model. Figure 2(a) shows the pDTMC for a fruit picking session, which starts with the robot
attempting to correctly position itself next to a piece of fruit for picking (state s0). This operation
may succeed with probability αp1, α ∈ (0, 1] is a degradation coefficient (discussed in more detail
later in this section) and p1 represents the nominal probability of success for this operation. When
this operation succeeds, the robot transitions to state s1, where picking is attempted, or may fail
(with probability 1−αp1), inwhich case the robot transitions to state s3, where picking is abandoned.
Picking (in state s1) succeeds with probability βp2 (where β ∈ (0, 1] is a degradation coefficient

and p2 the success probability under ideal conditions) and the system moves to state s4, followed
immediately with a transition to s5 where the picking session ends. If picking is unsuccessful, the
process moves to the decision state s2, where the robot decides whether to move back to state s0
and retry positioning, or to give up (s3) and end the session (s5).

Figure 2(b) shows the encoding of this pDTMC in the high-level modelling language of the
model checker PRISM [45]. Lines 3–8 define the model parameters associated with (a) the oper-
ational profile, (b) the degradation coefficients, and (c) the mean execution times and the mean
energy consumption of the three tasks. Here the operational profile parameters, pj ∈{1,2,3} , are the
probabilities when the robot is in perfect working order and we assume that they are fixed domain-
specific values (e.g., provided by the farmer). As mentioned earlier, the degradation coefficients, α
and β , reflect changes in these probabilities as the system gradually degrades, with the assump-
tion that their values can be obtained by either monitoring [46] or self-testing [56]. For example,
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Fig. 2. pDTMC modelling for the fruit-picking robot.

a decrease of α and β could be associated with mud slowly building up on the wheels of the robot
(leading to reduced success of positioning) and with lighting conditions (resulting in picking being
more difficult), respectively. Finally,Tj ∈{1,2,3} and ej ∈{1,2,3} represent the mean operation execution
times and mean energy consumption for the three tasks. The picking session is modelled by the
module FruitPicking (Lines 10–18 in Figure 2(b)), and the mean execution times and mean energy
consumption are used to define reward structures over the pDTMC (lines 20–25). We note that
this pDTMC has n = 8 parameters: α , β , and Ti and ei , 1 ≤ i ≤ 3.

Stage 1. In its design-time stage, PRESTO applies parametric model checking to the pDTMCmodel
from Figure 2(b) in order to obtain PMC expressions for the system properties associated with the
three requirements from Table 2. Using the model checker Storm to perform this PMC analysis
yields the following property expressions (2) for these requirements:

prop1 (α , β ) =
855βα

513αβ − 540α + 1000

prop2 (α , β, t1, t2, t3) =
−342αβt3 − 540αt3 + 1000(t1 + t3) + 900αt2

513αβ − 540α + 1000

prop3 (α , β, e1, e2, e3) =
−342αβe3 − 540αe3 + 1000(e1 + e3) + 900αe2

513αβ − 540α + 1000

. (3)

Stage 2. In the run-time stage, the property expressions (3) are used to predict requirement vio-
lation times during invocations of the function PrestoEval from Algorithm 1. Prior to the first
invocation, the circular buffers for the eight pDTMC parameters are empty, and the linear esti-
mates of these parameters are determined by their nominal values α0, β0, andT 0

i , e
0
i , 1 ≤ i ≤ 3. For

this illustration, we consider one of the experiments from our evaluation, in which the PRESTO
hyperparameters were N = 400, τ = 400 and ϵ = 0 determined based on domain knowledge.3

Points at which line 13 of Algorithm 1 is satisfied are highlighted in blue in Figure 3(a) to (h). As

3A wide range of parameter values is expected to be effective, and their impacts on the results will be discussed in RQ3.
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Fig. 3. PrestoEval predictions of: (a)–(h) parameter values; and (i)–(k) requirement violations times for the

fruit-picking robot at a point in time (where the distance between ticks on the time axis is 200 points).

.

α appears in all three properties (3), any updating of its linear approximation triggers the recal-
culation of new violation-time predictions for all three requirements as depicted in Figure 3(i), (j)
and (k). However, as the earliest predicted violation time, Prop1, is more than τ hours into the
future, no adaptation is triggered.

4.3 Experimental Setup

The PRESTO algorithm and the simulations were implemented using Python 3.7 with Stormpy
1.6.4 [26] to produce algebraic expressions from the Storm parametric model checker. All
experiments were carried out using a MacBook Pro with a 2.3 GHz Quad-Core Intel Core i7 CPU
and 32 GB RAM. The evaluation process, and simulator behaviour, are described below.
For each case study, we compared PRESTO to a baseline approach in which regular maintenance

was carried out at fixed intervals to replicate the effects of a routine maintenance schedule. The
cost and frequency of maintenance was varied throughout the experiments to evaluate the value
of PRESTO against a range of possible maintenance plans. We simulated data for PRESTO and the
baseline system for both case studies over a period long enough to ensure multiple violations, this
being 6-months for the fruit-picking application and a year for the RAD application.
The current version of PRESTO predicts violations which arise due to disruptions caused by the

slow degradation of internal, or environmental conditions. These changes are observed through
the monitoring of system parameters which can be susceptible to noise. To simulate such data
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pattern, we generated time-series for the n parameters of each system from our case studies
using the five steps detailed below and summarised in Algorithm 2:

(1) The length of a simulated time-series is determined by randomly generating an integer, J,
between 7,200 and 10,080 (line 2), corresponding to 30–42 days (i.e., timestep = 10 minutes)
and 60–84 days (i.e., timestep = 20 minutes) worth of data for the fruit-picking and RAD
applications, respectively, resulting in observations Xi j = (valuei j , ti j ), 1 ≤ i ≤ n, j =
1, 2, . . . , J of the n pDTMC parameters being returned in line 24. Randomly generating J
allows the time-series to have different trends after the re-scaling in Step (4).

(2) To generate a time-series with a non-linear pattern, an integer variable, scale , is randomly
selected between 0.5·J and 2·J (line 4).

(3) An exponential function with the base being Euler’s number is used to provide valuei j =
eti j /scale , j=1, 2, . . . , J for each parameter xi . Increasing or decreasing trends are generated
according to the nature of the parameter with decreasing trends achieved using −eti j /scale ,
j = 1, 2, . . . , J . For example, cost and time might have an increasing trend and parameters
associated with degradation will be represented by a decreasing function (lines 7 to 11).

(4) The time-series derived in Step (3) is then re-scaled to a range determined by domain knowl-
edge that ensures the occurrence of system-level violation (line 12).

(5) In order to simulate a non-monotonic data pattern, a random number sampled from a Gauss-
ian distribution with zero mean and variance σ 2

= γ · (maxj=1, J Xi j −minj=1, J Xi j ) for some
γ ∈ (0, 1) is added (lines 14 to 21) before smoothing with a high order polynomial to produce
the final time-series (line 22).

These five steps ensure that the generated time series have a non-monotonic trend that reflects the
gradual degradation of internal and environmental conditions and that will lead to requirement
violations. In addition, two different levels of noise are added to simulate different environmental
interference [29, 30] as: low-noise where γ = 0.15 and high-noise where γ = 0.3.
Process simulator:We simulated both case studies over a period of time, during which multiple
disruptions are expected. For each case study, we considered two service strategies as follows:

— “baseline”: when the preventative maintenance is carried out at regular intervals;4

— “PRESTO”: when the preventative maintenance is triggered by predicted violations or regu-
lar intervals, whichever happens first.

In the baseline scenario, the parameters are re-set to pre-degradation values after each main-
tenance operation or violation and new time series are generated. This simulates the effect of a
successful maintenance activity or repair and the process continues until the predefined simulation
period ends.
For the PRESTO scenario, we not only use the regular maintenance as in the baseline scenario but
also predict potential disruptions. If the predicted disruption is τ away from “now”, a preventative
service will be called, which re-sets all parameters to pre-degradation level. This simulates the
effect of proactive adaptation.
We evaluate the performance of PRESTO through a cost formula (detailed in Subsection 4.5)

that considers true positives (TP), false positives (FP), and false negatives (FN). A TP occurs
when a disruption is predicted to occur less than τ before the actual disruption. A disruption that
occurs before it is predicted is classed as a false negative and a disruption predicted to occur more
than τ before the actual disruption is classed as a false positive case.

4When the number of services is zero, it is equivalent to reactive adaptation, as maintenance is triggered by requirement
violations.
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ALGORITHM 2: Time Series Generation

1: function GenerateTimeSeries(n, timestep, high_noise, smoothing_degree)
2: J ← RandomInt(7200, 10080) ⊲ Select time-series length J randomly
3: for i = 1 to n do

4: scale ← RandomInt(0.5 · J , 2 · J ) ⊲ Select scale randomly
5: for j = 1 to J do

6: ti j ← j · timestep

7: if parameter i is “increasing” then
8: valuei j ← eti j /scale

9: else

10: valuei j ← −e
ti j /scale

11: end if

12: Xi j ← (Rescale(i,valuei j ), ti j )
13: end for

14: range ← maxj=1, J Xi j −minj=1, J Xi j

15: for j = 1 to J do

16: if high_noise then
17: Xi j .valuei j ← Xi j .valuei j + Gaussian(0, 0.3 · range)
18: else

19: Xi j .valuei j ← Xi j .valuei j + Gaussian(0, 0.15 · range)
20: end if

21: end for

22: Xi ← PolynomialFit(Xi , smoothing_degree)
23: end for

24: return (Xi )i=1,n
25: end function

4.4 Research Questions

The purpose of our approach is to enable autonomous systems to predict requirement violations
and avoid them through adaptations triggered before the violations occur. As such, the evaluation
presented in this section focuses on comparing the number of requirement violations and the cost
of dealing with such violations, preventatively or reactively. In both cases, the adaptation may
consist of the system initiating a self-correction or repair process or, for autonomous systems with
human in the loop [8, 21, 39], calling human operator support. To ensure that the evaluation is fair,
we considered scenarios in which such self-correction/self-calibration is also applied regularly,
as part of a maintenance process that the autonomous system undertakes automatically or that
involves maintenance by a support engineer. In line with the fact that prevention is typically better
than cure, we further assumed that the preventative adaptation cost was lower than that of reactive
adaptation.
With these considerations in mind, we carried out experiments aimed at answering the follow-

ing research questions:

RQ1 (Effectiveness): Does PRESTO reduce adaptation cost? We assessed whether PRESTO could
reduce the overall adaptation costs associated with both regular maintenance and undetected vio-
lations, by predicting, and responding to, disruptions without the need for frequent, fixed-interval
servicing.

RQ2 (Robustness): Is the performance of PRESTO sensitive to noise in the measurements of the

system parameters? We assessed whether the effectiveness of PRESTO is affected by noise in the
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Fig. 4. The relationship between the number of fixed-interval maintenance and disruptions and costs. Each

boxplot shows the result from 20 trials.

measurements, commonly observed in real data. We tested PRESTO’s ability to predict violations
in the presence of measurement noise at varying levels.

RQ3 (Configurability): Can the PRESTO hyperparameters be tuned to obtain different tradeoffs

between the overheads and effectiveness of the approach? We evaluated the impact of different com-
binations of hyperparameter values on the computational overheads and adaptation-cost savings
delivered by our approach.

4.5 Results and Discussion

We used the simulator detailed in Section 4.3 to obtain results for both case studies using the base-
line approach and PRESTO, and recorded the number of disruptions that occurred and those which
were successfully predicted as well as those for which a repair was required (i.e., the disruptionwas
missed). To address RQ1 and RQ2, we set the following parameters based on our best estimation:
N=400, ϵ=0, and τ=10 hours for fruit-picking, and τ=40 hours for RAD application. To facilitate a
more informed selection of these parameters, we will investigate the impact of different parameter
values in RQ3.

A total service cost was then recorded for each approach as follows. Let m be the number of
undetected disruptions which repairs are required and c1 be the cost of repair. Let n be the number
of maintenance operations and c0 be the cost of a service. For the “baseline” approach, the overall
cost is calculated as

costbaseline =m · c1 + n · c0, (4)

and, for PRESTO, the overall cost is

costPRESTO = (TP + FP ) · c0 + FN · c1, (5)

assuming both TP and FP will trigger a preventative maintenance and FN will require a repair.
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RQ1 (Effectiveness): Figure 4(a) and (d) show how the number of disruptions is reduced as the
frequency of regular services increases for both applications. The figures indicate that the total
number of disruptions occurring with PRESTO is lower than the baseline approach unless preven-
tative maintenance is carried out very frequently. For example, when there are no fixed interval
services, the baseline approach reports on average 48 and 17 disruptions for the fruit picking and
RAD applications respectively. In contrast, PRESTO suffers only 3 unpredicted disruptions for fruit-
picking and 6 for RAD in the same period, giving a reduction in disruptions of 93.8% and 64.7%
respectively.
Although the number of disruptions decreases for both approaches as the number of regular

services increases, the baseline approach may report disruptions after 100 regular services in the
fruit-picking application in comparison to PRESTO which requires just 50 regular services to avoid
all disruptions in the time period. Similarly, while 35 regular services are sufficient for PRESTO in
the RAD application, the baseline approach requires an additional 5 services to void the disruption
completely. This result suggests that PRESTO is able to reduce the frequency of services required.
Figure 4(b) to (f) shows the total service costs for each application with the ratio of repair to

preventative maintenance ( c1
c0
) set to 2 and 3. It can be seen that the cost of the baseline approach

was at least twice as high as PRESTO with no regular service. As the frequency of regular ser-
vice increases, the gap in costs reduces as expected since disruptions are less likely with frequent
routine maintenance. However, we note that such a maintenance strategy is highly wasteful.

RQ2 (Robustness):Measurement noise is commonly observed in sensory data and has a negative
impact on system performance. Using data with different noise levels as discussed in Section 4.3,
we found that PRESTO is largely insensitive to noise with the high noise level having a marginal ef-
fect on the number of disruptions and the cost of services (Figure 5). Indeed, in all cases, PRESTO
continues to outperform the noise-free baseline approach. The ability of PRESTO to reject nor-
mally distributed noise with zero mean is due to the use of the linear regression algorithm which
approximates an expected noise value of zero when enough samples are obtained.

RQ3 (Configurability):We evaluated the impact of varying two hyperparameters (i.e., N and τ )
on (1) the number of disruptions that PRESTO is able to predict and mitigate, (2) the total service
cost incurred during the operation period and (3) computation overheads. The impact of ϵ seen dur-
ing these experiments is minor when compared to N , which is unsurprising since the experiments
presented consider disruptions caused by the gradual degradation of model parameters. The hy-
perparameter ϵ plays a less important role in such settings. For alternate modes of change, which
will be considered in future development, ϵ is believed to be more important for PRESTO. Given
the limited impact caused by varying ϵ we do not include the results in this article, instead, they
are available on our supporting website [59]. We carefully chose a wide range of parameter values
and tested the impact of their combinations. For example, the update threshold (N ) varied from 50
to 1,200, and τ varied from 5 hours to the maximal of 120 hours for the fruit-picking application
and 10 hours to 680 hours for the RAD application. The results of these experiments are presented
in Figures 6 and 7 for the fruit-picking application and RAD application respectively. In addition,
we examined computation overheads for operating PRESTO in terms of mean time to calculate
violation time (i.e., ComputeViolationTime, line 14 in Algorithm 1), new linear estimates (i.e.,
UpdateFitting, line 10 in Algorithm 1) and the average frequency that new linear estimates are
required before a disruption is predicted.
Figure 6 shows the evaluation results for the fruit-picking application. For a small τ (τ ≤ 40h),

the results are more sensitive to varying N in comparison to a larger τ (τ > 40h). However, the
impact of varying N on the results is less significant than the impact of varying τ . Small τ (5h)
leads to the greatest number of unpredicted disruptions, which then results in a high service cost.
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Fig. 5. The impact of noise on the number of disruptions detected by PRESTO and the associated cost.

Fig. 6. The total disruptions and cost with different user-specified parameters (Fruit Picking robot)

However, as τ is increased, more disruptions can be predicted and mitigated by PRESTO until the
point where all disruptions are mitigated.
The evaluation results from the RAD application are shown in Figure 7. In comparison to the

results for the fruit-picking application, we found that a larger τ is needed to completely avoid
all disruptions in the RAD application. The results suggest that, despite a similar pattern, the ac-
tual value of this hyperparameter will depend on the application and should be carefully chosen
according to requirements.
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Fig. 7. The total disruptions and cost with different user-specified parameters (RAD robot)

Table 4. PRESTO Computational Overhead

Mean time for computing

the polynomial roots

Mean time for linear regression† Number of linear

fitting required (mean)†

Fruit-picking 34ms 0.29ms - 0.41ms 8-1
RAD 15ms 0.30ms - 0.34ms 4-1

†The range was determined using τ = 50,N =50, and τ = 1200,N =1200, (ϵ = 0)

PRESTO is expected to work with a wide range of values for the hyperparameters N and τ . The
selection of these values by exploiting domain knowledge is expected to be effective, as is the case
for obtaining prior knowledge in Bayesian learning methods. The results presented in Figures 6
and 7 highlight the impact of these hyperparameters, and provide useful insight for their determi-
nation. In general, the results are less sensitive to different values of N in contrast to τ . We observe
that a smaller τ , appropriate to its application context (such as 5 and 10 hours in fruit-picking and
RAD applications, respectively), leads to a larger number of unpredicted disruptions. More disrup-
tions can be avoided by gradually increasing τ up to a point where no further improvement can be
observed. Identifying the optimal values for N and τ in PRESTO resembles determining optimal
values for the hyperparameters of other machine learning techniques.

The impact of N and τ is also reflected in the computation time as shown in Table 4. Although
the linear equations are updated more frequently when both parameters are small (τ = 50 and
N =50), less time is required for computing linear estimates as fewer data points (N ) are used in
the regression. When both parameters are large (τ = 1, 200 and N =1,200), the opposite trend is
observed as the equations are updated less frequently but more time is required for computation.
Most computation overheads are due to calculation of the roots of polynomials derived from PMC
expressions, but this only takes milliseconds to complete on the computer detailed in Section 4.3.

Discussion: The results presented above show that PRESTO is able to effectively predict and mit-
igate disruptions before they occur. Our results suggest that the smaller the number of regular
services, the more significant the performance gain is from using PRESTO over the baseline ap-
proach. In fact, when the PRESTO is running in between regular services, the cost comparison
between PRESTO and the baseline approach only relies on the ratio of true positives to false pos-
itives in relation to the cost difference between preventative maintenance and urgent repairs. To
see this, consider a period P between scheduled maintenance arrangements and assume first that
at least one violation occurs. Then equation 4 becomes

costbaseline = (TP + FN ) · c1, (6)
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as n = 0 andm = TP + FN ; and PRESTO therefore reduces costs in the period P if:

(TP + FP ) · c0 < TP · c1. (7)

Let the difference in cost in term of ratio be ( c1
c0
), then PRESTO reduces costs in the period P if:

c1

c0
> 1 +

FP

TP
. (8)

where TP � 0.
PRESTO predicts disruptions by continually assessing the gradual change observed in sys-

tem/environmental parameters, a common phenomenon in real-world applications [63, 64] that
is underexplored by current research into self-adaptive systems. The first stage is design-time and
we use the fact that computational resources are less of an issue by calculating PMC expressions
that can be updated at run-time. This stage could be exploited further as prior knowledge of the
order of importance of the parameters in the system equations and how they interact could re-
duce the level of monitoring required. In the second stage, at run-time, system disruptions are
predicted by linear equations that are used to provide future parameter values for the PMC alge-
braic expressions. We use piece-wise linear modelling to simplify prediction whilst allowing the
trend to change over time. This also allows information about changes in slope to be stored so that
any underlying periodicity or seasonal component could potentially be recognised and accounted
for. We summarise these and other opportunities for enhancing PRESTO when we propose future
work directions for our project in Section 6.

Threats to Validity: Construct validity threats may arise from over-simplifications and unreal-
istic assumptions made when establishing experiments for evaluation. To mitigate these threats,
we used two case studies inspired by real autonomous systems described in the recent research
literature, i.e., a fruit-picking robot [65, 68] and a robotic assistive dressing system [17]. We also
avoided the use of explicit costings and instead used cost ratios where we assumed that the cost
of repair exceeded the cost of maintenance. In addition, the evaluation of PRESTO relies on sim-
ulated patterns of parameter change, which mimic a slow degradation in the system. Additional
experiments are necessary to assess the performance of PRESTO for data patterns derived from
real systems, and presenting more complex patterns of change.
Internal validity threats can originate from bias in interpretation of the experimental results. To

mitigate this threat we evaluated PRESTO by answering three independent research questions. To
further reduce the likelihood of having a biased result, the evaluations were compared against a
baseline approach that is widely used in deployed systems, and we considered a broad range of
parameter values for costs and service frequency. Finally, to enable the independent verification
of our results, the source code of our simulator and the data from all the experiments to produce
the tables and figures in the article are available online at [59].
External threats to validity may arise if the systems under consideration or the assumptions

made in the experimental framework are not indicative of the characteristics of other systems to
which PRESTO may be applied. To mitigate these threats, we evaluated PRESTO using two case
studies from different application domains. Each of the models arising from these case studies
makes use of a pDTMC with a different model structures. External validity threats may also arise
due to restrictions in the types of non-functional requirements supported by PRESTO. To mitigate
these threats, we chose a set of properties that covered a broad range of requirements (reliability,
performance, resource utilisation, etc.). Additional experiments are still required to confirm that
PRESTO can predict a wide range of disruption types in other application domains.
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5 RELATEDWORK

Adaptive systems may be classified as either reactive or proactive with the former investigating
adaptations in response to observed changes whilst the latter anticipates change in order to miti-
gate unwanted system behaviours before they occur [52]. Although both approaches are capable
of handling a range of change types in the presence of uncertainty [4, 42], proactive adaptation
is particularly important when property violation, or non-compliance with requirements, is as-
sociated with high costs or safety critical outcomes [58]. Proactive adaptation approaches for au-
tonomous systems are analogous to predictive maintenance from control theory [61]. They predict
the future values of operational and environmental parameters, allow potential violations to be
identified early, and enable adaptations to be applied to avoid or mitigate undesirable outcomes.
Despite the potential for such methods to improve system performance and reduce operational
costs, the existing solutions that implement proactive adaptation exhibit the three important limi-
tations summarised below.

Limited adaptation approach flexibility. Proactive adaptation requires an adaptation approach initi-
ated before an anticipated violation of non-functional requirements. Existing solutions like Proac-
tive Latency-aware Adaptation (PLA) and Control-based Requirements-oriented Adapta-

tion (CobRA) [51–53] incorporate such mechanisms and support a broad range of non-functional
requirements—including requirements specified in Probabilistic Reward Computation Tree

Logic (PRCTL) for the probabilistic model checking version of PLA (PLA-PMC) [52, 53]. How-
ever, PLA and CobRA focus on adapting the system proactively to avoid a requirement violation,
or to maximise some utility function that can be composed of different quality measures. As such,
these approaches are all about the adaptation decision, but cannot be used to trigger other adap-
tation approaches. In contrast, PRESTO focuses on predicting the future point in time when a
requirement violation will occur, without restricting the choice of adaptation approach, and thus
leading to greater flexibility in choosing the most suitable adaptation approach for the system.

High run-time computational overheads. Online testing techniques provide a useful means for the
prediction of changes and deviations before they happen [43], but such techniques are often com-
putationally intensive. Similarly, online reinforcement learning has also been proposed [48] and
does not require predefined threshold values in order to trigger the adaptation. However, the slow
convergence of the reinforcement may hinder its use at run-time. A range of research activities
have been conducted on the impacts of limited computational resources [60, 72] using machine
learning and time series. In [49], deep learning ensembles were employed for prediction and to
trigger adaptation. However, triggering adaptation based on the prediction of data rather than the
violation of system-level requirements is likely to result in over or under adaptations. Unlike these
data-driven techniques, PRESTO provides formal guarantees using parametric model checking for
the the analysis of system-level requirements. Parametric model checking considers the parameter
uncertainty on system verification [10, 13, 27, 57, 62, 71] differently from the conventional proba-
bilistic model checking techniques that have been widely used in the verification of system prop-
erties. Probabilistic model checking has been used to identify optimal, latency-aware adaptation
decisions [53] and the impact of the adaptation latency on system performance are studied using
stochastic multi-player games andmodel checking [15]. The approach from [15] considers a predic-
tion horizonwith stochastic behaviours in the environment but, while themethod can be applied at
run-time, the entire model needs to be updated when changes in the probabilities are observed. In
contrast, PRESTO utilises parametric model checking to derive the algebraic expressions of model
properties at design-time, with only re-evaluation for new parameter predictions being required at
runtime, and therefore can operate with low run-time computational overheads [9, 12, 34, 36, 37].
Moreno et al. [54] improve the solution from [53] by analysing the MDPs at design time to avoid
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the re-evaluation at runtime using a stochastic dynamic programming. However, this approach re-
quires additional handwritten input describing the adaptation tactics encoded in Alloy language,
whereas PRESTO does not require any effort to prepare the input, and needs only the parametric
version of a probabilistic model of the relevant behaviour of the autonomous system.

Focus on degradation of system (components). In control theory, approaches such as the one pro-
posed by You et al. [69] define a cost-effective sequential update policy to determine a real-time
preventive maintenance (PM) schedule for continuously monitored degrading systems. The ex-
pected maintenance cost of a system for the remaining time includes replacement cost, imperfect
PM cost and minimal corrective maintenance cost (i.e., recovery cost). Similarly, Chouikhi et al.
[19] and Feng et al. [33] propose condition-based maintenance for thermodynamic and production
systems affected by degradation. Nevertheless, different types of change in the parameters of
autonomous systems can appear due to the high uncertainty of their environments. These
changes can be linear, cyclic or seasonal—as well as changes that correspond to degrading system
components, which these approaches have been designed for. As PRESTO does not make any as-
sumption about the types of parameter changes that may lead to future violations of nonfunctional
requirements, our approach is well positioned to deal with all these types of changes.

6 CONCLUSION

We presented PRESTO, a method that allows autonomous systems to predict violations of nonfunc-
tional requirements, and therefore to take preventative measures to avoid or otherwise mitigate
them. Intended for use in the monitoring and analysis steps of the MAPE-K feedback control loop,
PRESTO returns the time when a disruption is predicted, and can automatically trigger an adapta-
tion in a predefined time window.
We implemented a simulator to evaluate the performance of PRESTO against one of the most

widely used approaches that is currently used to tackle disruptions before they happen - regular
maintenance/self-calibration. Two case studies and six different non-functional requirements from
different application domains were used in the evaluation. The results from our experiments show
that PRESTO is able to predict disruptions caused by the gradual degradation of internal or en-
vironmental parameters, and thus to reduce the overall self-adaptation/repair cost in comparison
to the baseline model. Furthermore, the computational overheads determined from the evaluation
suggest that PRESTO can efficiently operate at runtime. PRESTO benefits from the efficient para-
metric model checking at runtime providing formal boundaries for non-functional requirement
violation. We note that the efficiency of the PRESTO prediction (owing to the fact that calcula-
tions are simple and can be completed with low overheads) is of modest benefit for the domains
considered in our evaluation, as new parameter observations for the fruit-picking and assistive-
care robots are only collected and processed every few minutes. Nevertheless, this efficiency may
still reduce the use of key resources (e.g., energy for a battery-powered robot), and will play a
major role for systems with much higher frequency of parameter observations.
In future work, we plan to explore several PRESTO extensions. First, we will investigate a tech-

nique to further reduce the runtime overheads of our method by determining the dependence,
importance and variability of the pDTMC parameters with respect to the system-level properties.
For example, suppose there can be no requirement violation unless one particular parameter ex-
ceeds a certain threshold, at which point the other parameters need to be considered. Then some
parameters may need to be monitored less frequently and only when the most influential param-
eter is predicted to reach this threshold would predictions be required for the other parameters.
This could significantly reduce the resources needed for parameter monitoring, and for storing
and processing the observations generated by this monitoring. As all parameters’ time series are
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treated as piece-wise linear, this could be achieved using their current linear approximation. Fur-
thermore, information on changes in the slope over the piece-wise linear history could be used
to account for long-term trends. There is certainly a tradeoff between the cost of monitoring and
the availability of sufficient reliable data when it is required. However, prior knowledge of pa-
rameter behaviour from historical data, as well as information on parameter interactions in the
non-functional requirement equations, can be gained at design-time and continuously updated at
run-time.
Second, we will explore possibility to learn and exploit certain types of parameter changes, such

as periodic changes, or changes due to seasonal patterns. Third, information on the frequency
of slope changes can allow a suitable prediction window to be determined, whilst data on the
magnitude of residuals could provide a confidence interval for predictions in future work. Last but
not least, we will explore the possibility to integrate into PRESTO additional time-series predic-
tion methods, alongside methods that detect and predict other types of changes in self-adaptive
systems, for example, step changes in system and/or environment parameter values due to sudden
component failures [35, 70].
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