
Stars Crushed by Black Holes. II. A Physical Model of Adiabatic Compression and Shock
Formation in Tidal Disruption Events

Eric R. Coughlin1 and C. J. Nixon2
1 Department of Physics, Syracuse University, Syracuse, NY 13244, USA; ecoughli@syr.edu
2 Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK

Received 2021 August 10; revised 2021 November 10; accepted 2021 December 1; published 2022 February 10

Abstract

We develop a Newtonian model of a deep tidal disruption event (TDE), for which the pericenter distance of the
star, rp, is well within the tidal radius of the black hole, rt, i.e., when β≡ rt/rp? 1. We find that shocks form for
β 3, but they are weak (with Mach numbers ∼1) for all β, and that they reach the center of the star prior to the
time of maximum adiabatic compression for β 10. The maximum density and temperature reached during the
TDE follow much shallower relations with β than the previously predicted r bµmax

3 and bµTmax
2 scalings.

Below β; 10, this shallower dependence occurs because the pressure gradient is dynamically significant before
the pressure is comparable to the ram pressure of the free-falling gas, while above β; 10, we find that shocks
prematurely halt the compression and yield the scalings r bµmax

1.62 and bµTmax
1.12. We find excellent agreement

between our results and high-resolution simulations. Our results demonstrate that, in the Newtonian limit, the
compression experienced by the star is completely independent of the mass of the black hole. We discuss our
results in the context of existing (affine) models, polytropic versus non-polytropic stars, and general relativistic
effects, which become important when the pericenter of the star nears the direct capture radius, at β∼ 12.5 (2.7) for
a solar-like star disrupted by a 106Me (107Me) supermassive black hole.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Black hole physics (159); Hydrodynamics
(1963); Shocks (2086); Supermassive black holes (1663); Tidal disruption (1696)

1. Introduction

High-cadence, wide-field surveys are discovering tidal
disruption events (TDEs)—where a star is destroyed by the
tidal field of a supermassive black hole and the accretion of the
stellar debris briefly illuminates the host galaxy—at an
extremely accelerated rate. Indeed, the number of definitive
detections now exceeds 50, and observations continue to yield
a wealth of data about the physical processes at play during
these events (e.g., Bade et al. 1996; Komossa & Greiner 1999;
Esquej et al. 2007; Gezari et al. 2009, 2012, 2017; Holoien
et al. 2014, 2016, 2019, 2020; Miller et al. 2015; Vinkó et al.
2015; Alexander et al. 2016, 2017; Cenko et al. 2016; Jiang
et al. 2016, 2021; Kara et al. 2016; van Velzen et al.
2016, 2021; Blanchard et al. 2017; Brown et al. 2017, 2018;
Hung et al. 2017, 2019, 2020a, 2020b; Saxton et al.
2017, 2019; Pasham & van Velzen 2018; Blagorodnova et al.
2019; Leloudas et al. 2019; Nicholl et al. 2019; Pasham et al.
2019; Jonker et al. 2020; Kajava et al. 2020; Li et al. 2020;
Hinkle et al. 2021; Payne et al. 2021); see also the recent
reviews by Alexander et al. (2020), van Velzen et al. (2020),
Saxton et al. (2020), Gezari (2021) and references therein.

The outcome of the tidal interaction between any two objects
is largely controlled by their point of closest approach. In the
TDE literature, this distance is usually defined implicitly via
β≡ rt/rp, where ( )=  r R M Mt •

1 3 is ∼ the separation
between the two bodies at which the self-gravity of the star
equals the tidal force of the hole, and rp is the point of closest
approach between the stellar center of mass and the black hole.

Because the tidal force decays as the inverse cube of the
distance between the star and the supermassive black hole,
changes in β by a factor of the order unity can dramatically
alter the end state of a TDE.
When β 1, tides may be insufficient to completely unbind

the star, resulting in a partial TDE. Guillochon & Ramirez-Ruiz
(2013; see also Mainetti et al. 2017) showed that, for a
Γ= γ= 5/3 polytrope, TDEs with β 0.9 resulted in the
partial disruption of the star, while β 2 was necessary to
completely destroy a γ= 5/3, Γ= 4/3 polytrope (we denote
the polytropic index by Γ, such that p∝ ρΓ with p the pressure
and ρ the density, while we let γ be the adiabatic index; see
Golightly et al. 2019; Law-Smith et al. 2020; Nixon et al. 2021
for how the critical β for full disruption varies with more
realistic stellar profiles). The surviving core has a profound
effect on the return of disrupted debris to the supermassive
black hole (Guillochon & Ramirez-Ruiz 2013), and generates a
power-law decline of the fallback rate that is∝ t−9/4 (Coughlin
& Nixon 2019; Miles et al. 2020; Nixon et al. 2021)—distinct
from the canonical∝ t−5/3 scaling (Rees 1988; Phinney 1989).
On the other hand, a TDE with β? 1 implies that the

gravitational field of the supermassive black hole completely
overwhelms the self-gravity of the star. When the star enters the
tidal sphere of the black hole, the tidal force compresses the
star in the direction perpendicular to the star’s orbital plane,
stretches the star approximately in the direction connecting the
stellar center of mass and the supermassive black hole, and
compresses the star in the direction within the plane and
orthogonal to that line. The latter two effects roughly
compensate for one another, meaning that the compression
out of the plane is largely responsible for increasing the central
density of the star during its descent. Carter & Luminet (1983)
argued that the increasing temperature and density could ignite
thermonuclear runaway if the tidal encounter is sufficiently
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deep; by assuming that the gas evolves adiabatically during the
compression and equating the ram pressure of the infalling gas
to the thermal pressure at the point of maximum compression,
they derived that the maximum density achieved by tidally
squeezing the star is ( )r bµ g-

max
2 1 . Bicknell & Gingold

(1983) rebuked this idea and argued that the crushing of the
stellar envelope by the tidal force would be accompanied by the
formation of a shock that would prematurely halt the adiabatic
compression, resulting in a much less dramatic increase in the
central density and temperature of the star. Their smoothed
particle hydrodynamics (SPHs) simulations seemed to validate
their argument, and showed a much weaker dependence of the
maximum-achieved density on β, with r bµmax

1.5 fitting the
results of their simulations up to β∼ 10. Above β∼ 10, their
simulations showed a declining maximum density with β.

There have since been a number of other investigations into
the nature of the increase in the central density during a deep
tidal encounter. Laguna et al. (1993) noted that their
SPH simulations yielded an exponent relating the maximum
central density to β that was between 1.5 and 2, and thus
significantly weaker than the∝ β3 scaling (for γ= 5/3)
predicted by Carter & Luminet (1983). Brassart & Luminet
(2008) performed one-dimensional, hydrodynamic simulations
of disruptions of polytropic stars up to β= 15 and found good
agreement with the predicted ρ∝ β3 scaling for γ= 5/3. Stone
et al. (2013), using an analytical model, found the

( )r bµ g-
max

2 1 scaling initially derived by Carter & Luminet
(1983; and also derived in Section II of Bicknell &
Gingold 1983). Most recently, Gafton & Rosswog (2019)
investigated nonrelativistic and relativistic disruptions of a
solar-like, γ= 5/3 polytrope by a 106Me black hole; they
found r r bµmax c

1.7 and r r bµmax c
1.85 for β 4 in the

Newtonian and general relativistic regimes, respectively, while
they found much shallower increases above β= 4 (∝ β0.65 in
the Newtonian limit, and∝ β0.2, ∝ β0.5, and∝ β1 for retro-
grade-Kerr, Schwarzschild, and prograde-Kerr, respectively).
Thus, there does not yet appear to be a consensus on the
maximum central density and temperature that the star can
attain during a deeply penetrating TDE or, indeed, whether the
thermonuclear ignition originally envisaged by Carter &
Luminet (1983) can occur.

Here we develop a hydrodynamical model for the evolution
of the star during a TDE. In Section 2 we briefly consider the
case where the star is treated as a collection of free-falling,
noninteracting particles during the approach of the star to
pericenter in a deep TDE; doing so allows us to establish some
basic relationships that we use to motivate the work in later
sections. We also demonstrate that the pressure gradient within
the star—which is responsible for reversing the tidal compres-
sion—becomes important much earlier in the tidal encounter
than the pressure itself, which leads to a weaker dependence of
the maximum-achievable density on β compared to that
recovered by equating the gas pressure to the ram pressure.

In Section 3 we demonstrate that a homologous relationship
between the current and initial positions of a Lagrangian fluid
element, while exactly satisfied in the pressureless free-fall
limit, is upheld to leading order in z0 (the initial height of a fluid
element) when the pressure and self-gravity of the collapsing
star are included in the equation of motion for the fluid
elements. This homologous relationship yields a much flatter
dependence of rmax on β than ρ∝ β3 up until β; 10, beyond
which the scaling r bµmax

3 is recovered, but with a

proportionality constant that is a factor of ∼5 smaller than
the one predicted by Luminet & Carter (1986).
In Section 4 we develop and solve the equations that

describe the nonlinear (nonhomologous) relationship between
the current and initial positions of a fluid element, and in
Section 5 we show that this nonlinearity leads to the formation
of shocks within the flow when β 3 for a γ= 5/3 polytrope.
These shocks serve to significantly weaken the β-dependence
of rmax and Tmax, the maximum density and temperature
achieved by the compressing star, for β 10. Consequently,
the r bµmax

3 and bµTmax
2 scalings are not realized during

the deep tidal encounter of a star with a supermassive black
hole. We also compare our findings to SPH simulations
(presented in full in Norman et al. 2021) and find excellent
agreement with our predictions.
In Section 6 we compare and contrast our model and

approach to the affine-star prescriptions that have been used in
previous works, including that of Carter & Luminet (1983) who
used such an affine-star approximation to study deep TDEs. We
also discuss the consequences of relaxing the polytropic
assumption that we make in developing the model in
Sections 3–5, and we show the results for the homologous
compression of a γ= 5/3 and Γ= 4/3 polytrope.
In this paper and in the models that we develop here, we use

a purely Newtonian treatment: the self-gravity of the star is
treated nonrelativistically (such that the self-gravitational
potential satisfies the usual Poisson equation, and the
gravitational force is the gradient of the potential), and the
gravitational field of the black hole is modeled with the
potential of a Newtonian point mass. The reasons for doing so
are for ease of comparison with previous works (one of our
goals is to resolve the previously noted, conflicting claims
about the compression of the star in the high-β limit where the
analyses have been made in the Newtonian approximation), to
make comparisons with our simulations and for simplicity (as
the model we develop here is itself novel, and it is reasonable to
start in the Newtonian regime before extending the work to
incorporate general relativity). However, we emphasize that for
typical stars (i.e., for low-mass stars with mass and radii on the
order of or less than solar values) disrupted by high-mass black
holes (M• 106Me), general relativistic effects can be
important even for modest β (Gafton & Rosswog 2019), and
large values of β can result in the direct capture of the star or its
plummet into the event horizon (where it is still, presumably,
destroyed by tides, but with zero observational relevance). We
derive an order-of-magnitude estimate of the discrepancy
between the Newtonian and general relativistic tides, the range
of parameters within which we expect the star to be directly
captured by the black hole, and we compare to previous works
in Section 6.3.
We summarize and conclude in Section 7.

2. Pressureless Free-fall Solutions

Here we analyze the vertical compression of the star in the
limit that the star is a collection of freely falling particles in the
tidal field of the hole. We adopt the tidal approximation such
that the motion of the center of mass of the star decouples from
the motion of its extremities. The equation for the distance of
the center of mass of the star from the black hole, which we
denote rc, is then (making the usual assumption that the star is
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on a parabolic orbit)
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The solution to this equation is

( ) ( )t=r r cosh , 2c p
2

where τ is defined as

( )t¶
¶

=
t

GM

r2
3•

c
3

and rp≡ rt/β is the pericenter distance of the star. The equation
of motion for gas parcels out of the plane is

( )
( )¶

¶
= -

z

t

GM

r t
z, 4

2

2
•

c
3

and changing variables to τ turns this into

̈ ( ) ( )t- + =z z z3 tanh 2 0, 5

where dots denote differentiation with respect to τ. If we
assume that the star retains perfect hydrostatic balance until
reaching the tidal radius (Lacy et al. 1982; Stone et al. 2013),
then z(τt)= z0 and ( ) t =z 0t , where z0 is the initial height of a
fluid element out of the orbital plane and

( )t b= - -arcsinh 1t is the time at which the center of
mass is at the tidal radius. The solution to Equation (5) that
satisfies these initial conditions is

( ) ( )
( ) ( )

b t t
b

t=
- - -

º
z

z
H

1 2 1 sinh sinh
. 6

0

2

By solving the x and y equations of motion we can recover
the density. However, as pointed out by Carter & Luminet
(1983), the motion within the plane is approximately area-
conserving, and hence the motion out of the plane contributes
predominantly to changes in the density. We can therefore
approximate the motion of the collapsing fluid as one-
dimensional and perpendicular to the orbital plane. The
integrated mass to any position z above the plane is then a
conserved Lagrangian quantity, and hence the density is

( ) [ ( )]
( )

[ ( )] ( )r t r t
t
r t=

¶
¶

= =z
z

z
z z z

H
z H, ,

1
, 70

0 0 0 0

where ρ0 is the density profile of the original star. If the
progenitor is spherically symmetric with a well-behaved
maximum in its density at its geometric center, we can write,
without loss of generality,

( ) [( ) ] ( )r r
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s z
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where s0 is the cylindrical radius from the vertical axis and α is
a star-specific scale length; for a polytrope it follows from
hydrostatic balance that

( )a
g
r p r

=
p

G

6 1

4
, 92 c

c c

where pc is the central pressure. Since we never specified a
length scale for z0, we can simply let z0→ αz0. With s0; s, the

density directly above the center of the star (with s0= 0) is

( )
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For adiabatic compression, the pressure satisfies

( ) ( )r= gp S z , 110 0

where S0(z0) is the stellar entropy profile, and for a constant S0,
the pressure to leading order is

( )g= -g-p p H
z

H
1 . 12c

2

2
⎜ ⎟
⎛
⎝

⎞
⎠

We can now estimate when the pressure becomes important
in modifying the dynamical evolution of the collapsing star.
Carter & Luminet (1983) asserted that the pressure is important
when it becomes comparable to the ram pressure of the
compressing gas; one can use Equation (6) to determine the
velocity, and with Equations (10) and (12) for the density and
pressure, we recover their solution, namely that
Heq∝ β−2/( γ−1) at which this equality occurs. However, it is
not the pressure itself that resists the compression but the
pressure gradient, and the pressure gradient is significant when

( )
r
¶
¶

-
p

z

GM z

r

1
. 13•

c
3

If we use the previously derived expressions for the density and
pressure, then carrying out the algebraic manipulations and
assuming that the equality occurs near pericenter, such that
rc; rp= rt/β, we find that the pressure gradient equals the
tidal force when

( )b r bµ  µ- g g+ +H . 14eq eq
3

1
3

1

This scaling is much shallower than β2/( γ−1); for example, with
γ= 5/3, we find Heq∝ β−9/8. This weaker dependence occurs
because the compression of the star leads to a much more rapid
increase in the pressure gradient compared to the pressure, i.e.,
∂p/∂z; pc/H.
Various aspects of the pressureless collapse have been

delimited by Stone et al. (2013; see also Section II of Bicknell
& Gingold 1983); we refer the interested reader to their work
on the subject and move on to the inclusion of pressure and
self-gravity. As we show below, these effects significantly
impact the simple scaling relations derived above.

3. Pressurized and Self-gravitating, Homologous Solutions

The free-fall solutions of the previous section demonstrate
that the Lagrangian height of a fluid element is related to its
initial height by

( ) ( )t=z H z , 150

and hence the evolution of the compressing star is homologous.
While we derived this relationship in the free-fall case, this
relationship must hold to leading order in z0, i.e., near the
midplane, with pressure and self-gravity modifying the motion
of the gas. With Equation (15), the density is still given by

( ( ))
( )

( ) ( )r r
r
t

=
¶
¶

- + º
z

z
s z

H
g s z1 , . 16c

0
0
2

0
2 c

0 0

3
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The gravitational potential Φ solves:

( )p r F = G4 . 172

To leading order in this equation, ρ is ρc/H, and hence the
gravitational potential is simply3

( )p r aF = -G H
r

4
6

, 18c
2 1

2

while the pressure is

( ( )) ( ) g=
¶
¶

- +
g

g g-p p
z

z
g p H z s1 . 19c

0
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2
0
2⎛

⎝
⎞
⎠

Inserting these relationships into the z-component of the
momentum equation,
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and equating linear-order terms in z0 shows that H must satisfy4

[ ] ( ) ( ) ( )
b

r
r

t- - =g-


H H
2

1 cosh 0. 21
3

c 6

Here ( )r p=  M R4 33 is the average stellar density and

( ) ( )
t

t
t

=
¶
¶

-
¶
¶

+ 3 tanh 2. 22
2

2

This equation includes the effects of both pressure and self-
gravity, and therefore (instead of using the impulse approx-
imation) the initial condition is that the star is in hydrostatic

balance infinitely far from the black hole (as rc→∞ ), so H
(τ→−∞ )= 1 and ( ) t  -¥ =H 0.
For a γ= 5/3 polytrope, ρc/ρå; 5.99, while for a γ= 4/3

polytrope, ρc/ρå; 54.2. Because the term∝ ρc/ρå is respon-
sible for balancing the dynamical terms once H is sufficiently
small, this shows that more centrally concentrated stars are
better able to withstand the tidal compression of the black hole.
We also see that, for the same ratio of central to average stellar
density, stars with smaller γ will reach a smaller H before gas
pressure is able to reverse the infall because H− γ rises more
slowly.
Figure 1 compares the solution for H when pressure and self-

gravity are ignored (dashed lines, given by Equation (6)) and
when they are included (solid lines, the solution to
Equation (21)). The left (right) panel is for a γ= 5/3 (γ= 4/
3) polytrope. Time is in units of τ; the pressureless solutions
pass through the origin at a time of

( )t b b= - -sinh 1cr , derivable from Equation (6). We
see, however, that pressure and self-gravity are important for
modifying H at much earlier times.
Figure 2 shows the density normalized by the central density

of the star, which is just H−1, as a function of time normalized
by the dynamical time of the star for γ= 5/3 (left) and γ= 4/3
(right) and for the β in the legend. As the β of the encounter
increases, the maximum density achieved by the star increases
and occurs at an earlier time (note that the center of mass of the
star reaches pericenter at t= 0).
Figure 3 illustrates the maximum central density (left) and

the maximum central temperature (right) achieved during the
tidal encounter as a function of β for γ= 5/3 (solid, blue) and
γ= 4/3 (solid, green); the temperature is calculated by
assuming that gas pressure dominates, such that T∝ p/ρ. The
dashed lines show fits to the large-β values of the maximum
density, being∝ β3 for the maximum density and γ= 5/3
(blue, dashed) and∝ β6 for the density and for γ= 4/3 (green,
dashed), while the maximum temperature scales as∝ β2 for
both γ= 5/3 and 4/3. These scalings were also predicted by
Carter & Luminet (1983) and Luminet & Carter (1986), which
are shown by the dotted-blue and dotted-green lines; however,
the coefficient of proportionality multiplying the scaling of the
density is roughly a factor of five smaller than that predicted by
Luminet & Carter (1986) for γ= 5/3 and three orders of

Figure 1. The solution for H that results from the assumption that the gas free falls in the tidal field of the black hole (dashed curves) and the solution that incorporates
gas pressure and self-gravity (solid curves) for a γ = 5/3 polytrope (left) and a γ = 4/3 polytrope (right). This shows that the pressure of the gas is important in
resisting compression for times significantly earlier than when the star would be compressed to zero height (H = 0) in the absence of pressure; this time coincides with
when the dashed lines are nearly vertical.

3 This method of Taylor expanding the solution to the gravitational potential
about the origin ignores aspherical contributions from gas at large radii within
the star. While this approximation is upheld in the limit that the β of the
encounter is large and the star is within the tidal sphere, where the pressure of
the gas dominates self-gravity (see the relative scaling of the terms in
parentheses on the left-hand side of Equation (21)), and/or when the star is
approximately spherically symmetric, it is less accurate when the β of the
encounter is only modest. We plan to explore the modest-β and partial-
disruption limit in a future investigation.
4 Interestingly, the black hole mass does not enter into this equation, and the
only dependencies are on the ratios of the central to the average density and the
pericenter distance to the tidal radius. The entire tidal interaction is therefore
constrained by only two dimensionless numbers (and the adiabatic index).

4
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magnitude smaller for γ= 4/3, and a factor of ∼3 smaller for
the central temperature and γ= 5/3 and a factor of ∼10
smaller for γ= 4/3. Interestingly, the scaling of the temper-
ature and the normalization we recover from the homologous
model is very similar to that derived by Bicknell & Gingold
(1983; their Equation (2.14)). However, this agreement is
purely by coincidence: those authors argued that shock heating
would alter the relationship predicted by Carter & Luminet
(1983), whereas here our reduced coefficient simply arises from
the fact that the pressure gradient counteracts the tidal
compression when the gas pressure is only a fraction of the
free-fall ram pressure. These large-β scalings for the central
density and temperature at the point of maximum compression
can also be recovered from Equation (21) by assuming that H
follows its free-fall solution—and is very nearly zero—until
reaching the pericenter distance, at which point the second
derivative is comparable to the pressure term so that the infall is
reversed.

The fact that the coefficient multiplying the maximum
density as a function of β is so much smaller than the value
predicted by Carter & Luminet (1983) and Luminet & Carter
(1986; and similarly for the temperature) suggests that, in line
with our reasoning in the previous section, the pressure
gradient is withstanding the vertical compression when the gas
pressure is much smaller than the ram pressure of the
pressureless free-falling material at the surface of the star.
Figure 4 shows the ratio of the gas pressure to the ram pressure
of the pressureless solution for a γ= 5/3 polytrope (left) and a
γ= 4/3 polytrope (right). For large β this ratio approaches a
constant near the time of peak compression (when each curve
reaches a maximum), indicating that ρ∝ β2/( γ−1) is being
upheld. However, the constant is much smaller than ∼1.

The velocity at the surface of the star is

( )
( )

( ) ( )b
t

t=
¶
¶

= = v
z

t
z R V H

cosh
, 23z 0

3 2

3

where ( ) ( )a=   V R GM R2 . Figure 5 shows this velocity
as a function of time for a γ= 5/3 polytrope, where the
different curves correspond to the βʼs given in the legend. We
see that the velocity becomes increasingly negative approxi-
mately until the star reaches pericenter, at which point it is
minimized at v;− 2βVå (which agrees with the free-fall

solutions; Stone et al. 2013). The pressure then reverses the
infall, causing the velocity to equal zero and rebound to reach a
maximum velocity that is v; 2βVå before decaying again.
Before moving onto the next section and the inclusion of

nonhomologous terms on the evolution of the compressing
fluid in a TDE, we note that Brassart & Luminet (2008)
concluded that the nearly homologous velocity profiles of their
one-dimensional, hydrodynamical simulations of deep TDEs
implied that the compression they observed was dynamical and
that the effects of pressure and self-gravity were negligible. Our
results here demonstrate that this conclusion is incorrect:
compression can proceed homologously with the effects of
pressure and self-gravity included, and in fact must be
homologous to leading order in the relation between z and
z0—whether or not pressure and self-gravity are included. The
existence of a homologous velocity profile therefore provides
no information as to the relevance, contribution, or importance
of pressure or self-gravity to the dynamics of a fluid. Indeed,
the kinetic energy is negligibly small—and the dynamics still
homologous—near the point of maximum compression of
the fluid.

4. Nonhomologous Evolution

Our analysis in the preceding section5 shows that the time-
dependent positions of fluid elements are related to their initial
positions by z=H(τ)z0, the same relationship that results from
assuming that the gas free falls in the tidal potential, but now H
is given by the solution to Equation (21), which includes the
effects of pressure and self-gravity. While this homologous
relationship is exact (within the tidal approximation) for
pressureless free fall, it is only approximate when we account
for the effects of pressure and self-gravity. In particular, when
deriving Equation (21), we equated linear terms in z0, but we
dropped higher-order terms. To satisfy the momentum equation

Figure 2. The ratio of the central density to the original central density as a function of time normalized by the dynamical time of the star for the solution that
incorporates pressure and self-gravity (i.e., the solution to Equation (21)). The left (right) panel is for a γ = 5/3 (γ = 4/3) polytrope. We see that as β increases, the
time at which the density is maximized approaches zero (which coincides with when the center of mass is at pericenter), and the maximum in the density increases.

5 From this point on, we restrict our analyses and discussion to gas-pressure-
dominated stars with γ = 5/3. We do so simultaneously for brevity and
because radiation-pressure-dominated stars are very massive and are short-
lived and few in number, implying that the likelihood of disrupting one by a
supermassive black hole (and observing it) is significantly reduced (though
their extended envelopes make it somewhat more likely).
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to the next order in z0, we must therefore have

( ) ( ) ( ) ( )t t t= + +z H z H z H z s . 2400 0 10 0
3

01 0 0
2

We can now follow the same steps as we did in the previous
subsection to derive three equations for H00, H10, and H01 by
equating first-order terms in z0, terms proportional to z s0 0

2, and
third-order terms in z0 in the momentum equation. The
expression for the density that follows from mass conservation
is still upheld, namely

( ) ( )r r=
¶
¶
z

z
g s z, , 25c

0
0 0

and we now include the next-higher-order term in the series
expansion for the density about the origin:
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The last term was derived from the equation of hydrostatic
balance. From Equation (24)

( )¶
¶

=
+ +

z

z H H s H z

1

3
, 270

00 01 0
2

10 0
2

and the pressure is still given by p= Kργ. The gravitational
potential6 satisfies the Poisson equation, which to this order is
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Transforming to spherical coordinates and writing z0 in terms
of z, the solution to this equation is
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and

( ) ( )q q= -Y 3 cos 1 322
0 2

is the ℓ= 2, m= 0 spherical harmonic.
We can now insert our solutions for the gravitational

potential, the pressure, the density, and z(z0, τ) into the z-
momentum equation, Taylor expand, and equate terms in z0,
z s0 0

2, and z0
3. The result is a set of three equations for H00, H10,

and H01 that are of the form
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where Hi is H00, H10, or H01, and Fi is a function of the Hʼs. For
example, the equation for H00 is
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The initial conditions on H00 are, as before, H00(τ→−∞ )= 1
and ( ) t  -¥ =H 000 , while both H10 and H01 and their
derivatives are zero at τ→−∞ . An important point to note is
that all of the dynamical equations are coupled: the equation for
H00 is no longer exactly what we derived in Section 3
(Equation (21)), which ignored the nonlinear contribution to

Figure 3. The maximum density (left) and temperature (right) normalized by the central density and temperature of the star as a function of β for γ = 5/3 (blue, solid)
and γ = 4/3 (green, solid) for the solution that incorporates pressure and self-gravity (i.e., the solution to Equation (21)). Fitted lines to the large-β values are shown
by the dashed lines, while the scalings predicted by Carter & Luminet (1983) for γ = 5/3 (dotted, blue) and γ = 4/3 (dotted, green) are also shown.

6 We ignore the octupole term in the gravitational potential of the black hole
because it is weaker than the other terms by a factor of ( ) b~ -

M M•
2 3 2, and is

therefore only important when β  100. For βʼs this large, relativistic effects,
nuclear fusion, etc., are much more important and invalidate our Newtonian
and purely hydrodynamical treatment here.
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the dynamics, but now—as can be seen from Equation (33)—
includes a term that depends on H10. This feature demonstrates
that the central density of the star is affected by the nonlinearity
of the solution.

Extending the solutions to higher order is straightforward:
we decompose z in terms of s0 and z0 as

( ) ( )å å t=
= + =

+z H s z . 35
j

N

n m j

m n

0
nm 0

2
0
2 1

The bound of n+m= j means over all combinations of n and
m such that n+m= j. For example, including the fifth-order
term in z0 gives

= + + +

+ +
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For a maximum exponent of z0 of 2N+ 1, there are a total of
(N+ 1)(N+ 2)/2 equations for the Hnm. To determine the self-
gravitational potential, we expand the density to order 2N in z0
and s0, then substitute z0(z, s0) (i.e., the inverse of
Equation (35) to leading self-consistent order) to write the
density in terms of the current coordinates z and s0. We then

transform the density to spherical coordinates and write the
gravitational potential as a sum of spherical harmonics,
transform back to z and s0 from r and θ, differentiate with
respect to z, and replace z→ z(z0, s0) with Equation (35). We
similarly expand 1/ρ× ∂p/∂z in terms of z0 and s0, insert the
result, the derivative of the gravitational potential, and
Equation (35) into the z-momentum equation and equate equal
powers of +s zm n

0
2

0
2 1 to generate (N+ 1)(N+ 2)/2 equations for

the Hnm(τ). The hydrostatic initial conditions are that
H00(τ→−∞ )= 1, ( ) t  -¥ =H 000 , and all of the other
functions and their derivatives equal zero at τ→−∞ .
Figure 6 shows H00, which is the inverse of the density at the

center of the star and is approximately the ratio of the current
Lagrangian height of a fluid element to its initial height, for
β= 1 (left) and β= 3 (right). The different curves give the
maximum number of terms in the expansion between z and z0,
with the largest term in the expansion being µ +z N

0
2 1. We see

that the homologous solution slightly underestimates the
amount of compression that occurs during the tidal encounter.
For β= 1, all of the curves lie effectively on top of one another
until ∼1 dynamical time of the star; for times beyond this, our
solutions do not accurately capture the evolution of the TDE
because we have not included the in-plane motion of the fluid,
which (after about the time at which the star recedes beyond the
tidal radius on its egress; Coughlin et al. 2020) results in a
continued decline of the density.
Figure 7 shows two manifestations of the nonhomologous

nature of the evolution of the fluid when nonlinear terms are
included in the expansion of z(s0, z0): each curve in the left
panel gives the Lagrangian height of a fluid element as a
function of time in units of the dynamical time of the star for
β= 3 and with N= 4. Here we let s0= 0 so that all of the fluid
parcels are directly above the center of the star. The black
points near a time of tå; 0.1 give the time of maximum
compression of each fluid element, i.e., when each curve
reaches a relative minimum. The fact that these points do not
lie on a vertical line illustrates the nonhomologous nature of the
compression—that different fluid elements reach their relative
minima at different times. The right panel of this figure gives
the Eulerian velocity profile of the fluid, where each curve is at
the time shown in the legend. The dashed curves correspond to
the homologous solution and satisfy v∝ z. The solid curves are

Figure 4. The ratio of the gas pressure to the ram pressure, where the velocity is calculated from the free-fall solution, for a γ = 5/3 polytrope (left) and a γ = 4/3
polytrope (right) for the solution that incorporates pressure and self-gravity (i.e., the solution to Equation (21)). The fact that this ratio is much less than unity
demonstrates that the pressure gradient is able to withstand the tidal compression well before the gas pressure is comparable to the ram pressure.

Figure 5. The velocity of the fluid element at the surface of the collapsing star
normalized by the escape speed of the stellar progenitor as a function of time;
here the progenitor is a γ = 5/3 polytrope and the solution incorporates
pressure and self-gravity (i.e., the solution to Equation (21)). The different
curves are for the β shown in the legend.
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from the nonlinear solution with N= 4, and it is apparent that
these profiles possess nonlinear variation with their height
above the plane.

Figure 8 illustrates the evolution of the Lagrangian height of
five fluid elements directly above the center of the star (s0= 0),
their initial heights are shown in the legend, as functions of
time in seconds for the disruption of a solar-like, γ= 5/3
polytrope (i.e., one with a solar mass and radius) when β= 4.
The dashed curves are from the nonlinear solution with N= 4.
The solid curves are from an SPH simulation performed with
the PHANTOM (Price et al. 2018) SPH code. The setup of the
simulation was identical to what is described in Coughlin &
Nixon (2015; see Miles et al. 2020 for a more recent
implementation), the most important aspects of the simulation
being that the star was initialized in hydrostatic balance at a
distance of 5rt, and the equation of state was adiabatic. Here we
used roughly 128 million particles; for more details of these
specific simulations and more analysis thereof, see Norman
et al. (2021). We see that there are some small differences
between the predictions and the simulations; for example, the
minimum height reached by each of the fluid elements from the
simulation is slightly smaller than what the model predicts, and
the time at which the relative minimum is reached for each
particle is slightly earlier than that from the analytic solution.
Overall, however, the agreement is quite good.

So far we have ignored the in-plane motion and tidal
stretching of the star. We can approximately account for this
aspect of the disruption by assuming that the in-plane motion is
ballistic, which leads to the following two equations of motion
for the x- and y-positions of each fluid element relative to the
center of mass (i.e., the x-position of a fluid element is x+ xc,
where xc is the x-position of the center of mass):

̈ ( ) ( )
{ ( ) ( )}

t j
j j

- + =
´ +

x x x

x y

3 tanh 2 6 cos

cos sin ,
c

c c

̈ ( ) ( )
{ ( ) ( )}

t j
j j

- + =
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y y y

x y

3 tanh 2 6 sin

cos sin .
c

c c

Here jc is the angle between the direction of pericenter of the
stellar center of mass and the current position of the center of

mass and is

[ ( )] ( )j t= 2 arctan sinh . 36c

Assuming that the star retains hydrostatic balance prior to
reaching the tidal radius gives the initial conditions x(τt)= x0,
y(τt)= y0, ( ) ( ) t t= =x y 0t t , where (from Section 2)

( )t b= - -sinh 1t . The density at the center of the star is
then approximately given by
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1 1
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Equation (37) is only approximate in the sense that we have not
accounted for the back reaction of the in-plane stretching on the
evolution of H00(τ). However, if the motion out of the plane is
the predominant contributor to changes in the density, then
Equation (37) should accurately account for the relatively small
changes in the density that are accompanied by the in-plane
motion.
Figure 9 shows the central density (in cgs) as a function of

time in seconds for a β= 4 disruption of a γ= 5/3, solar-like
polytrope. The dotted curve results from the homologous
approximation, the dotted–dashed curve results from the N= 4,
nonlinear solution, the dashed curve is the same solution but
multiplied by the in-plane stretching factor, and the solid curve
is the data from the 128 million-particle, SPH simulation run
with PHANTOM. We see that accounting for the in-plane motion
brings the analytic prediction in very close agreement with the
hydrodynamical simulation, while ignoring this aspect of the
evolution results in an overestimate. Coincidentally, the
homologous solution very accurately reproduces the maximum
density and the time of maximum; the reason for this agreement
is that the nonlinear terms increase the density above the
homologous value, while the in-plane stretching reduces the
density by roughly the same value.
In addition to depending on the initial height above the

plane, the nonhomologous relationship between z and z0 also
depends on the initial cylindrical radius of the fluid element, s0.

Figure 6. The function H00, which is roughly the ratio of the current to the initial Lagrangian height of a fluid element, and the inverse of which is the density at the
center of the star relative to its initial density, for β = 1 (left) and β = 3 (right) for a γ = 5/3 polytrope. The different curves are appropriate to different levels of
nonlinearity in the relationship between z and z0, with the highest term in the expansion being +z N

0
2 1. We see that the higher-order solutions lie on top of one another

out to a time that is ∼1 dynamical time of the star (for times much greater than this, our solution breaks down as it does not capture the in-plane spreading of the
debris, which results in a decrease in the density, or an increase in H00, and the complete disruption of the star).
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Figure 10 shows the Lagrangian height above the plane z as a
function of time in units of the dynamical time of the star for
the disruption of a γ= 5/3 polytrope with β= 3 and the
solution with N= 4, so the maximum exponent in the
relationship between z and z0 is µz0

9. The different colors are
appropriate to different initial heights above the plane, as
shown in the legend, and the different curves within each
colored set are for a different initial cylindrical radius. The
bottom-most curve has s0 = 0 (directly above the center of
mass) while the top-most curve has s0= 0.73. The black points
show the relative minimum of each curve. This figure illustrates
that the compression of the star is a multidimensional process,
and that fluid elements at different heights and cylindrical radii
reach their relative minima at different times and decompress at
different rates.

Figure 11 illustrates the density of fluid elements, relative to
the initial, central density of the star, as a function of time for a
γ= 5/3 polytrope and for β= 3 with N= 4. As for Figure 10,

the different colors correspond to the initial heights shown in
the legend, and the curves within each colored bundle are for
different initial cylindrical radii within the star; here the top-
most curves have s0= 0 while the bottom-most curves have
s0= 0.26. The black points show the relative maximum of each
curve. This figure demonstrates that, for this β, the density
within the compressing star is maximized for small z0 and small
s0, i.e., the center of the star remains the location of the highest
density. We also see that larger initial heights above the plane
and larger initial cylindrical distances lead to the most dramatic
consequences of the nonlinearity in the relation between z and
z0.
Figure 11 also shows that, for an initial height of z0= 1.3,

the density starts to increase again and, for initial cylindrical
distances s0 0.3, it diverges around a time of tå; 0.1. The
reason for this behavior is that, at these large heights and
distances, the nonlinear effects result in the crossing of fluid

Figure 7. Left: the Lagrangian height of each fluid element, z (recall that z is measured relative to α, the scale height appropriate to the center of the star), at a
cylindrical radius of s0 = 0 (i.e., directly above the center of the star; blue curves) as a function of time in units of the dynamical time of the star for β = 3 when the
disrupted star is a γ = 5/3 polytrope. The black points coincide with the time of maximum compression of each fluid parcel, and the fact that they do not lie on a

vertical line shows that the collapse of the star possesses some degree of nonhomology. Right: the Eulerian velocity profile normalized by ( )a=  V GM R2 3

(roughly the escape speed of the star) at the times shown in the legend for β = 3. The dashed curves are from the homologous solution, while the solid curves are from
the nonlinear solution with N = 4. The nonlinear behavior of the velocity with height above the plane is a second illustration of the nonhomologous nature of the
stellar compression near pericenter. (Note that the pericenter of the center of mass is reached at tå = 0.)

Figure 8. The Lagrangian height of five fluid elements in units of solar radii as
functions of time in seconds, where the initial height of each fluid element is
shown in the legend, for a β = 4 disruption of a solar-like, γ = 5/3 polytrope.
The dashed curves give the solution from the analytic model with N = 4, while
the solid curves result from a numerical, SPH simulation performed with the
SPH code PHANTOM. Here ∼128 million particles were used to model the
disruption with PHANTOM.

Figure 9. The density as a function of time in seconds for the β = 4 disruption
of a solar-like, γ = 5/3 polytrope. The dotted curve is the homologous
solution, the dotted–dashed curve is the N = 4, nonlinear solution, the dashed
curve is the N = 4, nonlinear solution with the in-plane expansion effects
included, and the solid curve is the result of a 128 million-particle
SPH simulation with PHANTOM. We see that the analytical model—even at
the homologous level—provides a very good fit to the numerical results.
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elements and the formation of a shock; the crossing of the fluid
elements can be seen from the blue curves in Figure 10. Since
the density is inversely proportional to the spacing between
fluid elements, the crossing of two fluid elements results in a
divergence of the density. We now turn to a discussion of
shock formation.

5. Shock Formation and Evolution

Two fluid elements initially spaced by an infinitesimal
amount Δz0 will cross when ∂z/∂z0= 0. When N= 1, such
that the relation between the current Lagrangian position z and
the initial Lagrangian height z0 is given by Equation (24), this

condition occurs when
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The characteristic of the shock is therefore given by
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The orange, solid curves in Figure 12 illustrate the
Lagrangian heights of the fluid elements for a β= 2.5
disruption of a γ= 5/3 polytrope, where different curves
correspond to different initial heights z0. The bottom-most
curve has z0= 0.02, while the top-most curve has z0= 1.8
(which roughly coincides with the initial surface of the star),
and the points illustrate the times of maximum compression of
the fluid elements. The black, dashed curve gives the location
of the shock that forms within the collapsing star (when a fluid
element is hit by the shock, we stop showing its location for
clarity) as determined from Equation (40). Initially the shock
penetrates downward into the compressing gas, and starts at the
surface at a time of tå; 0.07. Interestingly, the shock then
stalls at a time of tå; 0.15, which is approximately coincident
with when the majority of the fluid elements reach their
minimum height. The shock then reverses its direction of
motion and propagates back upward from the center of the
(now rebounding) star.
The origin of this behavior of the shock is that the gas into

which it is advancing is compressing and eventually rebound-
ing and moving in a direction that opposes the motion of the
shock. Thus, after the shock forms and as time progresses, the
stellar material beneath it is further compressed, which
increases the pressure and sound speed of the gas and reduces
the Mach number of the shock. The fluid beneath the shock

Figure 10. The Lagrangian height above the plane for fluid elements at
different initial heights, where the initial heights are given in the legend, for a
γ = 5/3 polytrope and β = 3; here the solution was obtained with N = 4
(maximum term in the expansion between z and z0 µ z0

9). The different curves
are for different initial cylindrical distances from the center of the star, where
the bottom-most curve for each set of colored lines has s0 = 0 (above the center
of the star), while the top-most curve has s0 = 0.73 (recall that s0 and z0 are
measured relative to α, the central scale height of the star). The black points
illustrate the relative minimum of each fluid element.

Figure 11. The density of fluid elements at different initial heights, where the
initial heights are given in the legend, for a γ = 5/3 polytrope and β = 3 as a
function of time. The different curves are for different initial cylindrical
distances from the center of the star, where the top-most curve for each set of
colored lines has s0 = 0 (above the center of the star), while the bottom-most
curve has s0 = 0.26. The black points illustrate the relative maximum of each
fluid element.

Figure 12. The Lagrangian heights of fluid elements for the disruption of a
γ = 5/3 polytrope with β = 2.5, where each orange curve corresponds to a
different initial height above the plane, z0, with the nonlinear solution that has
N = 1; here the initial cylindrical distances of all of the particles are set to zero
(s0 = 0), such that they are all directly above the center of the star, and the fluid
element with the minimum initial height (bottom-most curve) has z0 = 0.02
and the maximum initial height is z0 = 1.8 (roughly at the surface of the
polytrope). The black, dashed curve shows the location of the shock, and the
points show the time of maximum compression of each fluid element. The
shock initially propagates downward into the star, then stalls around the time of
maximum compression, and reverses its direction of motion and moves
upward.
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eventually reaches maximum compression, rebounds, and then
moves upward and into the advancing shock. This transfer of
upward momentum causes the shock to stall and eventually
reverses its motion, such that the shock does not penetrate all
the way to the center of the star.

Figure 13 gives the position of the shock for s0= 0 as a
function of time for the β shown in the legend. We see that for
small β, the effects of the compression of the material beneath
the shock slow the propagation of the shock, but unlike the case
for β= 2.5, they are incapable of completely reversing its
motion. As β increases, the shock is relatively unimpeded by
the dynamical evolution of the gas beneath it and reaches the
origin at a time that is nearly coincident with the time at which
the central density of the star is maximized (i.e., at the time
where maximum compression is reached for fluid elements
near the midplane). The solutions for the shock position with
s0≠ 0 look similar to those in this figure.

Equation (40) gives the location in the fluid where two fluid
elements cross with third-order terms included in the relation-
ship between the location of a fluid element, z, and its initial
position, z0. While this measure is a good estimate of when a
shock is likely to form within the flow, it is apparent that our
solution for z(z0, τ) that includes only third-order terms breaks
down in regions of the flow near a shock, as this location
coincides with where ∂z0/∂z→∞ , and hence the density
would increase without bound, in the limit that the number of
terms in our series N→∞ . Our series expansion to third order
in z0, on the other hand, does not diverge. Including higher-
order terms in the relationship between z and z0 will modify the
location at which our solution for the evolution of the fluid
becomes highly nonlinear and where ∂z/∂z0= 0, and is
therefore essential to include when fluid elements start to cross
in the lower-order solution.

Moreover, it is apparent that when a shock forms within the
flow, our series expansion will never equal the true solution
beyond the shock and will only remain accurate at z< zsh. This
is because our series expansion is valid about the origin, but
once ∂z/∂z0 approaches zero, the series expansion will never
be able to recover the diverging nature of the pressure gradient
at that point. Instead, including more terms in the series will
cause the solution to more inaccurately represent the true

solution for regions beyond zsh, as the series solution no longer
converges beyond that point. With an ever-increasing number
of terms retained in the relationship between z and z0, the
position of the shock within the fluid therefore does not
correspond to the location where fluid elements cross at some
level of approximation (i.e., with a finite N), but is instead the
distance at which our series solution no longer converges as we
increase the number of terms in the relationship between z and
z0. The shock is therefore the time-dependent radius of
convergence of our series solution.
Figure 14 gives the solution for v(z0, τ) for β= 15 for the

times shown in the legend and N= 4 (solid curves), 3 (dashed
curves), and 2 (dotted curves), where the velocity is normalized
by ( )a=  V GM R2 3 and β3/2; recall that the maximum
exponent in the expansion of z about z0 is 2N+ 1. At the
earliest time, the solutions with different N are nearly
indistinguishable from one another over the whole range of
z0. However, at times of tå= 3.1× 10−3 and later, we see that
the curves are indistinguishable up to a point z0,sh, beyond
which point they all diverge rapidly from one another. The
existence of this time-dependent location in z0 demonstrates
that a shock has formed within the flow—the series will not
accurately capture the behavior of the true solution (which is
piecewise-continuous) no matter how many terms we add.
We define the location of the shock as the z0 where the

standard deviation σ of ∂v(z0, τ)/∂z0 exceeds 1, where the
standard deviation is defined as
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and the average of the derivative of the velocity, μ(z0, τ), is
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We choose the derivative of the velocity to measure the
standard deviation, rather than the velocity itself, because when
the shock nears the origin, the velocity is small everywhere
even though solutions with different N are discrepant.

Figure 13. The time-dependent position of the shock, as determined from
Equation (40), for the β shown in the legend. Here the initial cylindrical radius
is set to zero, so that the shock propagates directly above the center of the star.
Here each case reaches zsh = 0, which contrasts the shock evolution shown in
Figure 12 where the shock propagation is halted and reversed by the
compressing gas beneath it.

Figure 14. The velocity v normalized by Våβ
3/2 as a function of initial position

z0 for a γ = 5/3 polytrope and when β = 15. The differently colored curves
correspond to the times shown in the legend, and the solid curves have N = 4
(largest exponent in the series expansion about z0 equal to 9), the dashed curves
have N = 3 (largest exponent equal to 7), and the dotted curves have N = 2
(largest exponent equal to 5). The black points show the location of the shock
according to our criterion that the standard deviation of the v(z0) curves exceed
a threshold value.
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Therefore, if we used the velocity, the standard deviation would
be much less than one even though the solutions themselves are
mutually inconsistent (with respect to their log). While our
choice of the threshold value of σ of one is somewhat arbitrary,
the location of the shock is not sensitive to this value (as long
as it is not too small) because the solutions rapidly diverge
from one another—and hence σ quickly exceeds the threshold
of two—once we are beyond the position of the shock. The
black points in Figure 14 illustrate the position of the shock as
defined by this criterion; we see that it accurately reproduces
the location at which the curves diverge (note that the velocity
is normalized by β3/2; 58 for visualization purposes in this
figure, so the discrepancies between the curves are larger by a
factor of ∼50 than what is shown).

Figure 15 illustrates the Lagrangian heights of fluid elements
directly above the center of mass of the star (s0= 0) for a range
of initial heights (orange curves), where the smallest z0= 0.02
(lowest curve) and the largest is z0= 1.4 (uppermost curve);
here the disrupted star is a γ= 5/3 polytrope and β= 15. The
black, dashed curve gives the location of the shock as
calculated from our criterion on the standard deviation, and
the purple, dotted curve shows the location where fluid
elements cross with N= 2 (the shock position given by
Equation (40)). We see that the two measurements of the shock
location yield very similar values; in this case, the shock
reaches the origin at tå∼ 0.0033 (recall that the stellar center of
mass reaches pericenter at tå= 0).

Figure 16 shows the Mach number of the shock as a function
of the shock height above the plane zsh and for the β in the
legend, where the shock Mach number is ∣ ∣= - v v csh s,

g r=c ps
2 being the square of the sound speed of the pre-

shock gas and v the velocity of the pre-shock gas. Both of these
quantities are evaluated immediately beneath the shock.
Interestingly, this figure demonstrates that the shock is not
strong, with a Mach number of ∼1.2 for all β, and that the
Mach number does not change substantially as the shock
propagates into the compressing star. The reason that the Mach
number is not large is that the gas beneath the shock is
simultaneously compressing (raising its sound speed) and

moving away from the shock at a substantial fraction of the
shock speed.
For β 10, the center of the star reaches its point of

maximum compression before the shock reaches the origin, and
hence the adiabatic solution captures the density maximum as a
function of time. For β 10, the maximum value of the density
is given by the post-shock density as the shock reaches the
origin, where the post-shock density is (from the shock jump
conditions)
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Note that this expression includes the effect of the finite Mach
number, which is obviously essential to include given that,
from Figure 16, the shock is not strong. The left panel of
Figure 17 shows the maximum value of the density achieved
during the compression of the star as a function of β at the
center of the star (s0= z0= 0; when the shock reaches the
midplane prior to the point of maximum compression, the
maximum density is calculated at the point where the shock
reaches an initial Lagrangian height of z0= 0.01). The solid,
red curve results from the nonlinear solution with the in-plane
stretching (approximately) included, while the yellow curve is
the homologous solution. The dotted–dashed, blue line is the fit
to the large-β behavior of the homologous solution. The
dotted–dotted–dashed, purple line is a fit to the large-β limit of
the post-shock density, which we find scales as∝ β1.62, which
is a much weaker scaling than the adiabatic limit predicts.
The right panel of this figure shows the maximum

temperature reached normalized by the initial central temper-
ature of the star, where the curves are analogous to the left-
hand panel; again, this is for the center of the star, or
s0= z0= 0. The post-shock temperature is calculated from the
post-shock pressure, which, from the jump conditions, is

( ) ( )
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Figure 15. The Lagrangian height above the plane z for a range of initial
heights z0 (orange curves) as a function of time in units of the dynamical time
of the star; here the star is a γ = 5/3 polytrope, the initial cylindrical distance is
s0 = 0, and β = 15. The black, dashed curve shows the location of the shock as
defined by our criterion that the standard deviation of the derivative of the
velocity as a function of N exceed a critical value, and the purple, dotted curve
shows the location of the shock calculated from the N = 1 solution when fluid
elements cross (Equation (40)).

Figure 16. The Mach number of the shock as a function of the height of the
shock above the plane for the β shown in the legend (the shock propagates
from large to small heights, or from right to left on the horizontal axis). The
Mach number is only marginally greater than one, showing that the shock is
weak; the weak nature of the shock arises because the gas beneath the shock is
compressing and increasing its sound speed as the shock propagates into the
collapsing star.
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and we assumed that the gas was gas-pressure dominated so
T∝ p/ρ. The purple, dotted–dotted–dashed line is a fit to the
large-β solution for the post-shock gas, and is∝ β1.12; as for the
density, this scaling is much shallower than the adiabatic
prediction7 of bµTmax

2.
The squares, circles, triangles, and stars in Figure 17 give the

results of SPH simulations performed with PHANTOM, in which
a γ= 5/3 polytrope was disrupted by a 106Me supermassive
black hole for β= 1, 2, 4, 8, and 16 (detailed in Norman et al.
2021). The squares show the results with 0.25 million particles,
the circles with 2 million particles, the triangles with 16 million
particles, and the stars with 128 million particles, and for each
one of these, the effects of shock heating on the gas were
excluded (i.e., a shock will form in the simulation, but the heat
generated therefrom is lost from the system; the density is
therefore overestimated in this case if shock heating is
important). We see that the prediction from our model is in
very good agreement with the highest-resolution simulations up
until β= 16, at which point the simulations are not yet
(convincingly) converged.8 The magenta triangles are simula-
tions with 128 million particles but with the effects of shock
heating included. We see that for all simulations up to β= 16,
accounting for shock heating does not affect the results of the
simulations, whereas for β= 16, it reduces the maximum
density by a factor of roughly 1.5. This finding is in agreement
with our predictions, as the adiabatic compression can continue
up until β; 9, and beyond that the passage of the shock
determines the maximum density within the collapsing star.

6. Discussion

Here we compare our model to the “affine” models in the
literature, and we present a brief discussion of two other
physical effects that we have not addressed in our preceding
analysis, namely the importance of the non-polytropic nature of
radiative stars and general relativistic effects (see also Section
3.2 of Norman et al. 2021).

6.1. Comparison to Affine Models

The model that we developed in Section 3 is homologous in
the relationship between z and z0, so that the current and initial
heights of fluid elements within the collapsing star are related
by a function that is purely of time, and the in-plane
coordinates (relative to the stellar center of mess (COM)) are
assumed to be unchanged, i.e., s= s0 for all time. The
motivation for the latter approximation is that the primary
contributor to changes in the density while the star is within the
tidal sphere of the black hole is the vertical compression, which
has been noted by other authors (though we also relaxed that
assumption approximately; see Section 4). Another, somewhat
more concise way of writing this relationship is to say that

=x T xj
i i

0
j, where in this case, the tensor

{{ } { }}=T H, 0 , 0, 1j
i and the vector of coordinates is

xi= {z, s} (and analogously { }=x z s,0
j

0 0 ).
The assumption of a linear relationship between the current

and initial Lagrangian coordinates has been called an affine
transformation, and applying such a transformation specifically
to a star results in an affine-star model. These affine models
have been widely used to understand the evolution of various
physical systems, including tidally interacting binaries, TDEs,
and rotating stars (e.g., Lattimer & Schramm 1976; Carter &
Luminet 1983, 1985; Kochanek 1992; Kosovichev & Novi-
kov 1992; Lai et al. 1994; Ivanov & Novikov 2001). The
model in Carter & Luminet (1983), as expanded upon in much
more detail in Carter & Luminet (1985), is one example of an
affine model, and they used it to understand the compression of
the star in a deep TDE.

Figure 17. The maximum density (left) and temperature (right) achieved during the compression of the star as a function of the β of the encounter and for a γ = 5/3
polytrope; the values of the density and temperature are calculated at the geometric center of the star, or s0 = z0 = 0. The dark-yellow, solid curve shows the
homologous solution, and the dark-red, solid curve is the nonlinear solution with N = 4 and (approximately) includes the effect that the in-plane motion of the fluid
elements has on the density. The light blue, dotted–dashed lines show fits to the large-β evolution for the homologous compression, and the black, dotted line is the
prediction of Carter & Luminet (1983). Above β ; 10, a shock forms and reaches the origin prior to the point of maximum, adiabatic compression; the dotted–dotted–
dashed, purple lines show fits to the large-β limits of the shocked solutions. The points are the result of smoothed particle hydrodynamics simulations with 0.25
million particles (blue squares), 2 million particles (red circles), 16 million particles (orange triangles), and 128 million particles (gold stars), which were run with
β = 1, 2, 4, 8, and 16. The magenta diamonds show the solution when shock heating was included in the simulation, meaning that instead of assuming that the heat
generated from shocks was able to be radiated efficiently, it was retained in the specific internal energy of the fluid elements.

7 Note that one would predict bµTmax
2 for the post-shock temperature from

the free-fall solutions if the shock were strong, as noted by Bicknell & Gingold
(1983); it does not follow this relationship because the shock is weak.
8 As an aside, this figure also demonstrates that under-resolving the
compression of the star near pericenter results in an underestimate of the
density. This behavior likely explains why the simulations of Bicknell &
Gingold (1983), which used a maximum of 2000 particles (though most were
with 500) to simulate the disruption of a γ = 5/3 polytrope up to β = 87,
yielded an anomalous decrease in the maximum density above β  10.
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Therefore, the fundamental underlying assumption about the
relationship between current and initial Lagrangian coordinates
between our model in Section 3 and that of any affine model is
that it is identical.9 The differences between the two models
arise from the method employed for determining the temporal
evolution of the coefficients that enter the connection. Affine-
star models have used global conservation conditions, and used
integrated quantities over the entire volume of the star, to
constrain the evolution of the time-dependent matrix coeffi-
cients. Here, on the other hand, we use the fluid equations in
differential form and equate leading-order terms in the initial
Lagrangian coordinates, as the fluid equations must hold
identically for any choice of z0.

As we have made clear, the homologous (or affine)
relationship is only correct to leading order in the initial
Lagrangian coordinates, a direct corollary of which is that only
the quadratic dependence of the density and pressure on the
coordinates (valid near the center of the star) is accurately
captured by the homologous solution.10 It therefore seems
unreasonable, and we argue not self-consistent, to enforce
global conditions related to and including the surface of the star
on a model that only accounts for the density variation deep
within the stellar interior (see Figure 2 of Coughlin 2021 for the
number of terms necessary in a series expansion to accurately
approximate the surface features of a polytrope). We find that
our method of equating the terms that appear in differential
form in the fluid equations, which relate fluid phenomena
locally, more accurately reflects the restrictive nature (in space)
of the affine approximation.

Another consequence of this restricted applicability, in a
somewhat different context, is that the solutions of either the
homologous model we presented here or the affine models
studied elsewhere—both of which incorporate nonlinear effects
—will not accurately reproduce the linear behavior of an
oscillating star as computed from linear perturbation theory.
The reason for this is, as we have already stated, that the affine
relationship between the current and initial Lagrangian fluid
elements is only accurate in the deep interior of the star, and
therefore does not account for variations in the fluid properties
near the stellar surface, whereas the eigenvalues calculated
from linear perturbation theory do account for this region of the
star (but at the expense of dropping nonlinear terms). In fact, it
was shown by Coughlin (2021) that accurately reproducing the
eigenvalues themselves and the number of eigenvalues that
characterize the radial oscillations of a star necessitates going to
higher order (i.e., accounting for the nonlinear relationship
between the current and initial Lagrangian coordinates), and it
is not surprising that the ellipsoidal (affine) models of
Kochanek (1992), Kosovichev & Novikov (1992), and Lai
et al. (1994) did not reproduce the linear tidal theory (see, e.g.,
Section 7.3 of Lai et al. 1994). A simple way to see this is to

realize that by having a homologous relationship between the
coordinates, we can only have a homologous velocity profile,
i.e., v∝ z, and there are no zero crossings in the velocity (the
velocity can only be zero everywhere at a given time). The
higher-order modes, however, contain zero crossings for all
eigenmodes greater than the first. It therefore follows that the
number of eigenvalues that we can capture through this
approach is equal to the number of terms in the expansion
between z and z0 (or, for a spherically symmetric star as in
Coughlin 2021, the current and initial Lagrangian shells r and
r0).
The reason that the lower-order modes are more accurately

reproduced when going to higher order is that the equations
describing the coefficients are coupled, and therefore the
dynamical equation derived describing (for our case) H(τ) at
the homologous level is not the same as the one that accounts
for the nonlinear terms; we illustrated this behavior directly in
Section 4. Finally, we emphasize that while our numerical
results shown above (Figure 17) provide verification of our
model in the context of TDEs (and demonstrate disagreement
with the affine model of Carter & Luminet 1983 and the
numerical results of Brassart & Luminet 2008), the results of
Coughlin (2021) provide distinct verification of the validity of
this method by demonstrating that it produces both the
eigenvalues and the nonlinear mode couplings of a star once
sufficiently high order is reached.

6.2. Non-polytropic Stars

So far we assumed that the star being disrupted was
polytropic. While this is a good approximation for low-mass
and fully convective stars, radiative stars are better approxi-
mated by Γ= 4/3 polytropes with γ; 5/3 (the Eddington
standard model; Hansen et al. 2004). In this case, it is simple to
demonstrate that the equation describing the homologous
evolution is precisely the same as that derived in Section 3,
namely Equation (21), but with ρc/ρå; 54.2 (appropriate to a
Γ= 4/3 polytrope). Figure 18 gives the maximum density as a
function of β for a star described by the Eddington standard
model (Γ= 4/3 and γ= 5/3), as shown by the solid, blue line.
For reference, we have also shown the result for a Γ= γ= 5/3
polytrope (solid, orange line). The∝ β3 relation starts to hold
once β 20, which is a result of the fact that the large central
pressure is able to withstand the tidal compression much more
effectively. On this same plot, we also show the prediction of
Luminet & Carter (1986) for a γ= 5/3 polytrope for
comparison.
We could perform all of the same analysis in Section 4 to

work out the nonlinear contributions to the equations motion
for the gas parcels in the collapsing star and elucidate the
effects that the nonzero entropy gradient have on the
compression and shock formation. We leave such work to a
future investigation.

6.3. General Relativity

The analytical model that we developed, and the simulations
to which we compared the predictions of the model (see
Norman et al. 2021), treated the gravitational field of the
supermassive black hole as a Newtonian point mass. The
reasons for doing so include relative simplicity—the analytical
formalism we developed in Sections 3 and 4 is itself novel (as
far as we are aware), and it seems reasonable to delimit the

9 That the isodensity contours of an affine star are ellipsoids is a ramification
of this more fundamental assumption, and that it is not an additional
assumption itself is evident from inserting the r0(r) relationship into the
expression for the leading-order density profile of the star, r µ - r1 0

2.
10 The fact that the affine relationship is the leading-order term in a series
expansion was also appreciated by Carter & Luminet (1983), as they remark,
“In order to interpret this model in relation to a more accurately realistic
hydrodynamic description in terms of the full system of field equations, the
linear relation is to be thought of as the first term in a power series expansion
for the actual value of the position coordinates ri (relative to the center) as
functions of their original values r̂i.” Whether or not they realized that this
leading-order nature of the affine model also restricted the accuracy of the
solution in terms of the density profile of the star is less clear.
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implications of this formalism in what is a relatively simple set
of assumptions—and historical precedent. Regarding the latter,
the original works that described the implications of extreme
compression in TDEs were at least implicitly assuming a
Newtonian background, and the most direct comparison of our
work to theirs is enabled by adopting that same assumption.

We emphasize, however, that relativistic effects can become
important when the gravitational radius of the black hole is a
sizable fraction of the pericenter distance of the stellar center of
mass; specifically, we have
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or, adopting a radius–mass relationship of
( ) = R R M M1.06 0.945 for stars on the zero-age main

sequence with masses Må/Me� 1.66 (Demircan & Kahra-
man 1991),
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Setting rp= 4rg for direct capture (see Kesden 2012 for the
generalization to a Kerr black hole), this expression illustrates
that the β of the encounter must satisfy
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to avoid direct capture (here we ignored the very weak,
additional dependence on the stellar mass that scales as

-
M 0.055). This equation shows that for a star with solar-like

properties, for β 10, the black hole will directly capture the
star, as the zero-energy orbit for a Schwarzschild black hole—
within which the star (or at least the center of mass) is captured
by the black hole—is 4rg; see Kesden (2012) for the general-
ization to a Kerr black hole. For even larger β, larger black
holes, or more compact stars, relativistic effects become even
more important for an even larger region of the parameter
space. Indeed, for M•/Må 108, a solar-like star cannot be
successfully destroyed by tides outside of the horizon of the
hole (i.e., rt/rg= 1 for β= 1; Kesden 2012; Stone et al. 2019).

Most TDEs have been inferred to be hosted by black holes with
masses in the range∼ 106−7Me (Mockler et al. 2019), for
which the encounter cannot achieve a large β before the
interaction leads to a direct capture, e.g., β= 2.7 or larger
results in a direct capture when M•= 107Me.
On the other hand, Equation (45) implies that reducing the

mass of the black hole yields a broader range of β over which
the Newtonian approximation is better upheld; for
M•/Må= 105, for example, the prefactor in front of
Equation (45) is increased to ∼21.9. Nonetheless, relativistic
effects will still modify the tidal field and strengthen the degree
to which the star is tidally compressed and stretched, even for
low-mass black holes. While a detailed analysis of the impact
of relativity on the tidal stress is outside the scope of our work
here, a very simple but approximate estimate (though we
acknowledge that this estimate has not been verified by more
accurate tests; see also Tejeda & Rosswog 2013 for a
comparison of other pseudo-Newtonian potentials to a
relativistic treatment) of the relative increase in the strength
of the tides can be found by using the Paczyński–Wiita
potential (Paczyńsky & Wiita 1980) in place of the Newtonian
one:
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where ΦN=−GM•/r is the Newtonian expression for the
potential. While clearly an approximation, this potential does
reproduce salient features of the exact, general relativistic
solution, including the locations of the zero-energy and
innermost stable circular orbits. It suggests that the strength
of the tidal field of the black hole increases over the
nonrelativistic one by a factor of ( )- -r r1 2 g p

1. For example,
for a 106M• black hole and β= 5, Equation (48) suggests that
the tides due to general relativistic gravity are a factor of ∼12%
larger than in the Newtonian approximation.
Gafton & Rosswog (2019) recently investigated the disrup-

tion of a γ= 5/3 polytrope by a 106Me supermassive black
hole, and compared the degrees of compression suffered by the
star in the Newtonian and relativistic regimes (fixed back-
ground Kerr metric). The right panel of their Figure 1 illustrates
the relative importance of general relativistic effects as the β of
the encounter increases: as the pericenter distance is reduced (
i.e., as β increases), the difference between the relativistic and
Newtonian estimates of the maximum in the central stellar
density increases. For the largest β that those authors
considered (β= 11, which corresponds to a pericenter distance
of 4.29 rg), the difference between the Newtonian and
relativistic results was less than a factor of two, and for a
nonrotating (Schwarzschild) or retrograde black hole, it was to
within a factor of 1.5.
Redoing the analysis presented here in a general relativistic

framework is outside the scope of the present work, one of the
main aims of which was to compare to the (Newtonian)
estimates extant in the literature. We defer an extension of the
method outlined here to a relativistic one to future work.

7. Summary and Conclusions

We analyzed the tidal disruption of a star by a supermassive
black hole when the pericenter distance of the star is both
comparable to and well within the tidal radius of the black hole.

Figure 18. The maximum density as a function of β for a γ = 5/3 polytrope
(orange, solid line) and a Γ = 4/3 polytrope with an adiabatic γ = 5/3 (blue,
solid line). The orange-dashed and blue-dashed lines are fits to the large-β
behavior of the solution, while the black, dashed line is the prediction from
Luminet & Carter (1986).
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We first briefly considered the limit in which the fluid elements
comprising the star are assumed to free fall in the tidal field of
the black hole (Section 2). While this limit has been
investigated before, here we demonstrated that the pressure
gradient becomes comparable to the tidal force at a time
significantly before the gas pressure equals the ram pressure of
the material in the free-fall limit. We then developed a model
that relates the current height, z, and initial height, z0, of a
Lagrangian fluid element through a homologous function of
time H(t), i.e., z=H(t)z0. While such a relationship is exact
when the gas is in pressureless free fall, we showed that it is
self-consistent to leading order in z0 when the effects of
pressure and self-gravity are included and that the function H
obeys a dynamical equation that includes these effects
(Section 3). Because the dynamical equation includes both
pressure and self-gravity, the model obviates the need for the
impulse approximation, which assumes that the star retains
perfect hydrostatic balance up until the tidal radius, and instead
adopts the physically appropriate initial condition of hydro-
static equilibrium when the star is infinitely far from the
black hole.

Using this model, we demonstrated that the density at the
point of maximum compression in a deep TDE does not obey
r bµmax

3 for a γ= 5/3 polytrope until β 10, and the
coefficient of proportionality multiplying the scaling is a factor
of ∼5–10 smaller than that predicted in previous studies. This
result is consistent with our physical argument that the pressure
gradient resists the tidal compression of the black hole when
the pressure is only a fraction of the free-falling ram pressure.
However, as β increases, the compression still becomes
extreme. For β= 16, the maximum central density achieved
during the tidal encounter is 100 times the original, central
stellar density, corresponding to a decrease in the height of the

star to 1% its original value; see Figures 1, 2, and 17 (left
panel). The top panel of Figure 19 shows the integrated column
density out of the orbital plane of the stellar center of mass (i.e.,
the orbital plane is the x–y plane, and this figure shows the y–z
plane; x is in the direction of the pericenter of the center-of-
mass orbit) for the β= 16, 128 million-particle disruption
performed with PHANTOM (see Norman et al. 2021 for more
details of the specifics of the simulation) at the time that the
original stellar center of mass reaches pericenter, while the
bottom panel shows the projection onto the x–y plane. It is
apparent that the star has been flattened, or crushed, into a
small fraction of the original volume it comprised.
We then extended our model to incorporate the nonlinear

terms that arise in the relationship between the current height z
and the initial height z0 and the cylindrical radius s0 as a
consequence of pressure and self-gravity (Section 4). We
compared the results of our model to ∼128 million-particle
SPH simulations, finding excellent agreement with the motion
of fluid elements (Figure 8) and—especially after approxi-
mately accounting for the in-plane motion of the fluid elements
—the increase in the density as the star approaches its
pericenter (Figure 9).
A second consequence of the nonlinear relationship between

z and z0 is that a shock can form in the collapsing flow, which
we analyzed in Section 5. We demonstrated that a shock forms
during the compression of the star once β 3, and that it
propagates to the origin before the gas reaches its point of
maximum adiabatic compression once β 10. Because of the
fact that the fluid beneath the inward-propagating shock is
compressing, the sound speed of the pre-shock gas is
increasing, and the gas into which the shock is advancing is
receding from and, in cases where maximum adiabatic
compression is reached, running into the shock. For β= 2.5,
we found that the rebound of the pre-shock gas and the transfer
of upward momentum into the shock causes the shock to stall
and reverse its direction of motion. The Mach number of the
shock is also of the order of unity, and hence the shock is not
strong, over a wide range of β (Figure 16) and even as β
becomes large.
Figure 18 shows the maximum density (left) and temperature

(right) achieved by the compressing gas during a TDE as a
function of β both from our model and high-resolution
simulations. In addition to demonstrating excellent agreement
between the two approaches, this figure also illustrates that
shocks do not have a large effect on the TDE until β 10.
Beyond roughly this value of the impact parameter, the shock
propagates into the star and reaches the midplane before the
center of the star compresses maximally and adiabatically,
which reduces the maximum-achievable density below
the∝ β3 scaling predicted by Carter & Luminet (1983). Our
results therefore agree with Bicknell & Gingold (1983), who
argued that shocks would prematurely halt the compression of
the star. However, our simulation results also show that the
simulations of Bicknell & Gingold (1983) were under-resolved
(our highest-resolution simulations at 128 million particles are
still not completely converged11 at β= 16 in the maximum
density achieved; Bicknell & Gingold 1983 used 500 or 2000
particles to model approximately the same encounter). Beyond

Figure 19. The column density across the orbital plane (top) and through the
orbital plane (bottom) of the original star for the β = 16, 128 million-particle
SPH simulation performed with PHANTOM (see also Norman et al. 2021). Here,
x is in the direction of the pericenter of the center of mass. At this time, the
center of mass of the star is at pericenter, and bright (dim) regions show
increased (reduced) density.

11 This also shows that simulating β  4 requires at least several million
particles to reliably constrain the maximum density achieved during the
compression of the star, while going to β  15 requires at least ∼ 109 particles,
which is currently infeasible.
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β; 10, we find that the maximum density achieved during
compression is r r bµmax c

1.62, which is a substantially weaker
scaling with density than the adiabatic prediction ρ∝ β3.
Similarly, for β 10, we find that the maximum temperature
achieved is bµT ;max

1.12 this nearly linear increase with β is
also much shallower than the expectation from adiabatic
compression of bµTmax

2. Therefore, the scaling of the
maximum density and temperature never follow∝ β3

and∝ β2 for a γ= 5/3 polytrope: the scalings are much
shallower for β 10 because of the importance of the pressure
gradient at early times, and they are much shallower for β 10
because of the effects of shock formation.

While the results of our model and three-dimensional
SPH simulations are mutually self-consistent, they are incon-
sistent with the findings of Brassart & Luminet (2008), who
performed one-dimensional hydrodynamical simulations of
TDEs (with γ= 5/3 and γ= 4/3 polytropes) up to β= 15 and
found good agreement with the r b= 0.22max

3 prediction of
Luminet & Carter (1986) and that shocks did not form during
the compression of the star until β; 12. Even at the
homologous level of our model, we find that the maximum
density is below the prediction of Luminet & Carter (1986) by
a factor of five to 10, and agrees with our assessment that the
pressure gradient is dynamically important and able to resist
further compression when the pressure is only a fraction of the
free-fall ram pressure.

We (very) briefly analyzed the case where the star being
disrupted is non-polytropic (Section 6.2), and specified the
analysis to the situation where the star is a Γ= 4/3 polytrope
(p∝ ρ4/3) and is gas-pressure dominated with γ= 5/3 (the
Eddington standard model). Because of the increased central
density, the maximum density achieved during the adiabatic
compression does not follow the∝ β3 scaling until β 15
(Figure 18). We leave a more detailed and thorough
investigation of shock formation and nonhomologous evolution
of the fluid to future work.

Bicknell & Gingold (1983) concluded that very little energy
would be released by the triple-α process as a by-product of the
tidal compression. Our results—both the model presented here
and the three-dimensional SPH simulations—yield qualita-
tively similar conclusions. For helium burning to occur, we
require a core temperature of at least ∼1.2× 108 K (Hansen
et al. 2004), which necessitates β 10 from the right-hand side
of Figure 17 if we assume that the initial star had a central
temperature of ∼107 K. As argued by Bicknell & Gingold
(1983), the time spent at such large temperatures is very short,
and not much energy would be generated from nuclear burning.
The fact that a more realistic stellar progenitor that obeys the
Eddington standard model suffers an even shallower increase in
the central density with β (Figure 18) implies that for a solar-
like star, the augmented nuclear burning rate would be even
smaller until β is very large (20). We leave a more thorough
analysis of the possibility of nuclear detonation in these very
high-β encounters to a future investigation.

In Section 6.3 we included a discussion of the effects of
general relativity in the context of the applicability of our
Newtonian models (both the analytical model developed here
and the numerical simulations to which we made comparisons;
see also Section 3.2 of Norman et al. 2021). As the black hole
mass increases, general relativistic effects become more
important at more modest β owing to the fact that

( )=  r R M Mt •
1 3 while rg=GM•/c

2, i.e., the gravitational

radius scales more strongly with black hole mass than does the
tidal radius for fixed stellar properties. Two important
consequences of relativistic gravity are: (1) for a portion of
the parameter space studied here and in previous analyses in the
Newtonian approximation, the star can be captured by the black
hole (i.e., have a pericenter distance 4rg, the zero-energy
orbit) or enter its Schwarzschild (or equivalent for Kerr) radius,
making the disruption unobservable. This issue is relevant for
black holes with masses M• 106Me, for which the direct
capture radius occurs at β; 12.5 for a solar-like star (i.e., one
with a solar mass and radius), and is only exacerbated as the
black hole mass increases. For black hole masses M•= 107Me
at β 2.7, the star is directly captured if it is solar-like (e.g.,
Kesden 2012; Stone et al. 2019; see Equations (45)–(47)). (2)
Even for lower-mass black holes where the ratio rt/rg is on the
order of tens for β 10, the stresses induced by the general
relativistic gravitational field can be tens of percent larger than
the Newtonian value, as suggested by the simple estimate in
Section 6.3, and can be much larger when the star nears the
direct capture radius. For a 106Me black hole, this is at
β; 12.5 for a solar-like star and β; 2.7 for a 107Me black
hole (and, again, a solar-like star; see Equation (47)).
Conversely, when the Newtonian approximation is accurate
(for lower-mass black holes or larger stars), our results
demonstrate that the entire tidal interaction occurs indepen-
dently of the mass of the black hole (see footnote 4 in
Section 3). A general relativistic extension of the model
outlined here would provide a more accurate measure of the
increase in the central density and temperature of the star for
high-β encounters between main-sequence (and smaller) stars
and black holes with masses 106Me. The work of Gafton &
Rosswog (2019) shows that for the disruption of a solar-like,
γ= 5/3 polytrope by a 106Me supermassive black hole with
β= 11 (for which rp; 4.29rg, i.e., very near the marginally
bound radius at which direct capture occurs), relativistic effects
can increase the maximum-attained density of the compressing
star by a factor of at most ∼2 (i.e., depending on the spin of the
black hole; though we note that these authors used a Newtonian
potential for the stellar self-gravity, and relativistic self-gravity
may modify these results at sufficiently close pericenters). We
defer a relativistic extension of the model described here to a
future investigation.
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