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Abstract

The tidal disruption of stars by supermassive black holes (SMBHs) probes relativistic gravity. In the coming
decade, the number of observed tidal disruption events (TDEs) will grow by several orders of magnitude, allowing
statistical inferences of the properties of the SMBH and stellar populations. Here we analyze the probability
distribution functions of the pericenter distances of stars that encounter an SMBH in the Schwarzschild geometry,
where the results are completely analytic, and the Kerr metric. From this analysis we calculate the number of
observable TDEs, defined to be those that come within the tidal radius rt but outside the direct capture radius
(which is, in general, larger than the horizon radius). We find that relativistic effects result in a steep decline in the
number of stars that have pericenter distances rp 10 rg, where rg=GM/c2, and that for maximally spinning
SMBHs the distribution function of rp at such distances scales as µf rr p

4 3
p

, or in terms of β≡ rt/rp scales as
fβ∝ β−10/3. We find that spin has little effect on the TDE fraction until the very-high-mass end, where instead of
being identically zero the rate is small (1% of the expected rate in the absence of relativistic effects). Effectively
independent of spin, if the progenitors of TDEs reflect the predominantly low-mass stellar population and thus
have masses 1Me, we expect a substantial reduction in the rate of TDEs above 107Me.

Unified Astronomy Thesaurus concepts: Black hole physics (159); Event horizons (479); General relativity (641);
Kerr black holes (886); Relativistic mechanics (1391); Tidal disruption (1696)

1. Introduction

At a rate of ∼10−4
–10−5 per year, unfortunate stars make

their way to the center of each galaxy, passing too close to the
central supermassive black hole (SMBH) to survive the
encounter. Upon reaching the tidal radius, where the SMBH’s
tidal field and the star’s self-gravity become approximately
equal, the star is disrupted and stretched into a stream of debris.
Some of this debris can return to the SMBH to form an
accretion flow that powers a luminous transient called a tidal
disruption event (TDE). There have now been 50 TDEs
observed to date (Gezari 2021), and this number is expected to
increase substantially in the next few years (e.g., Bricman &
Gomboc 2020).

Theoretical predictions for the rate of TDEs, starting with
Frank & Rees (1976), have been remarkably consistent for
many years now, finding ∼10−4

–10−5 per year per galaxy
(e.g., Magorrian & Tremaine 1999; Wang & Merritt 2004;
Merritt 2013; Stone & Metzger 2016; Zhong et al. 2022). It is
possible that some nonsteady stellar systems can produced
periods of enhanced rates for short durations (e.g., Madigan
et al. 2018). The observed rate of TDEs is starting to reflect a
similar value (e.g., Hung et al. 2017; van Velzen et al. 2020,
see also the discussion in Gezari 2021). So it seems that from a
broad perspective there is reasonable agreement between the
theoretical predictions and observed rates for the average
number of TDEs per galaxy in the universe.

The expected increase in the number of observed events in
the coming years provides a hope that we will be able to
discern astrophysical quantities from TDE statistics. Modeling
TDE light curves has the potential to reveal (1) the properties of

the SMBH (mass and spin), (2) the properties of the star that is
being disrupted (mass, age, metallicity, spin, multiplicity)3, and
(3) the orbital properties of the star around the SMBH (see the
modeling efforts of, e.g., Lodato et al. 2009; Guillochon &
Ramirez-Ruiz 2013; Gafton et al. 2015; Shiokawa et al. 2015;
Bonnerot et al. 2016; Golightly et al. 2019a, 2019b; Law-Smith
et al. 2019; Sacchi & Lodato 2019). By combining detailed
modeling of individual events with statistical inferences from a
large number of TDEs, it will become possible to infer the
distribution functions of these properties, which will signifi-
cantly increase our understanding of several important astro-
physical processes.
However, our ability to infer these properties relies on a

detailed understanding of the physics underlying these events.
In this paper we revisit, explore and revise calculations of the
dependence of TDEs on the relativistic nature of the
gravitational field generated by the SMBH (e.g., Beloborodov
et al. 1992; Kesden 2012; Will 2012; Servin & Kesden 2017).
Relativistic gravity has important differences from a Newtonian
description, and in some regions of the parameter space these
can lead to significant revision of the inferred TDE rates (e.g.,
Kesden 2012). Relativistic gravity introduces the concept of a
direct capture radius, inside of which the stellar debris is not
able to recede away from the SMBH and subsequently form an
accretion flow but is instead captured and swallowed by the
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3 And potentially whether the star hosts planets as the presence of planets will
lead to (1) a phase-dependent energy shift in the stellar orbit near the pericenter,
and (2) an increase in the fallback rate and variation in the fallback composition
when the planetary material enters the fray (as the density of planets is
approximately the density of stars, it is likely that if the star is disrupted then so
is the planet; although for planets orbiting the star at radii greater than the tidal
radius, it is also possible that they are ejected as hypervelocity planets (HVPs;
Ginsburg et al. 2012) without being disrupted). However, the observable
consequences of planets in stellar TDEs is expected to be quite small, so this
would require an incredible level of precision in both modeling and
observed data.
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SMBH; we emphasize that this is distinct from, and generally
larger than, the horizon radius. Relativistic gravity also
generates a stronger tidal field experienced by the star at a
given radius compared to the Newtonian estimate. This results
in a larger fraction of stars entering the direct capture radius
and thus a reduced number of TDEs,4 and this effect can be
severe for SMBHs with masses such that the tidal radius is
comparable to the direct capture radius; as discussed below,
this SMBH mass is ∼3× 107Me for solar-like stars and is
substantially smaller for less massive stars, for a Schwarzschild
black hole (see Equation (19) and the discussion thereof; see
also Section 5.1 below).

To explore these effects we consider the statistical distribu-
tion of pericenter distances of stars encountering SMBHs. In
Section 2 we briefly discuss the relativistic Boltzmann equation
and time-steady solutions to it, and our general assumptions
about the nature of stars that are scattered into the tidal
disruption (or direct capture) sphere from large distances. We
then go on to analyze the distribution of pericenter distances in
the Schwarzschild metric (Section 3) and the Kerr metric
(Section 4), assuming that the distribution function is isotropic
at sufficiently large distances from the SMBH and that it
satisfies the Boltzmann equation. One could argue that the
analysis of Section 3 that focuses on Schwarzschild SMBHs is
unnecessary, because we consider the Kerr metric—of which
the Schwarzschild metric is just a special case—in Section 4.
However, solutions with zero spin and that possess complete
angular symmetry have a particularly simple, analytic solution
for the distribution of pericenter distances and the number of
tidally disrupted stars (see Equations (10) and (13)), both of
which provide checks on the more general results in Section 4.
In Section 5 we provide a discussion and the implications of
our analysis, in particular with respect to the predicted rates of
TDEs and their dependence on the SMBH spin (Section 5.1),
and the definition of the tidal radius and the generation of
observable TDEs, i.e., those that likely produce enough
electromagnetic emission to be detected to cosmological
distances (Section 5.2). We summarize and conclude in
Section 6.

2. Basic Assumptions

We assume that the distribution of stars in the core of a
galaxy is one that satisfies the Boltzmann equation and is
therefore approximately collisionless; this is a good approx-
imation for times shorter than the relaxation timescale of the
galaxy, assuming that this timescale is long compared to the
dynamical time of the stars. Over the relaxation timescale stars
will gravitationally interact and induce time dependence owing
to the scattering of stars into the region of the parameter space
that brings them within the tidal disruption (or direct capture)
radius of the SMBH, that region of the parameter space known
as the “loss cone,” which has been the focus of many studies
(e.g., Frank & Rees 1976; Lightman & Shapiro 1977; Cohn &
Kulsrud 1978). A steady state is reached if stars can repopulate
the loss cone fast enough to maintain a constant rate of
consumption by the SMBH, and collisions yield no net change

to the distribution function, and the Boltzmann equation is
again approximately satisfied.
The relativistic Boltzmann equation for the distribution

function m m( )f x x, , where xμ is the position four-vector, is
(e.g., Mihalas & Mihalas 1984)
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Here dots denote differentiation with respect to proper time,
Greek indices range from 0–3, and repeated upper and lower
indices imply summation. The additional constraint that the
four-velocity satisfies = -mn

m n g x x 1 must also be imposed,
where gμν is the metric and is assumed to be dominated by the
SMBH at the radii under consideration. Individual particle
orbits obey conservation laws of the form
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where K is a constant of the motion, and hence a time-steady
distribution function can be any function of the set of Kʼs and
satisfy the Boltzmann equation (Jeans’s theorem; Jeans 1915).
As pointed out by Merritt (2013), the energy relaxation

timescales of massive (and the most luminous) galaxies are
sufficiently long that the assumption of a steady state in energy
is not actually warranted, and hence the distribution of stars
within the sphere of influence of the SMBH may not follow the
Bahcall–Wolf scaling n∝ r−7/4 (Bahcall & Wolf 1976). In
other words, stars are not repopulated in energy as fast as they
are injected onto orbits that take them within the tidal
disruption (or direct capture) radius of the SMBH. On the
other hand, the angular momentum relaxation timescale
specific to the range of stars that come within the tidal radius
is much shorter, and the assumption of satisfying the
Boltzmann equation in terms of angular momentum is more
justified (Merritt 2013).
As such and for the remainder of what follows we will

assume that the distribution function is primarily determined by
its dependence on angular momentum and that the majority of
stars are scattered from such large distances that the binding
energy can be taken to be zero (relativistically, this means that
the energy equals the rest-mass energy in the limit that the body
is infinitely far from the SMBH) and that the phase space is
isotropically populated at large distances. This assumption is
tantamount to the statement that stars come from the region of
the parameter space where they enter into and out of the loss
cone on a per-orbit basis, i.e., where the loss cone is “full,” and
does not account for the stars that slowly (relative to the orbital
time) diffuse in energy and angular momentum across the loss-
cone boundary (the latter being the boundary to the “empty”
region of the loss cone). A substantial fraction of stars always
comes from the full loss-cone region, and it dominates for
relatively low-mass galaxies (Merritt 2013). We return to a
discussion on the empty loss cone and whether or not it actually
contributes to TDEs that can actually be detected, i.e., produce
copious amounts of luminous emission, in Section 5.2.
In the next section we consider solutions to the Boltzmann

equation that are spherically symmetric in the Schwarzschild
metric, for which only the energy and the magnitude of the
angular momentum are relevant as they concern the pericenter
distances of tidally disrupted stars, and to the Kerr metric in
Section 4 where the rotation of the SMBH implies that, even if
the distribution function is isotropic at large distances from the

4 Presumably even stars that are directly captured by the SMBH are tidally
disrupted prior to hitting the singularity, but for simplicity of notation we refer
to stars that enter within the direct capture radius as “direct capture events” and
those that enter within the tidal radius (suitably defined; see Section 5.2 below)
but outside the direct capture radius as TDEs.
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SMBH, at small radii the projection of the angular momentum
onto the spin axis of the SMBH is also important for stars that
are tidally disrupted. We adopt units with G=M= c= 1
unless otherwise noted.

3. The Pericenter Distribution in the Schwarzschild Metric

The Schwarzschild metric is

= - - + - + W
-

( )⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ds
r

dt
r

dr r d1
2

1
2

, 32 2
1

2 2 2

where q q fW = +d d dsin2 2 2 2, and the symmetries of the
metric yield three conservation laws for individual particle
orbits:

q qf= + ( ) ( )J r r r sin , 42 2 2 2 2 2 2
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qf=  ( )ℓ r sin . 62 2

Here dots denote differentiation with respect to proper time,
and these conserved quantities represent the total angular
momentum (squared; J2), the component of the angular
momentum perpendicular to the θ= 0 axis (ℓ), and the total
relativistic binding energy (ò). The pericenter distance rp is
obtained by setting =r 0 in Equation (5); as motivated in the
previous subsection, assuming that stars are primarily scattered
onto low-angular momentum orbits from large distances and
have ò= 1, the pericenter distance is related to J2 via

=
-

( )J
r

r

2

2
. 72 p

2

p

As ℓ does not have any bearing on the pericenter distance for
this metric, we can marginalize over this variable without loss
of generality.

Equation (7) has a relative minimum at J2= 16 and rp= 4,
which corresponds to the direct capture radius; for J2< 16 we
have rp= 0. The solution for the pericenter distance rp as a
function of J2, as can be determined by inverting Equation (7),

is therefore
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We are interested in stars that reach pericenter distances rp< rt,
where rt is the tidal radius (suitably defined; see below), and
hence have < = -( )J J r r2 22

t
2

t
2

t . If stars at large distances
from the SMBH can be approximated as isotropic in the
position and velocity space, then it is straightforward to show
that the distribution of J2 is uniform in the limit of small J2

relative to r2v2 (see Appendix A). Denoting the distribution
function of J2 by f J2, the distribution function of rp is

ò d= -( ) [ ( )] ( ) ( )f r r r J f J dJ , 9r p p p
2

J
2 2

p
2

where rp(J
2) is given by Equation (8). If the total number of

stars with <J J2
t
2 is defined as N, then straightforward

manipulation of Equation (9) with f J2 equal to a constant shows
that the distribution function of rp is
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Figure 1 shows the distribution function for rp> 4, given by
Equation (10). The SMBH mass for each curve, shown in the
legend, is fixed by setting the tidal radius in physical units to

= ( ) ( ) r R M M , 11t
1 3

which is the canonical definition and that we motivate in more
detail in Section 5.2 below, and using solar values for the star.
For a 106Me SMBH, we have rt; 47≡ rt,e (in gravitational
units), which is where the orange curve in Figure 1 ends.
Further note that the dependence on rt enters only through the
normalization, which is apparent from Equation (10). Each
curve is normalized by the total number of stars that enter the
tidal radius, N, and hence the fraction of TDEs (i.e., the area
under each curve) decreases as the SMBH mass increases.

Figure 1. Distribution function of the pericenter distance (left) and β of the encounter (right), where β = rt/rp, normalized by N, which is the total number of stars
scattered within distances � rt. In the left panel the value of rp ranges from the direct capture radius rp = 4 to the tidal radius rp = rt. Note that the integral under each
of these curves is less than N, the number of stars that enter the tidal radius, because the fraction of stars with rp < 4 is directly captured. The Newtonian result is
plotted in the right panel as a dashed line with fβ ∝ β−2; on the left panel the Newtonian result would be a horizontal line with =frp constant, to which the solutions
clearly tend in the large-rp limit.

3

The Astrophysical Journal, 936:70 (11pp), 2022 September 1 Coughlin & Nixon



Because it is customarily referred to in the TDE literature, we
can also calculate the distribution function of β≡ rt/rp, which
from Equation (10) is

b
d b b

b
b

b
= ´

- ¥ >

-
-

< <
b

b

-

-
( )

[ ]

( )

( )

( )⎧

⎨
⎪

⎩⎪
f N r

r

for

4

2
for 1 .

12

r

r

r

r r

8 2

4

2 t

t
2 4

t

t
2

t

t
2

t

This distribution function is shown in the right-hand panel of
Figure 1 for the same SMBH masses. The Newtonian limit of
fβ∝ β−2 is shown by the black, dashed line for reference. The
presence of the direct capture radius of the SMBH induces a
steep falloff in the distribution function near β= rt/4.

Integrating Equation (10) shows that the number of TDEs,
equal to the integral of frp

from rp= 4 to rt, is

ò= = -( ) ( )⎜ ⎟
⎛
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4
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and the number of directly captured stars, or “direct capture
events” (DCEs), is (N−Ntde; as can be verified, this is also the
integral of frp

from 0 to 4 with frp
given by Equation (10))
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Thus, for an SMBH mass of 106Me, ∼83.7% of encounters
yield TDEs (and ∼16.3% DCEs), while an SMBH mass of
107.5Me; 3.2× 107Me has a tidal disruption fraction of 2.3%
(and a direct capture fraction of ∼97.7%). By comparison, the
Newtonian distribution of pericenters is uniform in rp, which
gives
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Figure 2 shows the relative fraction of tidally disrupted (blue)
and directly captured (red) stars with relativistic effects

included (solid) and in the Newtonian regime (dashed), and
we used Equation (11) to plot these ratios as a function of the
SMBH mass on the top axis. Even though the curves equal one
another at rt= 4 and in the limit that rt→∞ , there are
substantial differences between the two; the difference is
maximized at 0.25 when rt= 8 (M; 1.4× 107Me) where the
Newtonian approximation predicts that 50% of stars are tidally
disrupted, whereas the relativistic value is 25%. Thus, the
Newtonian approximation can significantly overpredict the
number of TDEs.
The total number of TDEs with β> βmin is
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For example, the canonical tidal radius for a 106Me SMBH is
(see Equation (11)) rt; 47, and the total fraction of encounters
that have β> 6 (i.e., βmin= 6) is ∼6.1%. On the other hand,
the Newtonian limit is

b
=
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-
b

b

( )F
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1
. 17r

r

,Newtonian

4

4
t

t

With rt= rt,e; 47, this predicts that ;8.9% of encounters
have β> 6 and produce TDEs, which is a factor of ∼1.5 larger
than the true (relativistic) value given above. The disagreement
between the Newtonian and relativistic values is because
relativistic gravity draws stars to smaller radii for a given J2

compared to the Newtonian pericenter. This is most apparent
by comparing Equations (13), (14), and (15).
Equation (13) shows that when rt= 4, the number of TDEs

equals zero, and all stars are directly captured (obviously this is
true for rt� 4). We must therefore have, in physical units,

> ( )r
GM

c

4
18t 2

for a spinless SMBH to produce any observable disruptions.
This expression for the direct capture radius of a Schwarzschild
SMBH is consistent with, e.g., Zeldovich & Novikov (1971),
Bardeen et al. (1972), Beloborodov et al. (1992), Will (2012)
(note that Zeldovich & Novikov 1971; Beloborodov et al. 1992
equate the gravitational radius rg to what is more commonly
referred to as the Schwarzschild radius, i.e., they let
rg= 2GM/c2). This inequality disagrees with the more
common claim of rt> 2GM/c2 (see Section 5.1 below for
additional discussion).
With the standard definition of the tidal radius given in

Equations (11), (18) implies that
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if the (Schwarzschild) SMBH is to produce observable TDEs.5

Here we have reintroduced factors of G, c, and M for clarity.

Figure 2. Fraction of TDEs (blue) and DCEs (red) as a function of the tidal
radius (in gravitational radii; rg = GM/c2) of the SMBH. The solid lines
account for relativistic effects (Equations (13) and (14)), while the dashed lines
are in the Newtonian limit (Equation (15)). The relation between the SMBH
mass (top axis) and the tidal radius is given in Equation (11) and is for a solar-
like star.

5 Note that Equation (19) can also be written as r r<¯ ¯ •, where r =̄  M R 3

and r =¯ M r• • dc
3 with rdc = 4GM/c2.
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We discuss the implications of this result in the context of the
rates of TDEs in Section 5.1 below.

4. The Pericenter Distribution in the Kerr Metric

In the Kerr metric written in Boyer–Lindquist coordinates,
the three conserved quantities are

q q
q
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These are the relativistic generalizations of the square of the
Newtonian total angular momentum, the specific energy, and
the projection of the angular momentum onto the spin axis of
the SMBH, to which they manifestly reduce in the limit of large
r. The conservation of the norm of the four-velocity also gives

= -mn
m n g x x 1, which yields a fourth, nonlinear equation

relating the first temporal derivatives of the coordinates. In
the limit that the particles are on zero-energy orbits, so ò≡ 1 in
the previous equations, we can show that these four equations
can be combined to give the following relationship among J2, ℓ,
and the pericenter distance rp (which, as for the Schwarzschild
case, is obtained by setting =r 0; note that r explicitly appears
in the condition = -mn

m n g x x 1):

=
+ - +

- +
( )J

r a r ar ℓ a ℓ

r r a

2 2 4

2
. 232 p

3 2
p p

2 2

p
2

p
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If a≠ 0, rp depends both on the total angular momentum and
the projection of the angular momentum onto the spin axis of
the SMBH, ℓ, because the spin of the SMBH breaks the

isotropy of the spacetime. If a= 0, Equation (23) is clearly
identical to Equation (7).
Stars that produce TDEs must have a pericenter distance rp

outside of the direct capture radius.6 The direct capture
condition that relates J2 and ℓ can be determined by solving
Equation (23) for rp and setting the radical in the solution of the
cubic to zero; for completeness, this condition is

- + + -
+ - + - =

( ( ) ( ) )
( ( ) ) ( )

a J ℓ aJ ℓ J J

a aℓ J J

18 2 3 36 18

12 2 0. 24

2 2 2 2 2 4 2

2 2 4 3

This can be written as a quartic in ℓ that can be solved
analytically for ℓ(J2), but the solution is not enlightening and, in
practice, is more easily solved numerically (the left panel of
Figure 7 in Appendix A shows the numerical solution for the
direct capture condition, i.e., the direct capture curves, for a
range of a). See Will & Maitra (2017) for an approximate,
analytic expression (their Appendix A).
In contrast to the Schwarzschild case, the direct capture

condition in the Kerr metric is algebraically more complex and
dependent on two variables (ℓ and J2), which makes the
analysis of the distribution of pericenter distances of tidally
disrupted stars much more involved. The joint probability
distribution function f (ℓ, J2) itself is also not trivial, even for
the case of a spherically symmetric distribution of stars at large
distances from the SMBH, because of the fact that ℓ and J2 are
not independent. To maintain the readability of the paper, here
we focus only on the results, and we defer the calculation of the
joint probability distribution function f (ℓ, J2) to Appendix A
and the formalism and analysis that exploits this distribution
function to infer the properties of disrupted stars—such as the
distribution of pericenter distances and the fraction of TDEs—
to Appendix B.
Figure 3 gives the probability distribution function of the

pericenter distance rp (left) and β= rt/rp (right) with rt,e; 47
and the SMBH spins in the legend. To calculate these solutions

Figure 3. Distribution function of rp (left) and β (right) for a tidal radius of rt = rt,e ; 47 for the SMBH spins in the legend. The black, dashed curve in the left-hand
panel is the analytic solution for a Schwarzschild SMBH calculated in Section 3 and is effectively a check on the analysis. In the right panel, the dashed curve gives
fβ = β−2, which is the result in the Newtonian limit, while the dotted–dashed curve shows fβ ∝ β−10/3. The locations at which the distribution function goes to zero
demarcate the smallest possible value of rp on the direct capture curve, which approaches 1 in the limit that a→ 1.

6 In the limit that the star is extremely highly elongated at the time it reaches
approximately the direct capture radius, which occurs for very-high-β and low-
mass SMBHs, it is possible for the material to promptly self-intersect owing to
the extreme advance of periapsis (2π), which would likely produce a very
short-lived, electromagnetic outburst (Darbha et al. 2019). However, it is likely
that such an outburst would not resemble a traditional TDE.
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we numerically integrated the distribution function f (ℓ, J2) over
the region of the parameter space that produces TDEs for a
finely sampled set of rp, interpolated the solution, and
differentiated with respect to rp (see Appendices A and B).
These solutions are normalized by the total number of stars that
have rp< rt, i.e., the integral over of frp

over all rp equals the
fraction of TDEs relative to the total number that have rp< rt
and hence is always less than one. Independent of spin, the
curves approximately equal one another at large rp or small β
and approximate the analytic solution in the Schwarzschild
(spin zero) limit, which is shown by the black, dashed curve in
the left panel (and effectively serves as a check on this
method). For small rp (large β), the distribution function shows
a marked difference and extends to the minimum possible
pericenter distance along the direct capture curve that is
reachable by the star; from Equation (B3), this minimum
possible distance extends to 1 in the limit of maximal spin,
which is reflected in this plot. As for the Schwarzschild case,
the distribution function in terms of rp depends only on rt
through its normalization, and otherwise the only dependence
is on rp for a given a. In the limit of maximal spin, the right plot
of Figure 3 shows that the distribution function of β at large β
is fβ∝ β−10/3, which implies that the distribution function of

µf rr p
4 3

p
for small rp and rapidly rotating holes; this behavior

is shown by the black, dotted–dashed curve in the left-hand
panel of Figure 3.

Figure 4 shows the number of tidally disrupted stars relative
to the total number scattered into the loss cone, Ntde/N, as a
function of the tidal radius for the SMBH spins in the legend.
The top axis gives the SMBH mass, which is calculated from
Equation (11). It is apparent from this figure that the spin of the
SMBH plays a small role in modifying the number of TDEs
until the tidal radius is only marginally greater than the
gravitational radius, and even then only for rapidly rotating
SMBHs with a 0.75. To quantify these statements, Figure 5
shows the difference in the fraction of stars that yield TDEs for
a spinning SMBH, with the spin given in the legend, and a
Schwarzschild SMBH, as a function of the tidal radius rt
(bottom axis) and the SMBH mass (upper axis) assuming

solar-like stars. These curves show a peak at a tidal radius of

 ( )r 4.7, 25t, peak

and if we adopt our definition of the tidal radius, at an SMBH
mass of
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This SMBH mass that would maximize the difference in the
number of TDEs is slightly smaller than the one at which the
direct capture radius coincides with the tidal radius, being
∼4× 107Me for solar-like stars.
In the next section we discuss the implications of our results.

5. Discussion and Implications

In the previous two sections we derived the pericenter
distribution function of stars scattered into the loss cone of an
SMBH for the Schwarzschild (Section 3) and Kerr (Section 4)
metrics, and from these the relative number of TDEs to the total
number of stars that have small enough angular momentum to
come within rt (Figure 4). Here we discuss the implications of
these results in the context of the rates of TDEs.

5.1. TDE Rate Suppression and the Unimportance of the
SMBH Spin

The rate of TDEs per galaxy is

ò=
- -



( )[ ]

( ) ( ) ( ) ( )    
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N
f M R dM dR
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,
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Here få is the distribution function of stellar masses and radii
within the galaxy. N is the rate at which stars are supplied to
the loss cone and is not, in general, just a function of the
SMBH mass; however, a number of investigations have found
that it grows weakly with decreasing SMBH mass when theM–

σ relation is incorporated (e.g., Stone & Metzger 2016 find
µ -N M 0.404 over the entire galaxy sample they investigated,

though they also note that the rate they derive is effectively

Figure 4. Number of TDEs relative to the total number of stars scattered into
the loss cone as a function of the tidal radius (in units of gravitational radii) for
the SMBH spins shown in the legend. It is clear that the SMBH spin only
matters as it concerns the rate of TDEs if the SMBH is rapidly rotating, with
a  0.75. The black hole mass (top axis) is derived from the standard definition
for the tidal radius given a solar-like star.

Figure 5. Difference in the number of TDEs, relative to the total number of
stars scattered into the loss cone, between an SMBH with spin given in the
legend and a Schwarzschild SMBH. This shows that a rapid SMBH spin can
generate at most a ∼ 10% difference in the fraction of TDEs, with the
maximum difference occurring at an SMBH mass of ∼ 3.2 × 107Me.
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independent of the SMBH mass for M< 108Me). If we take
Equation (33) from Merritt (2013) and anM–σ relation M∝ σ5,
normalized such that σ= 200 km s−1 corresponds to an SMBH
mass of 2× 108Me (e.g., Marsden et al. 2020), we find
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´
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As highlighted by Merritt (2013), the fact that the rate increases
with decreasing SMBH mass implies that low-mass SMBHs
contribute predominantly to the TDE rate.

The dominance of the low-mass end becomes even more
pronounced when we incorporate the dependence of Ntde/N on
rt. From Figure 4, the rate of TDEs equals zero for all rt� 4 for
a Schwarzschild (a= 0) SMBH, but it is strongly suppressed
for all rt  10 effectively independently of the spin of the
SMBH. We would expect a substantial reduction in the rate of
TDEs when Ntde/N falls below 0.1, or when rt satisfies

( )r
GM

c
5 , 29t 2



independent of the spin parameter; we have included factors of
G, M, and c in this equation for clarity.

All of this analysis is independent of our definition of the
tidal radius7. If we use the standard definition given in
Equation (11) and let = ( ) r R M Mt

1 3, then Equation (29)
implies that the TDE rate should decline substantially once the
SMBH mass satisfies, with factors of G, M, and c included for
clarity,
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This limit on the mass of the SMBH is significantly smaller than
the value that is often quoted in the literature8 and obtained by
setting rt> 2GM/c2, which gives M/Må 1.1× 108 (for a
solar-like star; e.g., Hills 1975; Magorrian & Tremaine 1999;
Syer & Ulmer 1999; Wang & Merritt 2004; Kesden 2012; Stone
& Metzger 2016; Stone et al. 2019, 2020; but see Servin &
Kesden 2017).

The rate of TDEs for a given galaxy (Equation (27)) depends
on the details of the stellar distribution function, which may
display significant variation from galaxy to galaxy, but we can
gain insight by considering stellar populations that consist of

only one type of star. Figure 6 shows Ntde with Equation (28)
for N and for Må= 0.3, 1, and 3 Me. The radius of the 1Me
star is equal to 1Re by construction, whereas the 0.3Me and
3Me are determined from the MESA stellar evolution code
(Paxton et al. 2011, 2013, 2015, 2018, 2019) at the zero-age
main sequence with solar metallicity, and are ;0.28Re and
;2.04Re, respectively. The points in this figure give the
locations where the rate drops to 10% of N for a Schwarzschild
SMBH, where N is shown by the black, dotted–dashed curve,
and for the 0.3, 1, and 3 Me stars are at M; 6.3× 106Me,
2.3× 107Me, and 3.8× 107Me, respectively. It is clear that
near-maximal spin (dashed curves) increases this mass, but
only by a factor of ∼1.3.
We emphasize that the rate given in Equation (27) is the rate

for a given galaxy. The observed, volumetric rate is modified by
a multitude of factors, including the SMBH mass and spin
distributions, the variation of the stellar distribution function
among galaxies, differences in the scattering rate of stars into the
loss cone, and the detectability of the TDE (which itself depends
on many factors; we return to this point in the next subsection).
Of course, it is the goal to use TDEs to infer these properties of
SMBHs and galaxies. We defer a detailed calculation and
comparison to observations to a future investigation. However,
we note that in general the results shown in Figures 4, 5, and 6
suggest that the SMBH spin distribution only weakly contributes
to the variation in the TDE rate as a function of the SMBH mass
where the rate itself is substantial (in agreement with D’Orazio
et al. 2019), and is only able to be probed when the detection rate
of TDEs is very accurately constrained as a function purely of
the SMBH mass (i.e., when confounding effects related to the
stellar population, etc., can be ruled out). Therefore, in the short
term it seems likely that retrieving information about the SMBH
spin from TDE observations requires detailed modeling of
individual events where, for example, variability may be induced
by Lense–Thirring precession of the accretion flow (see, e.g.,
Stone & Loeb 2012; Franchini et al. 2016; Ivanov et al. 2018;
and the processes discussed in Raj & Nixon 2021).

5.2. The Definition of rt and “Observable” TDEs

So far we have employed the canonical definition of the tidal
radius, = ( ) r R M Mt

1 3, to write the TDE fraction (or rate)
as a function of the SMBH mass and stellar properties, though

Figure 6. TDE rate as a function of the SMBH mass for the combinations of
the SMBH spin and stellar type shown in the legend. The points on each curve
show where the rate falls by an order of magnitude relative to the rate at which
stars are scattered into the loss cone, where the latter is shown by the black,
dotted–dashed curve.

7 The exception is if one chooses to invoke a particularly strong dependence
of the tidal radius on the spin of the SMBH that is also not proportional to the
angular momentum of the star, i.e., one that is not just of the form ∝ aℓ such
that the increased (or reduced) rate of disruption of stars with prograde angular
momenta cancels that of those with retrograde angular momenta. In addition to
being unlikely from a physical standpoint, Gafton & Rosswog (2019)
specifically state that spin introduces at most a 1% effect as it concerns the
mass stripped from the star in partial disruption.
8 A notable exception is Merritt (2013), who stated that tidally disrupted stars
must have a Newtonian rt > 8 (gravitational radii), and hence concluded that
SMBHs capable of producing observable TDEs must have a mass that satisfies
M/Må  1.2 × 107—a factor of ∼2.5 smaller than the one in Equation (30).
Merritt (2013) let rt = 8 based on the work of Will (2012), who defined the
Newtonian pericenter by the expression (for a parabolic orbit) J2 = 2rp with
J2 = 16 (see their Equation (17); this same condition has also been employed
in, e.g., Broggi et al. 2022). However, the true pericenter distance reached by
the star is rp = 4 when J2 = 16, and hence the correct limit is given by
Equation (30) (or Equation (19) when rp = 4).
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all of the analysis in Sections 3 and 4 are agnostic to this
definition (modulo Footnote 5). The exact distance at which the
star is completely destroyed by tides depends on a number of
factors (e.g., Guillochon & Ramirez-Ruiz 2013; Gafton et al.
2015; Mainetti et al. 2017; Golightly et al. 2019a, 2019b;
Gafton & Rosswog 2019; Nixon et al. 2021), and it was also
recently found numerically that disruptions with β above a
sufficiently large value (10) may result in the reformation of a
stellar core (Nixon & Coughlin 2022). Thus, the “full disruption
radius,” depends on a large number of variables and may not
even constitute a single value for a given star. On the other hand,
rt= 1 corresponds to the distance at which a substantial fraction
of the star’s mass is lost, largely independent of the stellar
properties, even though it may only be a partial disruption. For
example, a solar-like γ= 5/3 polytrope loses ∼10% of its mass
to the SMBH at β ; 0.68 (rp; 1.47rt; Miles et al. 2020), while
the relativistic simulations of Gafton et al. (2015) find that this
value is closer to β ; 0.66 (rp; 1.51rt) for a 4× 107Me SMBH
(see their Figure 3) where the pericenter is highly relativistic. For
a solar-like, standard model star, Guillochon & Ramirez-Ruiz
(2013), Mainetti et al. (2017) find that 10% of the stellar mass
accretes onto the SMBH at β ; 1.15 (rp ; 0.87rt). Therefore, the
canonical definition of rt corresponds to TDEs with substantial
mass loss and that are therefore more likely to be observable,
irrespective of any nuances related to full versus partial disruption.

There have also been analytical arguments by Beloborodov
et al. (1992; see also Kesden 2012; Stone et al. 2019, 2020) that
suggest that the stronger tidal field associated with general
relativity modestly increases the tidal radius above the estimate
that is derived by equating the stellar self-gravitational force to the
Newtonian tidal force, i.e., the fiducial tidal radius. Correspond-
ingly, this analysis suggests a somewhat higher limiting mass
above which disruptions can no longer take place (e.g.,
Beloborodov et al. 1992 derive ∼108Me). However, as one
approaches the direct capture radius, the relativistic advance of the
periapsis angle diverges, which implies that any SMBH should be
able to disrupt a star if its pericenter distance is sufficiently close
to the direct capture radius. However, in these scenarios, close to
half of the stellar material would be directly captured by the
SMBH, half would be unbound from the system, and a small
remaining fraction would be able to circularize and accrete. Thus
it seems likely that in these situations there would not be much of
an accretion flare, and such TDEs would likely be unobservable.

In general, the precise definition of the tidal radius that one uses
should incorporate the type of star, the amount of mass lost, and
the corresponding luminosity of the event (which is currently not
well constrained theoretically), and the sensitivity of the detector,
and this process is carried out for every type of star for a given
galaxy and integrated over the stellar population. The information
needed to do this is currently not available; in contrast, we argue
that the standard definition of the tidal radius gives a value that we
expect to correlate strongly with where TDEs are on average (e.g.,
across stellar types, with and without general relativistic effects,
including or excluding stellar rotation) detectable.

Finally, in our analysis we focused on stars that are disrupted
from the region of parameter space where the loss cone is full,
meaning that the distribution of the square of the angular
momentum of the disrupted stars is effectively uniform. There
is another region of parameter space—the empty regime—
where stars slowly diffuse across the loss-cone boundary over
many orbital times. Thus, one could argue that our inferred rate
suppression is artificially high, as these additional disruptions

would enhance the rate near rp ; rt. However, it is not clear that
these would constitute TDEs that yield detectable emission, as it
seems likely that such stars would be progressively stripped of
their mass over many pericenter passages, leading to under-
luminous events spread out over long (humanly inaccessible)
timescales (as suggested by MacLeod et al. 2012); this is
especially true at the high SMBH mass where the fallback time
of the material becomes  years. It is also not possible to
substantially reduce the orbital period of such starts through
traditional tidal dissipation owing to the extreme mass ratio
(Cufari et al. 2022). Therefore, we expect the rate suppression
derived here to be substantial, even with the empty loss-cone
regime included, though we leave a detailed investigation of the
importance of the latter regime to future work.

6. Summary and Conclusions

Under standard assumptions about the nature of the
distribution of stars at large distances from the SMBH
(Section 2 and Appendix A), we analyzed the distribution
function of the pericenter distance of tidally disrupted stars,
both in the Schwarzschild geometry (Section 3), which can be
done completely analytically, and in the Kerr metric
(Section 4). Because of the existence of the direct capture
radius—the distance within which the star is unable to escape
from the gravitational field of the hole, which in general is
distinct from and greater than the horizon distance—we find
that the relativistic distribution function falls off more steeply
than would be predicted from a Newtonian analysis for
pericenter distances 10 rg, where rg=GM/c2, and M is the
SMBH mass. In particular, for a Schwarzschild SMBH the
distribution function equals zero at 4rg and the direct capture
radius for a zero-binding-energy orbitand is small, but nonzero,
for closer distances when the SMBH is rapidly rotating; in the
limit that the spin approaches a= 1, our analysis demonstrates
that the distribution function of the pericenter distance scales as

µf rr p
4 3

p
or, in terms of the often-defined quantity β= rt/rp,

fβ∝ β−10/3. This result can be contrasted with the Newtonian
expectation, being that frp

is constant or that fβ= β−2.
As a corollary to this analysis, we derived the total number

of TDEs, defined to be those that enter within the tidal radius rt
and outside of the direct capture radius, relative to the total
number scattered into the loss cone of the SMBH (i.e., all those
with pericenter distance within the tidal radius). We find that
the total number of TDEs is weakly dependent on the spin of
the SMBH, as most clearly shown in Figures 4 and 5, and only
when the rate of TDEs is very accurately constrained at the
high-mass end—where the intrinsic rate is low but not
identically zero if the SMBH is rapidly rotating—can useful
inferences of the SMBH spin be made (see Figure 6).
If the stellar population is dominated by low-mass stars, we

predict a sharp decline in the rate of TDEs at an SMBH mass
that is closer to a value of ∼107Me, even if the SMBH is
rapidly rotating. This conclusion disagrees with the inferences
of van Velzen (2018), who find a suppression near 108Me from
a statistical analysis of 12 SMBH masses inferred from
observed TDEs9, and also the work of D’Orazio et al.
(2019), who came to a similar conclusion from theoretical
grounds. Note, however, that D’Orazio et al. (2019) assumed
that the fraction of tidally disrupted stars is 1 if rt exceeds the

9 Note that Wevers et al. (2019), who used a larger sample of TDEs, find that
the majority of flares occur at SMBH masses 106Me.

8

The Astrophysical Journal, 936:70 (11pp), 2022 September 1 Coughlin & Nixon



direct capture radius for a given stellar type, and 0 otherwise,
which effectively amounts to setting the direct capture radius
to zero if the tidal radius is larger than the direct capture radius
(i.e., their solution for Ntde/N is a Heaviside step function
H[rt− rdc(a)]). Given Figure 2 and Equations (13) and (14),
this approximation clearly and dramatically overestimates the
number of TDEs, particularly at the high-mass end. Therefore,
from our analysis we expect the rate of TDEs to decline
substantially at a mass closer to ∼107Me rather than ∼108Me.

Our distribution functions of the pericenter distances of stars
scattered into the loss cone of an SMBH, and the total number
of tidally disrupted stars derivable therefrom, can serve as
direct inputs to calculations of the rates of TDEs. In Section 5.1
we considered the rates per galaxy for individual-star
populations, and generalizations to any stellar population are
easily derived from Equation (27), given Ntde/N from our
analysis here. However, as also discussed in Section 5.1,
predictions for the observed rates rely on several assumptions
that we have not explicitly made in the work presented here,
including (but not limited to) the underlying distribution of
SMBH masses and spins, the stellar populations within galactic
nuclei, and the precise definition of an observable TDE (which
depends on, e.g., the timescale of circularization, the radiative
efficiency of accretion, and the cosmological depth of the
specific observatory). We leave detailed predictions of
observed TDE rates, and their dependencies on these quantities,
to future work.
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tion through grant AST-2006684, and a Ralph E. Powe Junior
Faculty Enhancement Award through the Oakridge Associated
Universities. C.J.N. acknowledges support from the Science and
Technology Facilities Council [grant No. ST/W000857/1].

Appendix A
Distribution of Specific Angular Momenta

Any given star is described by its position vector r, its
velocity vector v, and the cross product r× v. The square of
the specific angular momentum can be written in a coordinate-
independent way as:

q
= ´ =

- = -
( ) ( · )( · )

( · ) ( ) ( )
r v r r v v

r v

J
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where here v and r are the magnitude of v and r, respectively,
and θ defines the projection of the velocity vector onto r, i.e.,
the r component of the velocity is q=v v cosr . If the velocity
distribution is isotropic, then there is no preferred direction of
the velocity, which is ensured if the distribution of qcos is
uniform from {minus 1, 1} or equivalently if q q=q ( )f sin 2,
where fθ(θ) is the distribution function of θ. Then the
marginalized distribution function of J2 over angle is
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Note that =( )f J 0J
22 if J2> r2v2. If stars enter the loss

cone from r∼ 1 pc with a velocity of v∼ 100 km s−1, then
~ -( )J r v 10lc

2 2 2 6 (setting =J GMr2lc
2

t as an estimate of the
angular momentum necessary to reach the tidal radius), and
stars that are scattered into the loss cone have an effectively
uniform distribution in J2.
The projection of the angular momentum onto the spin axis

of the hole is given by

y= ´ =( ) · ˆ ( )r v zℓ J cos , A42

where ψ is the angle between the spin axis of the SMBH and
r× v. Again, if there is no preferred direction of r× v and the
stellar distribution is isotropic, the marginalized distribution of
the projection of r× v onto the spin axis should be uniform,
and ycos is therefore distributed uniformly and independently
of J2; then the joint probability distribution function of ℓ and J2

is

ò d y y y= -( ) [ ] ( ) ( )f ℓ J ℓ J f J d, cos
1

2
sin . A52 2

J
22

As above, we can manipulate the δ-function and geometrically
show that this integral evaluates to

=( ) ( ) ( )f ℓ J
J

f J,
1

A62
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22

for ℓ2< J2 and zero for ℓ2> J2.

Appendix B
Probability Formalism in the Kerr Metric

Here we present the calculations that involve integrals of the
joint probability distribution function in the Kerr metric and
from which the results in Section 4 are derived.
For a star to be tidally disrupted, its pericenter distance must

be outside the direct capture radius of the SMBH, or within the
region of the ℓ–J2 parameter space that is outside the direct
capture curve given by Equation (24). Figure 7 illustrates the
direct capture curves for the SMBH spins shown in the legend,
such that all points in the {ℓ, J2} space bounded by the black,
dashed curve (which illustrates = ℓ J2 and gives the
maximum possible ℓ for a given J2) and the colored curve for a
given a are directly captured. The solution for a= 0 is a
vertical line at J2= 16, i.e., the solution is independent of ℓ

when the SMBH has no angular momentum because there is no
preferred axis, and this agrees with the results of Section 3. As
the spin increases, prograde orbits (those with positive ℓ) can
reach smaller J2 and avoid direct capture, while retrograde
orbits can be directly captured at J2> 16.
From the left panel of Figure 7 it is obvious that the area of

the direct capture region, which is approximately proportional
to the number of stars that are directly captured, is not strongly
affected by the SMBH spin. There is an effect that is related to
the shift of ℓ= 0 orbits to smaller J2 as a increases, which
demonstrates that the area of the direct capture region decreases
slightly as a increases. This behavior is due to the presence of
a2 terms in Equation (23), and a straightforward series
expansion of the direct capture curve about a= 0 (via
Equation (24)) shows that the leading-order, spin-dependent
term of the area of the direct capture region is ∝a2. It is
straightforward to show with the analysis below that, for an
SMBH spin of a = 0.999, the relative fraction of directly
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captured stars drops to∼ 90.2% (e.g., see Figure 5, which
shows that the total enhancement in TDEs can be as large
as∼10% for maximally spinning SMBHs).

Observable TDEs must also have a pericenter distance rp less
than rt, which can be imposed by solving the cubic (from
rearranging Equation (23)) and setting rp(ℓ, J

2)� rt. The right
panel of Figure 7 shows the curves of constant rp in the ℓ–J2

space with a = 0.9 and rt= 47, with the curves corresponding
to the rp given in the legend; the vertical, black, dashed line
shows J2= 16, such that regions of parameter space less than
this value are directly captured for Schwarzschild SMBHs. The
dashed, purple line shows the direct capture curve, which is
identical to the purple curve in Figure 7. We see that for large
rp, curves of constant rp coincide roughly with curves of
constant J2, the reason being that the spin of the SMBH is only
important for highly relativistic encounters. On the other hand,
highly relativistic encounters can be achieved for positive aℓ
when J2< 16, while negative aℓ require J2> 16 to reach the
same rp without being directly captured.

With Equation (A6), the distribution of pericenter distances
satisfies10

d= -( ) ( ( )) ( )f r ℓ J r r ℓ J
f

J
, , , , B1p

2
p p

2 J

2

2

where rp(ℓ, J
2) is the solution to Equation (23). The cumulative

distribution function of rp with observable TDEs is found by
integrating f (ℓ, J2) over the ℓ–J2 space that yields pericenters
less than rp and is outside the direct capture region. From the
right panel of Figure 7 we see that there are two global points in

this space that are independent of rp that have particular
importance, which are the extrema in ℓ along the direct capture
curve; these are ℓdc,min and ℓdc,max, being the minimum
(negative) and maximum possible angular momenta along the
direct capture curve, and are

= - + + = + -( ) ( )
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and J2= ℓ
2 in both cases, which can be derived from

Equation (24) with = ℓ J2 . The radii corresponding to
these values of ℓ and J2 are
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Note that the radius rdc,max is the smallest possible radius able to
be reached by the star without being directly captured, but that
this value of the radius corresponds to the maximum value of
the specific angular momentum on the direct capture curve,
hence the subscript max. In the maximal spin case with a= 1,
we have =r 1dc,max , which coincides with the horizon.
Equations (B2) and (B3) were also obtained by Will (2012).
There are two other points that delineate the region of

observable TDEs that, unlike Equation (B2) that depends only
on the SMBH spin, also depend on rp. If >r rp dc,max, these are
the minimum and maximum values of ℓ with J2= ℓ

2 and a
given rp; these are, from Equation (23) with J2= ℓ

2,

=
-  - +

-


( )
( )ℓ

a r r r a

r

2 2 2

2
. B4rp,

p p
2

p
2

p

On the other hand, if <r rp dc,min, then there will be a minimum
possible ℓ that the star can have without being directly

Figure 7. Left: Direct capture curves for the SMBH spins shown in the legend; for a given a, the region of direct capture is bounded by the relevant (colored) curve
and the black, dashed curve, which gives ℓ = ± |J| and yields the maximum and minimum values that ℓ can have for any J2. When the spin is zero, the curve is a
vertical line at J2 = 16, while prograde (positive-ℓ) orbits can reach smaller J2 without being directly captured when the SMBH is spinning (and retrograde orbits are
captured at even larger values of J2). Right: Curves of constant rp in the ℓ−J2 space, with rp shown in the legend, for an SMBH with a = 0.9. For sufficiently small rp
the contours intersect the direct capture curve.

10 Note that when rp(ℓ, J
2) is independent of ℓ, we can integrate over ℓ, and we

recover the same result that we did in the limit of a Schwarzschild SMBH, i.e.,
we integrate ℓ from - J 2 to + J 2 and recover a uniform distribution in J2.

10

The Astrophysical Journal, 936:70 (11pp), 2022 September 1 Coughlin & Nixon



captured; this minimum ℓ is

=
+ -

-
( )ℓ

a r r

a a r

2
, B5dc,r

2
p
2

p
3 2

p
p

and points with <ℓ ℓdc,rp are captured.
Figure 8 gives two examples to illustrate the regions

bounded by these points in angular momentum space; the left
panel has a = 0.9, and the curve connecting the two blue points
corresponds to a constant pericenter distance rp= 4. With
a = 0.9, r 5.657dc,max (see Equation (B3)), and hence the
curve of constant rp intersects the direct capture curve (shown
by the purple, dashed line); there are thus three points that
bound the region of observable TDEs with rp< 4. The right
panel has a = 0.9, and the curve connecting the red points has
rp= 9, and in this case the curve of constant rp does not
intersect the direct capture curve; hence there are four points
that delineate the region in which observable TDEs occur with
rp< 9. In each of these panels the topmost black point shows

ℓ 2.632dc,max , while the bottommost black point corresponds
to -ℓ 4.757dc,min (and in both cases J2= ℓ

2; see
Equation (B2)). The cumulative distribution function of
observable TDEs for a given rp (i.e., all TDEs with pericenter
distances less than rp but outside the direct capture region) is
the integral of the joint distribution function, given by
Equation (A6), over these regions.
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