
MNRAS 517, L26–L30 (2022) https://doi.org/10.1093/mnrasl/slac106 
Advance Access publication 2022 September 11 

A simple and accurate prescription for the tidal disruption radius of a star 

and the peak accretion rate in tidal disruption events 

Eric R. Coughlin 

1 ‹ and C. J. Nixon 

2 

1 Department of Physics, Syracuse University, Syracuse, NY 13244, USA 

2 School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK 

Accepted 2022 August 30. Received 2022 August 9; in original form 2022 August 9 

A B S T R A C T 

A star destroyed by a supermassive black hole (SMBH) in a tidal disruption event (TDE) enables the study of SMBHs. We 
propose that the distance within which a star is completely destroyed by an SMBH, defined r t,c , is accurately estimated by 

equating the SMBH tidal field (including numerical factors) to the maximum gravitational field in the star. We demonstrate that 
this definition accurately reproduces the critical βc = r t / r t,c , where r t = R � ( M •/ M � ) 1/3 is the standard tidal radius with R � and 

M � the stellar radius and mass, and M • the SMBH mass, for multiple stellar progenitors at various ages, and can be reasonably 

approximated by βc � [ ρc /(4 ρ� )] 1/3 , where ρc ( ρ� ) is the central (average) stellar density. We also calculate the peak fallback 

rate and time at which the fallback rate peaks, finding excellent agreement with hydrodynamical simulations, and also suggest 
that the partial disruption radius – the distance at which any mass is successfully liberated from the star – is βpartial � 4 

−1/3 � 0.6. 
F or giv en stellar and SMBH populations, this model yields, e.g. the fraction of partial TDEs, the peak luminosity distribution of 
TDEs, and the number of directly captured stars. 

Key words: black hole physics – methods: analytical. 
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 I N T RO D U C T I O N  

he tidal disruption of a star by a supermassive black hole (SMBH),
nown as a tidal disruption event (TDE; e.g. Rees 1988 ; Gezari
021 ), fuels a luminous flare in the centre of a galaxy that can offer
nsight into SMBH properties, stars in galactic nuclei, and accretion
hysics (including the launching of relativistic outflows; Giannios &
etzger 2011 ; Bloom et al. 2011 ; Zauderer et al. 2011 ; Cenko et al.

012 ; Brown et al. 2015 ). The detection rate of TDEs is rapidly
rowing (e.g. Holoien et al. 2019 ; Nicholl et al. 2019 ; Wevers et al.
019 ; Hung et al. 2020 ; Hinkle et al. 2021 ; van Velzen et al. 2021 ;
ammerstein et al. 2022 ), and is set to explode in the era of the Rubin
bservatory (Ivezi ́c et al. 2019 ), but the power of a TDE to provide

his insight hinges on our ability to reliably interpret observations
ith theory. 
One prediction of TDE theory is that the star is destroyed by tides

f it comes within a distance r t , the tidal radius, of the SMBH. The
ime-scale for the stellar debris to return to the SMBH – known as
he fallback time – and the resultant accretion luminosity can then
e estimated as (Lacy, Townes & Hollenbach 1982 and Section 2
elow) 

 fb � 

(
r 2 t 

2 R 

)3 / 2 
2 π√ 

GM •
, L fb � 

M � 

T fb 
. (1) 

ere R is the characteristic size of the star at the time it reaches the
idal radius, M • is the SMBH mass, and M � is the mass of the original
tar. T fb represents the fundamental evolutionary time-scale of a TDE,
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nd accurately constraining it therefore amounts to determining the
alues of r t and R . Typically, r t is estimated by equating the tidal
orce of the SMBH to the surface gravity of the star and dropping
umerical factors, which yields 

 t = R � ( M •/M � ) 
1 / 3 , (2) 

nd R = R � , where R � is the stellar radius. Because the tidal force
aries as the inverse cube of the distance to the SMBH, equation ( 2 )
hould be correct to within a factor of the order unity, and numerical
imulations have confirmed that this is indeed the case o v er a wide
ange of stellar type (e.g. Guillochon & Ramirez-Ruiz 2013 ; Gafton
t al. 2015 ; Mainetti et al. 2017 ; Golightly, Nixon & Coughlin 2019 ;
aw-Smith, Guillochon & Ramirez-Ruiz 2019 ; Gafton & Rosswog
019 ; Law-Smith et al. 2020 ; Miles, Coughlin & Nixon 2020 ; Nixon,
oughlin & Miles 2021 ). 
Ho we ver, while the precise distance at which the star is destroyed

y tides must be ∼r t , the dependence of equation ( 1 ) on r 3 t implies
hat small changes in r t from its approximate value can have
arge bearing on the observable properties of TDEs. Indeed, the
eplacement of r t → r p in equation ( 1 ) by, e.g. Evans & Kochanek
 1989 ), Ulmer ( 1999 ), Lodato, King & Pringle ( 2009 ), Strubbe &
uataert ( 2009 ), Lodato & Rossi ( 2011 ), with r p the pericentre
istance of the star (which could be much less than r t ), results in
 gross underestimate of T fb and a corresponding o v erestimate of the
uminosity (Guillochon & Ramirez-Ruiz 2013 ; Stone, Sari & Loeb
013 ; Norman, Nixon & Coughlin 2021 ). On the other hand, for
tars with a large central density (e.g. those that are highly evolved),
he core should be able to better withstand the tidal shear of the
MBH compared to the star on average, resulting in a smaller value
or the tidal radius than equation ( 2 ). Indeed, Norman et al. ( 2021 )
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The tidal disruption radius L27 

Table 1. The predicted β at which the core of the star is destroyed βc , 
the approximate value at which it is destroyed βc,app , and the value of β
at which the star is destroyed as obtained from numerical, hydrodynamical 
simulations, βc,num 

, for the type of star shown in the left column. T peak and 
Ṁ peak give the time to the peak fallback rate and its value, calculated with 
equation ( 11 ), when the star is disrupted by a 10 6 M � SMBH. 

star βc βc,app βc,num 

T peak Ṁ peak 

5/3 polytrope 0.96 1.14 0.92 62 d 1.5 M � yr −1 

4/3 polytrope 1.97 2.38 2 27 3.4 
0.3 M � MAMS 1.34 1.67 1.6 36 0.76 
0.3 M � TAMS 4.7 5.6 > 3 15 1.8 
1 M � ZAMS 1.80 2.13 1.79 24 3.8 
1 M � MAMS 2.7 3.5 3.5 23 4.0 
1 M � TAMS 4.1 5.2 > 3 25 3.8 
3 M � ZAMS 2.26 2.66 < 3 18 15 
3 M � MAMS 4.1 4.6 > 3 27 10 
3 M � TAMS 6 6.8 > 3 21 13 
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Figure 1. The gravitational field within a γ = 4/3 (yellow) and γ = 

5/3 (purple) polytrope normalized by its maximum value. The vertical–
dashed lines give the approximate locations at which the gravitational field is 
maximized. 
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uggested that since equation ( 2 ) can be written as r t � ( M •/ ρ� ) 1/3 

ith ρ� = M � / (4 πR 

3 
� / 3) the average density, the core disruption

adius at which the high-density core (and thus the entire star) is
estroyed should be replaced with r t � ( M •/ ρc ) 1/3 , with ρc the central
tellar density. Law-Smith et al. ( 2019 ), Ryu et al. ( 2020 ) reached
he same conclusion on empirical grounds through comparisons to 
imulations. 

Additionally, the probability of a star being scattered on to an orbit
bout an SMBH with a pericentre distance r p ≡ r t / β has a strong
ependence on β: in the Newtonian approximation, the probability 
istribution function of β satisfies f β = β−2 for stars in the pinhole 
egime of scattering (e.g. Frank & Rees 1976 ; Lightman & Shapiro
977 ), while relati vistic ef fects cause f β to fall of f e ven more steeply
hen the tidal radius is comparable to the direct capture radius of
 GM •/ c 2 for a non-spinning SMBH (which is particularly rele v ant for
 • � 10 7 M �; Coughlin & Nixon 2022 ). If the star is not destroyed

t r t but at r t / βc , then even if βc is only marginally greater than 1 (see
able 1 below), a substantial fraction of TDEs will be partial and leave
 stellar core intact. In these cases, the rate at which stellar debris
rom the TDE is supplied to the SMBH, which should be comparable
o the accretion luminosity, declines as ∝ t −9/4 (Coughlin & Nixon 
019 ; Miles et al. 2020 ; Nixon et al. 2021 ), which is significantly
teeper than the canonical rate of t −5/3 (Phinney 1989 ). 

The precise value of r t can thus have a large impact on the
bservable properties of TDEs. Here, we argue that the distance 
t which the star is completely destroyed by tides can be more
ccurately (than equation 2 ) identified by equating the tidal field 
f the SMBH (including order-unity factors) to the maximum 

elf-gravitational field within the star, which occurs at a distance 
ithin the stellar interior that we denote the core radius R c . This

adius (and the maximum self-gravitational field) can be determined 
umerically and straightforwardly for any star, but, as we show 

elow, is approximately given by R c = R � ( ρc / ρ� ) −1/3 , and results
n a ‘core disruption radius’ that is approximately r t,c � ( M •/ ρc ) 1/3 ,
nd a core disruption β of βc � [ ρc /(4 ρ� )] 1/3 . In Section 2 , we
resent our analysis, our results, and make comparisons to numerical 
imulations, and we summarize and conclude in Section 3 . 
 T H E  C O R E  DISRUPTION  R A D I U S  A N D  PEAK  

A LLB  AC K  PR  OPERTIES  

e define the tidal field as the difference in the gravitational field of
he SMBH across the stellar diameter: 

 t = 

GM •
( r − R � ) 

2 −
GM •

( r + R � ) 
2 � 

4 GM •R � 

r 3 
, (3) 

here M • is the SMBH mass, r is the distance of the centre of mass
f the star to the SMBH, and R � is the stellar radius, and in the last
ine, we assumed r 	 R � . Typically, the tidal field is defined as the
ifference in the gravitational field across the stellar radius, and the
actor of 4 in equation ( 3 ) is usually a factor of 2. We argue that the
actor of 4 treats the star as a material body and accounts for the fact
hat tides induce a velocity divergence across its diameter. As we
lso show below, this definition accurately reproduces the results of 
umerical hydrodynamical simulations. 
The canonical tidal radius equates the tidal field to the stellar

urface gravity and drops numerical factors, yielding equation ( 2 ).
n general, ho we ver, a star’s gravitational field is maximized in its
nterior, not at its surface. This is apparent from the fact that for radii
ithin the star R � 0, the gravitational field is g ( R ) � 4 πG ρc R /3
ith ρc , the central stellar density, while for R � R � , we have g ( R )
 GM � / R 

2 . Equating these two expressions for g ( R ) then yields the
pproximate radius at which the gravitational field is maximized, 
hich we define as the core radius, R c : 

 c � R � 

(
ρc 

ρ� 

)−1 / 3 

. (4) 

ere, ρ� = M � / (4 πR 

3 
� / 3) is the average stellar density, and since

c ≥ ρ� , we have R c ≤ R � . Fig. 1 shows the gravitational field of
= 4/3 and 5/3 polytropes (so the stellar pressure p and density ρ

re related via p ∝ ργ ) normalized by their maximum values. The
ertical–dashed lines show R c as given by equation ( 4 ), and are R c / R � 

 0.26 and R c / R max � 0.55 for the γ = 4/3 and γ = 5/3 polytrope,
espectiv ely, which slightly o v erestimate the true locations R c / R � �
.22 and R c / R � � 0.51. 
We expect the star to be completely destroyed when the tidal field

 v aluated at the core radius equals the self-gravity of the core, which
orresponds to a tidal radius r t,c of 

4 GM •R c 

r 3 t, c 
� 

4 

3 
πGρc R c ⇒ r t, c = r t 

(
ρc 

4 ρ� 

)−1 / 3 

. (5) 
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efining βc = r t / r t,c , we expect the core (and the entire star) to be
estroyed when 

c , app � 

(
ρc 

4 ρ� 

)1 / 3 

. (6) 

aw-Smith et al. ( 2019 ) and Ryu et al. ( 2020 ) empirically found
 similar form for the β at which the star is completely disrupted
y fitting the results of numerical simulations. equation ( 6 ) is
pproximate, as we extrapolated and equated the linear variation
n the gravitational field from R = 0 to the inverse-square behaviour
rom R = R � . More generally, the core radius is where the self-
ravitational field is maximized, and the core/complete disruption
adius is found by equating the tidal and self-gravitational fields at
hat radius: 

4 GM •R c 

r 3 t, c 
= g( R c ) ⇒ r t, c = r t 

(
4 GM � R c 

g ( R c ) R 

3 
� 

)1 / 3 

, (7) 

orresponding to a β of 

c = 

r t 

r t, c 
= 

(
4 GM � R c 

g ( R c ) R 

3 
� 

)−1 / 3 

. (8) 

The left-hand panel of Fig. 2 shows βc (equation 8 , solid curve)
nd βc,app (equation 6 , dashed curve) for a polytrope with polytropic
nde x γ . F or a γ = 5/3 ( γ = 4/3) polytrope, we have βc � 0.96 ( βc �
.97), while the approximate expression yields βc,app � 1.14 ( βc,app �
.38). By comparison, numerical hydrodynamical simulations find
hat the β at which a γ = 5/3 polytrope is completely destroyed
s βc,num 

� 0.92 (Guillochon & Ramirez-Ruiz 2013 ; Mainetti et al.
017 ; Miles et al. 2020 ), while for a γ = 4/3 polytrope βc,num 

�
 (Guillochon & Ramirez-Ruiz 2013 ; Mainetti et al. 2017 ). The
ight-hand panel of Fig. 2 gives the exact and approximate βc for
 0.3 M � (blue), 1 M � (green), and 3 M � (red) star as a function
f the Hydrogen mass fraction in its core X core , where each star was
volved in isolation at solar metallicity with the stellar evolution code
ESA (Paxton et al. 2011 ) (v. r21.12.1). The zero-age main sequence

ZAMS) corresponds to X core � 0.7, while the terminal-age main
equence (TAMS) has X core � 0. Over the lifetime of each star, βc 

ncreases owing to the increasing density of the core, and does so
ramatically near the TAMS. Table 1 gives the exact and approximate
alues of βc for each star at ZAMS and TAMS and also at the ‘middle-
ge main sequence’ (MAMS), defined to be where X core � 0.2 (the
.3 M �, ZAMS star is ef fecti vely a γ = 5/3 polytrope and has the
ame βc , etc. as the top row). The numerically obtained values for
he 1 M � ZAMS, 1 M � MAMS, and 0.3 M � MAMS are taken from
ixon et al. ( 2021 ), while upper limits are from Golightly et al.

 2019 ). 
The fallback time given in equation ( 1 ) is estimated by making the

crude; see Steinberg et al. 2019 ) approximation that upon passing
hrough r t , the entire star mo v es with the centre of mass and is
ndistorted, in which case the energy of each fluid element is ‘frozen-
n’ at the tidal radius and calculable as a function of its position within
he star. Here, ho we ver, when the centre of mass reaches r t,c , we do
ot expect this model to be even approximately correct for the layers
f the star that are outside of the core radius, as these fluid shells
ave already been overcome by the gravitational field of the SMBH.
e can gain some insight into the complexity that this aspect adds to

he problem by assuming that the energy of each fluid shell at radii
 > R c is established at its tidal radius, i.e. that the tidal radius as
 function of spherical R (valid for R > R c ), and the corresponding
NRASL 517, L26–L30 (2022) 
allback time, is (from equations 7 and 1 ) 

 t ( R) = 

(
4 GM •R 

g( R) 

)1 / 3 

, T fb ( R) = 

(
r t ( R) 2 

2 R 

)3 / 2 
2 π√ 

GM •
. (9) 

he left-hand panel of Fig. 3 shows T fb ( R ) for a γ = 4/3 (yellow) and
/3 (purple) polytrope that has R � = R �, M � = M �, and M • = 10 6 M �,
nd the vertical–dashed lines show the location of the core radius.
e see that the fallback time decreases from the surface and reaches

 relative minimum at a location near, but just outside of, the core
adius. Ho we ver, this model for the outer layers cannot possibly be
orrect, because the extremities of the star are closer to the SMBH
t the time of disruption. If the fallback times were distributed as
uggested by the left-hand panel of Fig. 3 , fluid shells at smaller
adii in the interior of the star would cross those at larger radii, which
hysically cannot happen. 
Fig. 3 suggests that gas at radii R � R c must return to the SMBH

n a time-scale that is shorter than the minimum time-scale reached
y T fb ( R ), but that the energy is distributed dynamically and in a way
hat is not captured with this model. The smallest possible value we
ould expect for the return time, T ret , is obtained by letting R = R � 

nd r t ( R ) = r t,c βc in equation ( 9 ), i.e. 

 ret � T fb ( R � ) β
−3 
c . (10) 

ote that this is the same value one would obtain by assuming that
he energy is frozen-in at pericentre. Ho we ver, we are not arguing
hat this expression holds for any value of β; rather, it is the shortest
eturn time we expect for the material provided that the centre of
ass reaches a pericentre distance smaller than r t,c . 
While the gas at R � R c likely evolves in a way that is not able

o be accurately captured with this model (and equation 10 should
e interpreted as a rough lower bound), the core (gas shells at R
 R c ) can still be approximated as moving with the centre of mass

ntil reaching r t,c and should return to the SMBH on a time-scale
f ∼T fb ( R c ). Since the core contains a substantial fraction of the
ass of the star (indeed, assuming a constant density ρc for R ≤ R c 

ives M c � M � ), and hence a substantial fraction will have already
ccreted by that time, we expect T fb ( R c ) to coincide approximately
ith the peak fallback time, or T fb ( R c ) = NT peak , where N ∼ 1

s a constant numerical factor across all stars and determinable
rom hydrodynamical calculations. Remarkably, comparing T fb ( R c )
o T peak from simulations in Guillochon & Ramirez-Ruiz ( 2013 ),
oughlin & Nixon ( 2015 ), Golightly et al. ( 2019 ), and Nixon et al.
 2021 ), we find that N = 2 nearly exactly reproduces the numerically
btained peak fallback times for every star, and thus 

 peak = 

(
r t ( R c ) 2 

2 R c 

)3 / 2 
π√ 

GM •
. (11) 

The right-hand panel of Fig. 3 shows the peak fallback time given
y equation ( 11 ) for a 10 6 M � SMBH and the same stars as in the
ight-hand panel of Fig. 2 as a function of their core Hydrogen
ass fraction; the values at ZAMS, MAMS, and TAMS are given

n Table 1 . The striking feature of these curves is that they display
uch less variation with respect to X core than does βc (see the right-

and panel of Fig. 2 ), and the 1 M � star in particular has an almost
onstant peak fallback time at ∼24 d. This finding is consistent with
ixon et al. ( 2021 ), as the solid-blue and dashed–green curves in the
iddle panel of their Fig. 3 are ef fecti vely identical for all β � 2 (and

qual to ∼25 d; note that the legend for this figure is incorrect – the
ashed–green curve is for the 1 M � MAMS star). equation ( 11 ) can
lso be substantially shorter than the peak fallback time derived from
he frozen-in approximation, e.g. T peak � 24 d for a 1 M � ZAMS star,
hereas employing the frozen-in approximation yields T peak � 1 yr,
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Figure 2. Left: The β at which a polytrope with polytropic index γ is completely destroyed; the solid curv e giv es the exact expression, while the dashed curve 
is the approximate value that uses only the ratio of the central to the average density of the star (equation 6 ). Right: The core disruption β as a function of the 
central Hydrogen mass fraction X core of a 1 M � (green) and 0.3 M � (blue) star evolved through the main sequence with the stellar evolution code MESA ; each 
star begins on the main sequence at X core � 0.7 and ends its main sequence evolution at X core � 0. The solid curves are found by numerically calculating the 
maximum gravitational field within the star, while the dashed curves give the approximate solution obtained by using only the central density of the star. 

Figure 3. Left: The fallback time as a function of initial radius within the star for a γ = 4/3 (yellow) and γ = 5/3 (blue) solar-like polytrope disrupted by a 
10 6 M � SMBH. The vertical–dashed lines give the location of the core. Right: The peak fallback time as a function of the Hydrogen core fraction for the same 
three stars as in the right-hand panel of Fig. 2 . 
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hich is o v er an order of magnitude longer; see Fig. 2 of Golightly
t al. ( 2019 ). 

We can also estimate the magnitude of the peak fallback rate: since
alf of the stellar mass is accreted during a TDE and roughly half of
hat mass will have been accreted by T peak , we expect 

˙
 peak � 

M � 

4 T fb 
. (12) 

he final column in Table 1 gives the peak fallback rate for each star;
omparing to Guillochon & Ramirez-Ruiz ( 2013 ), Golightly et al. 
 2019 ), Nixon et al. ( 2021 ) show that these predictions are in remark-
bly good agreement with the results of numerical simulations. We 
lso note that while the value of βc in Table 1 is somewhat smaller
han βnum 

for the 0.3 M � MAMS and 1.0 M � MAMS stars, the top
anel of Fig. 3 in Nixon et al. ( 2021 ) shows that βc coincides almost
xactly with the β at which the fallback rate reaches its maximum 

alue, which suggests that in these instances, the core is largely 
estroyed and/or reforms at a later time and does not substantially 
ffect the fallback. Law-Smith et al. ( 2019 ) also noted that very
ompact stars did not satisfy βc ∝ ( ρc / ρ� ) 1/3 . 
The expression for βc ( 8 ) is only a function of the properties of
he star. Therefore, r t,c , T peak , and Ṁ peak are valid for any SMBH

ass, and this will only break down once the tidal radius becomes
ither comparable to the size of the star (i.e. the tidal approximation
ecomes invalid) or highly relativistic and the gravitational radius 
ntroduces an additional scale length. These two regimes are ap- 
roached in the small- and large-SMBH-mass limits, respectively. 
Finally, our inferred distance at which the tidal field equals the self-

ravitational field of the star at the stellar surface is a factor of 4 1/3 

arger than the canonical estimate. Ho we ver, gi ven our arguments,
e would expect this distance to be the one at which the star just
egins to lose mass. Therefore, the partial disruption radius , where
e expect any mass to be stripped from the envelope, is 

partial = 4 −1 / 3 � 0 . 6 , (13) 

ndependent of the stellar properties. This agrees with simulations, 
hich find that the β at which any mass-loss occurs is β � 0.55–0.6

e.g. Guillochon & Ramirez-Ruiz 2013 ; Nixon et al. 2021 ). 
MNRASL 517, L26–L30 (2022) 
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 SUMMARY  A N D  C O N C L U S I O N S  

e proposed that the complete tidal disruption radius of a star can be
ccurately constrained by equating the SMBH tidal field (including
 factor of 4 that accounts for the differential stretching across the
tellar diameter) to the maximum self-gravitational field within the
tar, which is generally in the stellar interior. To our knowledge, this
tatement has not been made in the literature. The radius at which
his equality occurs, which we define as the core radius R c , can be
traightforwardly determined numerically for any progenitor and its
alue (and the self-gravitational field at R c ) inserted into equation ( 8 )
o determine βc , where r t / βc – with r t the canonical tidal radius – is the
istance within which the star must come to be completely destroyed.
e performed this e x ercise for a range of stellar progenitors, and we

lso calculated the peak fallback time and the magnitude of the peak
allback from the TDE (see equations 11 and 12 ) and found very
ood agreement with the results of hydrodynamical simulations,
.g. βc � 0.96 ( � 1.97) for a γ = 5/3 (4/3) progenitor, while
imulations yield βc,num 

� 0.92 ( βc,num 

� 2). In general, βc must
e calculated numerically as a function of the progenitor (and only
f the progenitor, i.e. the SMBH mass does not enter, unless the
MBH mass is very small so that the tidal approximation breaks
own, or very large so that relativistic effects become important), but
t is approximately given by βc � [ ρc /(4 ρ� )] 1/3 , where ρc ( ρ� ) is the
entral (average) stellar density. 

F or an y stellar population, a scattering rate of stars into the loss
one of the SMBH, and the probability distribution function of
he pericentre distance of tidally disrupted stars, the number of
ull versus partial disruptions can be determined via equation ( 8 ).
he relativistic distribution of pericentre distances was calculated by
oughlin & Nixon ( 2022 ) in the full loss cone regime and shown to
rop sharply near the direct capture radius of the SMBH, and full
isruptions are replaced by direct captures (i.e. the star is swallowed
hole). Since high- β’s are required to disrupt high-mass ( M � �
 M �) stars and the tidal radius is proportional to the stellar radius,
hich is smaller (and hence more relativistic) for low-mass stars,
ig. 2 suggests that the vast majority of disruptions by high-mass
MBHs will be partial and yield a fallback rate that scales as ∝ t −9/4 .
With equations ( 11 ) and ( 12 ) for the time and magnitude of the

eak fallback rate, one can – for a gi ven observ ational facility and
bserving strategy – estimate the number of observable TDEs for
 given underlying SMBH mass distribution. We can also estimate
he number of TDEs that will undergo a period of substantial super-
ddington accretion, and thus are likely to give rise to relativistic and

etted outflows. Such information is therefore extremely useful for
onstraining the demographics of SMBHs throughout cosmic time
ith high-cadence surv e ys such as the Rubin Observatory. 

C K N OW L E D G E M E N T S  

e thank DJ Pasham for useful comments and the referee for useful
orrespondence. ERC acknowledges support from the National Sci-
nce Foundation through grant no. AST-2006684 and the Oakridge
ssociated Universities through a Ralph E. Powe Junior Faculty
nhancement Award. CJN acknowledges support from the Science
nd Technology Facilities Council (grant no. ST/W000857/1). 
NRASL 517, L26–L30 (2022) 
ATA  AVAI LABI LI TY  

he data underlying this article will be shared on reasonable request.

EFERENCES  

loom J. S. et al., 2011, Sci. , 333, 203 
ro wn G. C., Le v an A. J., Stanway E. R., Tanvir N. R., Cenko S. B., Berger

E., Chornock R., Cucchiaria A., 2015, MNRAS , 452, 4297 
enko S. B. et al., 2012, ApJ , 753, 77 
oughlin E. R., Nixon C., 2015, ApJ , 808, L11 
oughlin E. R., Nixon C. J., 2019, ApJ , 883, L17 
oughlin E. R., Nixon C. J., 2022, ApJ, 936, 11 
vans C. R., Kochanek C. S., 1989, ApJ , 346, L13 
rank J., Rees M. J., 1976, MNRAS , 176, 633 
afton E., Rosswog S., 2019, MNRAS , 487, 4790 
afton E., Tejeda E., Guillochon J., Korobkin O., Rosswog S., 2015, MNRAS ,

449, 771 
ezari S., 2021, ARA&A , 59, 21 
iannios D., Metzger B. D., 2011, MNRAS , 416, 2102 
olightly E. C. A., Nixon C. J., Coughlin E. R., 2019, ApJ , 882, L26 
uillochon J., Ramirez-Ruiz E., 2013, ApJ , 767, 25 
ammerstein E. et al., 2022, preprint ( arXiv:2203.01461 ) 
inkle J. T. et al., 2021, MNRAS , 500, 1673 
oloien T. W. S. et al., 2019, ApJ , 883, 111 
ung T. et al., 2020, ApJ , 903, 31 
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