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Societal Impact Statement

As the growing season changes, the development of climate resilient crop varieties

has emerged as a crucial adaptation in agricultural systems. Breeding new varieties

for a changing climate requires enhanced capacity to predict the complex interactions

between genotype and environment that determine flowering time. Hundreds of

experiments with observations of flowering, the environment and plant genetics

were used to build a model that can predict when a variety of common bean is going

to flower. This model will help breeders to explore the phenological characteristics of

their germplasm, speeding up selection for climate adaptation.

Summary

• There is an urgent need to accelerate crop breeding for adaptation to a changing

climate. As the growing season changes, crop improvement programmes must

ensure that the phenological characteristics of the varieties they develop remain

well suited to their target population of environments.

• Meeting this challenge will require a clear understanding of how existing germ-

plasm behave across Genotype ∗ Environment (G ∗ E) to enhance the efficiency of

selection. Recent work calls for the development of simple models that can accu-

rately simulate genotypic variation in key traits across target population of

environments.

• Accordingly, we develop a simple machine learning framework for modelling time

to flowering across G ∗ E and apply this to common bean in an equatorial target

population of environments. Within this framework, we test three machine learn-

ing models and find that the best performing models display high levels of accu-

racy across G ∗ E.

• We advance understanding of the environmental drivers of flowering time in

equatorial conditions by showing that thermal time and accumulated evaporation

are powerful predictors of flowering time across all three models.
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1 | INTRODUCTION

Plants are particularly vulnerable to abiotic stressors during flowering

(Prasad et al., 2017). As global temperatures continue to increase, so

does the frequency of extreme weather. This makes the prediction of

flowering time crucial for adapting sowing to changing growing sea-

sons. We need to be able to predict and understand the complex

interactions between genotype and environment that determine

flowering time, so that existing phenological variation in germplasm

can be exploited for both farming and breeding. Flowering time is

often a target in breeding programmes because it is strongly associ-

ated with potential yield and helps breeders match thermal duration

with environments.

Temperature and light are the main environmental controls on

time to flowering. These act as distinct, but also often reinforcing

environmental signals as well as modulators of the other flowering

time regulatory pathways (Jung et al., 2017). Both temperature and

photoperiod signals have roles in regulating growth, timing develop-

mental transitions with respect to seasons and responding to extreme

environmental conditions (Reeves & Coupland, 2000). Temperature

effects can be broken down into the effects of extreme temperatures,

ambient temperatures and those of extended durations of cold

weather (Srikanth & Schmid, 2011). The influence of light can be bro-

ken down into two broad categories—photoperiod and quality

(Srikanth & Schmid, 2011).

Environmental signals from temperature and light can reinforce

each other (Song et al., 2013), as is frequently observed in plants

growing in regions with distinct seasons. The sophistication of these

complex interactions between environmental variables allows plants

to alter the timing of flowering when they experience stress. It has

been shown that flowering time is sensitive to extremes in tempera-

ture, water availability and soil nutrients (Cho et al., 2017). Plants

either flower early in response to stress so that seeds are produced or

delay flowering to avoid unfavourable conditions (Cho et al., 2017).

Thus far, research on the pathways through which temperature

regulates flowering time have predominantly focused on vernalisation

(Pose et al., 2013). The mechanisms through which ambient tempera-

ture influences flowering remain less well understood (Melzer, 2017).

Research on the influence of ambient temperature on flowering time

has tended to explore the impact of daily average temperatures. Much

less is known about the impact of sub-daily fluctuations in ambient

temperatures (Song, 2016). Recent work by Parent et al. (2019) shows

that the impact of environmental drivers on phenological develop-

ment varies on a sub-daily timescale in field grown maize (Zea mays),

which aligns with recent findings in field grown Arabidopsis thaliana

showing that the molecular impacts of changes in ambient tempera-

ture are specific to the time of day (McCarthy & Davis, 2018). These

results are supported by work in controlled conditions demonstrating

that a small variation in thermo cycle can cause significant delays in

flowering (Karsai et al., 2008).

To summarise the above, the regulation of flowering time is

complex, and our understanding of the interaction between genetic

and environmental factors remains partial. It is perhaps for this

reason that accurate models predicting flowering time across

Genotype ∗ Environment (G ∗ E) have remained elusive. Cutting edge

approaches include statistical methods incorporating genetic markers

as independent variables (Crossa et al., 2017) and dynamic crop

growth models (CGMs) incorporating genetic information through

empirical representations of quantitative trait loci (QTLs) (Wallach

et al., 2018).

Although both of these approaches are promising, neither are

simple to employ for the purposes of simulating phenology across

G ∗ E in crop improvement programmes. Statistical models built on

high-dimensional marker data quickly encounter the curse of dimen-

sionality, in which the number of predictors exceeds the number of

observations (Crossa et al., 2017). Rapid phenotyping in the field

would be required to truly grow the power of these approaches, and

few crop breeding programmes have the resources to conduct experi-

ments at the required scale.

While less data intensive, approaches built on CGMs require a

team of skilled physiologists and modellers. In a recent paper, Wallach

et al. (2022) argued that expert knowledge must be combined with

sophisticated optimisation routines to calibrate phenological parame-

ters for new genotypes. This process is time consuming and challeng-

ing to automate within the context of a fast paced crop breeding

pipeline.

By contrast, machine learning (ML) approaches may be well suited

to the task of representing complex non-linear relationships between

genotype and environment (van Dijk et al., 2021). Unlike crop models,

they do not need periodic supervision from a team of physiologists to

be re-calibrated and, at least conceptually, are relatively easy to auto-

mate within a crop breeding pipeline. Many breeding programmes

have collected large numbers of field experiments over the years that

may prove sufficient for the development of these models. To date,

there have been very few attempts to employ ML to model flowering

time across G ∗ E. This likely reflects difficulty in publicly accessing a

sufficient volume of data (Yamamoto, 2019).

Because of the difficulty in collecting large volumes of geno-

typic and phenotypic data, exploiting the power of ML to explore

and predict the multidimensionality of G ∗ E interactions in floral

development is in its infancy. Chen et al. (2020) developed a range

of ML models to predict flowering time (heading) in rice using

112 cultivars tested at seven locations across 14 years. They

included temperature data, photoperiod data and genotype marker

data as input features and achieved a flowering time prediction with

a minimum root mean squared error (RMSE) of 4.4 days using an

Extreme Gradient Boosting (XGBoost) algorithm.

Jánosi et al. (2020) further support the argument that ML tech-

niques are well suited to modelling the complex relationship between

genotypes and the environment. These authors employed an orthogo-

nal matching pursuit algorithm to predict the first day of flowering of

298 species of bulbous perennials at a site in Budapest (Hungary) over

a period of 33 years. Despite the much larger genetic differences

between species of bulbous taxa than between contrasting rice geno-

types, the orthogonal matching pursuit algorithm was able to achieve

an R2 of .71 over what is also a sizeable data set.

198 DEVA ET AL.

 25722611, 2024, 1, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1002/ppp3.10427 by T

est, W
iley O

nline L
ibrary on [18/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



One perceived disadvantage of using ML algorithms is that they

are harder to interpret than standard parametric tools. This has often

led to the mistaken impression that all such techniques are ‘black box’
methods. However, tree-based techniques are interpretable and can

contribute to knowledge of processes. Feature importance methods

can rank input features according to their predictive power. Using

these techniques, it is possible to find the most important drivers of

flowering time and to reveal which drivers of flowering time are

required for successful prediction.

These methods can complement detailed experimental

approaches by generating hypotheses from large volumes of field data

and comparing these with findings from chamber and greenhouse

experiments. The non-parametric nature of ML algorithms relaxes dis-

tributional requirements for aggregated data sets. This enables use of

large volumes of field data that were collated without the imposition

of strict aggregate distributional qualities or experimental designs.

In this paper, we develop three ML models that capture the non-

linear relationships between environment and genotype to predict

flowering time in common bean (Phaseolus vulgaris L.). The models are

trained and tested on experiments containing large volumes of G ∗ E

combinations conducted in three environmentally distinct locations in

equatorial Colombia. Common bean is unaffected by photoperiod

in Colombia (where day and night are of approximately equal length).

Furthermore, it does not undergo the process of vernalisation. Wild-

type common bean exhibits an indeterminate growth habit; however,

in many environments, a determinate growth habit has been selected

for, to shorten the growing season and make mechanical harvesting

easier (Repinski et al., 2012).

Our model and data set allows us to directly address the following

research gaps. First, to address the lack of a simple ML framework for

simulating flowering time across G ∗ E in common bean. Second, to

better understand the meteorological drivers of flowering time in field

conditions and third to explore the hypothesis that sub-daily fluctua-

tions in ambient temperature can have a significant impact on flower-

ing time, because little is known about this subject in common bean.

The aims of this paper are therefore as follows: (1) to assess the

potential of ML algorithms to predict anthesis across G ∗ E in common

bean, (2) to identify the drivers of flowering across G ∗ E in

common bean and (3) to test the hypothesis that the influence of

environmental drivers of flowering time is mediated by time of day.

We hypothesise that a simple ML framework can be developed that

will accurately simulate flowering time in common bean, that flower-

ing time in equatorial conditions is primarily driven by temperature in

field conditions and that sub-daily weather information will prove to

be an important driver of flowering time.

2 | MATERIALS AND METHODS

2.1 | Data

Data for planting dates and days to anthesis were merged from the

International Bean Yield and Adaptation Nursery (IBYAN) data set

(International Center for Tropical Agriculture [CIAT], 2016) and more

recent experiments from CIAT's Bean Program database. Details of

how the data set was compiled can be found under the metadata tab

of the repository linked to in the references. The IBYAN data set has

been used to explore genotypic variation in photoperiod response

(White & Laing, 1989) and to explore relationships between seed size

and yield (White & Gonzalez, 1990) in common bean.

In both data sets, anthesis is defined by 50% of plants having

at least one flower open. This data set was then subset to only

include data from the three locations from which weather data were

available—Palmira, Popayan and Quilichao. It was further subset to

include only those experiments without missing dates and with less

than 5% of missing weather data. Experiments with either planting

date, days to flowering or days to maturity missing were also

removed. For the Bean Program data, we did not have detailed

information on treatments with nutritional deficits, so we subset the

data to only include medium fertility treatments. For some experi-

ments, an irrigated and non-irrigated treatment was present. In

these cases, treatments shared a weather time series, so it was not

possible to include both, as this would result in duplicate weather

time series. Where this was the case, we selected only non-irrigated

treatments.

This procedure resulted in a data set of 170 unique G ∗ E combi-

nations. These combinations include 57 unique growing seasons,

spread across 21 years at three sites with varying climatology. Seven

individual genotypes are included in this data set, from seven different

families, three from the Andean and four from the Meso-American

gene pools. This sample includes black, red and navy seeds and pro-

vides variation in seed size, disease resistance and flowering time. It

should be noted that not every genotype is present in all of the exper-

iments. For this reason, the number of unique G ∗ E combinations is

not equal to the number of genotypes multiplied by the number of

unique growing seasons.

Weather data for each growing season were taken from long-

term station records at the three sites in Colombia—Palmira, Popayan

and Quilichao. Figure 1 provides an annual climatology for the

three locations. The progression of daily maximum temperatures

through the year is similar at Palmira and Quilichao, while maxi-

mum temperatures are much cooler at Popayan. A similar trend

emerges from the climatology of minimum temperatures. Although

the peaks and troughs of daily rainfall are at similar times of year

in all three sites, total daily rainfall is higher and more variable at

Popayan and Quilichao than in Palmira. The annual progression of rel-

ative humidity in the afternoon is similar at all three sites; however,

troughs in relative humidity are much lower in Popayan during the

dry months.

At each of these stations, meteorological observations were avail-

able at 07:00, 13:00 and 19:00 h each day. Daily meteorological vari-

ables were also provided. There is no variation in photoperiod across

the three locations, and all three sites are in the same time zone.

The data set includes a wide range of yields, days to flowering

and weather conditions. The data set is characterised by a range of

humidity and rainfall conditions, with average minimum and maximum
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temperatures of 18.3�C and 29.2�C, respectively (Figure S1). The data

set includes a sizeable portion of cold extremes. There is large varia-

tion in days to flowering, between 29 and 57 days, with a mean vege-

tative period of 39 days and many experiments with lengthy

vegetative periods longer than 45 days (Figure S2). There is also large

variation in yield across the data set, ranging between 463 and

4559 kg ha�1. The mean yield recorded was 2065 kg ha�1 with a

standard deviation of 786 kg ha�1 (Figure S3). This represents com-

mon bean yields varying from low to high levels of production.

2.2 | Feature engineering

Feature engineering is ML terminology for describing the process of

finding and developing the variables that will be used to predict flow-

ering time. Following Droutsas et al. (2022), in order to ensure that

the models could provide dynamic predictions, we converted each

day of the growing season to a binary value—0 if the plant was in the

vegetative stage and 1 if the plant was in the reproductive stage. This

binary feature was our target label (the variable we predicted). This

F IGURE 1 Yearly climatology for the study sites at which experiments were conducted. These were calculated from International Center For
Tropical Agriculture (CIAT) weather stations: (a) Tmax, (b) Tmin, (c) total precipitation and (d) relative humidity at 13:00 h.
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enabled us to set up the challenge as a classification problem so that

given a time series matrices of predictor variables the model can out-

put flowered or not flowered for a particular day. The number of days

prior to the first day on which the model outputs ‘flowered’ gives

days to flowering.

In addition to calculating the daily features described above, we

also calculated some variables, which were accumulated over the

course of the vegetative period. These include a thermal time variable,

calculated as the accumulated sum of daily mean temperatures and an

accumulated evaporation variable as the accumulated sum of daily

pan evaporation. Accumulated evaporation integrates energy received

from solar radiation and atmospheric humidity. These calculated

meteorological variables were added to the list of existing meteoro-

logical features.

Finally, we created a genotype feature by translating the names

of the genotypes into dummy variables using pandas ‘get.dummies’
function, resulting in a set of binary variables describing the lines pre-

sent in the data set. These were then included alongside the meteoro-

logical features. We chose genotype as the hierarchical level at which

to include genotypic information as this is the level at which selection

and crosses are made.

2.3 | Description of the models

We selected three supervised ML models with the objective of finding

out if particular model structures displayed advantages in our use case

and to ensure that inference on the importance of different drivers of

flowering time were not the result of underlying mathematical

structures. All of the models chosen are capable of capturing complex

non-linear relationships (Hastie, 2017), which is a requirement of suc-

cessfully modelling G ∗ E interactions.

The first model we selected was a random forest model. A ran-

dom forest is a collection of decision trees, each of which is trained

on bootstrapped samples of a data set in a process often referred

to as bagging. Random forests can maximise the benefits of bagging

by ensuring minimum correlation between trees. This is achieved by

randomly selecting from the set of predictor features in the devel-

opment of each tree. By building each tree from a sub-selection of

features, trees are less likely to be correlated, and it is possible to

grow large numbers of decision trees without overfitting (Kuhn &

Johnson, 2013).

The second model we selected was an XGBoost algorithm. While

also a tree-based model, gradient boosting models take a different

approach to building new trees. Unlike random forests, trees are not

generated randomly, instead the structure of new trees depends on the

errors generated by previous trees. Stagewise parameterisation of trees

are combined with regularisation to slow overfitting (Hastie, 2017).

Chen and Guestrin (2016) developed a scalable version for tree boost-

ing systems, which resulted in massive increases in computational

efficiency, they called this XGBoost. XGBoost algorithms have won

many competitions and are widely considered to be amongst the high-

est performing ML algorithms available (Chen & Guestrin, 2016).

Although they use very different methods for generating trees,

the random forest and XGBoost algorithms are both tree-based algo-

rithms. We selected support vector machines (SVMs) as a third

algorithm, because they use a completely different mathematical

structure for performing classification tasks. SVMs are based around

the concept of setting class boundaries that best separate observa-

tions into categories. This is achieved by defining a support vector

classifier that sits between two sets of observations. The decision

boundary is set based on a cost function that penalises classification

errors. When there are many input features, kernel functions are used

to find the optimal decision boundaries in higher dimensions (Kuhn &

Johnson, 2013). These three modelling structures are sufficiently

complex to handle non-linear relationships, while remaining more

interpretable than higher dimensional methods such as neural net-

works (Delerce et al., 2016), which are less suited to the sample size

of our data set. All three methods allow direct inclusion of categorical

variables, which makes them well suited to our chosen method for

incorporating genotypic information through a set of binary genotype

features. Our approach is simpler than standard methods of including

genotypic information through QTLs or genomic marker data. This

approach results in far fewer predictor variables, which allows us to

feed the ML model a genotypic signal, without requiring comprehen-

sive data and knowledge of the multi-factorial interactions between

genes that influence flowering time.

We include a simple baseline model using the concept of growing

degree days as a baseline to compare against our ML models. This

modelling approach uses the concept of cardinal temperatures in com-

bination with the temperature on a particular day to determine the rate

at which the plant advances towards flowering. We selected

the trapezoid function, taking our cardinal temperatures from Boote

et al. (2018). We used joint numerical optimisation (scipy.optimize.mini-

mize) to select genotype-specific base temperatures and thermal time

requirements. We allowed the base temperature to vary between 5�C

and 8�C, choosing the upper limit based upon Kakon et al. (2018).

Because our sample of genotypes is phonologically diverse, we allowed

thermal time requirements to vary from between 28�C and 38�C.

If the temperature is below a base temperature, no degree days

are accumulated. If the temperature is between the base temperature

and the first optimum temperature (topt1), then the number of degree

days accumulated (between 0 and 1) is determined by a linear equa-

tion between the base temperature and topt1. If the temperature falls

between topt1 and a second optimum temperature (topt2), then a full

growing degree day is accumulated. If the temperature is above topt2

and below Tmax, then the fraction of a degree days accumulated is

determined by the straight line between topt2 and Tmax. Once the

number of growing degree days exceeds a thermal time requirement,

flowering occurs in the model.

2.4 | Meteorological feature selection

Section 2.2 discusses the development of features based on current

understanding of the environmental drivers of flowering time.
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However, many of these meteorological features were correlated;

therefore, feature selection was necessary to ensure that the final

model included the minimum number of features required to predict

flowering time. This was necessary because the inclusion of highly

correlated features results in dilution of the importance assigned to a

particular feature. Large numbers of highly correlated prediction fea-

tures would therefore thwart feature interpretation.

We used hierarchical clustering to group meterological variables

by similarity. In this approach, variables are agglomerated depending

on their distance from each other (Hastie, 2017). In this case, we con-

verted the Spearman correlation matrix to a distance matrix. The

results of this clustering procedure were visualised as a dendogram,

and from the clusters identified, we chose thermal time, accumulated

evaporation, Tmax, Tmin, relative humidity at 07:00, relative humidity at

13:00 and relative humidity at 19:00 to include in the model. Table S1

describes each of these variables in detail.

2.5 | Model evaluation

To predict days to flowering by first predicting whether the plant has

flowered on each day of the growing season, it must be ensured that

data from a single experiment is either assigned to the training data

set or the test data set. If data from a single experiment were in both

training and test sets, then information leakage would have occurred.

As a result, it was necessary to perform the random split of data to

the training and test data set by experiment. Because the perfor-

mance of the model may differ between random splits, we performed

cross-validation by training and testing the model on five different

random splits. The splits were performed by ensuring that for every

fold, 37 unique weather time series were assigned to training data

and 20 unique time series were assigned to the test data. For replica-

tion purposes, the random seeds used to perform these splits were

1, 4, 20, 30 and 42.

We used four metrics to evaluate the models ability to capture

variance and accuracy. The coefficient of determination (R2) metric

was calculated as a test of the model's ability to explain variance in

days to flowering, and we also included Pearson's correlation (r) to aid

comparability with other studies. The RMSE and mean absolute error

(MAE) statistics were calculated to assess the model error.

2.6 | Hyperparameter tuning

A five-fold cross-validation strategy was employed to find the optimal

parameters for each of the three models using a grid search method

on each of the training sets generated from the random seeds. We used

sklearn's GridSearchCV for this procedure. GridSearchCV runs the

model with all the possible combinations of hyperparameters and

chooses the joint set of parameters that minimises the loss function. In

this case, we used accuracy to define the loss function. Full details of

the hyperparameters tuned for each model and the exact form of accu-

racy metric used are provided in Table S2 to ensure reproducibility.

2.7 | Determining feature importance

We employed the permutation method provided by ‘sklearn.inspec-
tion’. The permutation method determines feature importance by ran-

domly shuffling each feature in turn, so that it no longer matches the

corresponding target feature. By assessing the reduction in accuracy

from shuffling each feature independently, the permutation impor-

tance algorithm assesses the relative importance of each predictor

feature (Molnar, 2020). We selected the permutation importance

method because it is a model agnostic method for assessing feature

importance, which makes it suitable for comparing feature importance

across models. Following Molnar (2020), we assessed the permutation

importance on the test set generated from each random seed and

report the results using variation over the five seeds as confidence

intervals.

3 | RESULTS

3.1 | The ML models can predict days to anthesis
accurately across G ∗ E

The first aim was to assess the potential of ML to accurately predict

flowering time across G ∗ E in common bean. Figure 2 explores vari-

ance and bias in the models predictions for the observations in the

test set. The results are presented as box plots to show how

the models performed in five random splits of the data into train and

test sets. Figure 2 shows that the ML models are able to capture a

reasonable share of the variance in days to flowering. All models dis-

played a mean correlation between predictions and observations of .8

or above and a mean coefficient of determination (R2) above .55. The

models also exhibited high accuracy—all models displayed a MAE

lower than 3 days and a mean RMSE of less than 4 days.

The tree-based models outperformed the SVM model across all

four of the evaluation metrics. Given that uncertainty in observations

of days to flowering is approximately 2–3 days, both the XGBoost

and random forest models displayed impressively high accuracy.

These results suggest that tree-based architectures may be the best

ML algorithms for the breeding programme to take forward for pre-

dicting phenology. This recommendation is in line with evidence from

the literature that XGBoost models are often high performing across a

range of classification problems both within, and outside of, the envi-

ronmental domain (Chen & Guestrin, 2016).

R2, MAE and RMSE metrics show that performance varied across

the five random splits; further, there does exist a random split that

reduces model performance significantly for the tree-based algo-

rithms. Variation in performance across splits is not unexpected. In

this study, we have compiled a large volume of data to provide the

ML algorithms with sufficient numbers of experiments from which to

learn the relationships between flowering time and the environment

for a selection of genotypes. However, because these data were not

originally collected to ensure a balanced sample over time (they were

conducted to maximise yield gains through selection), experiments are
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not split equally across locations and genotypes. For this reason, there

will be random splits in which the statistical characteristics of the

training set do not perfectly match those of the test set, and model

performance will be lower in such cases.

All models far outperformed the baseline GDD model. We devel-

oped a GDD model for one of the five cross-validation folds (fold1).

The GDD model achieved a correlation of .65, a coefficient of deter-

mination of .12 and an RMSE of 5.44 days. This compares with corre-

lations of above .75, coefficient of determinations of above .51 and

RMSEs of below 4.1 days for all the ML models. The basic GDD

model achieved a reasonable accuracy and correlation but explained

far less of the variance in the test set than the ML models.

3.2 | Thermal time and accumulated evaporation
are the most important drivers of days to anthesis
across G ∗ E

The second aim was to identify the main drivers of flowering time

across G ∗ E for common bean. Figure 3 presents the prediction

features ranked by permutation importance over the test set. The

error bars represent the variation in permutation importance over

cross-validation folds. All three models find that thermal time and

accumulated evaporation are the most important drivers of whether

the plant has flowered or not. Although there is clear agreement on

this hypothesis across models, there is divergence between the rela-

tive importance across the tree-based models and the SVM. In the

tree-based models, thermal time is a far more important driver of

flowering than accumulated evaporation, whereas in the SVM, they

are of similar importance.

Beyond agreement on these two central drivers, feature impor-

tance differed between models. Relative humidity in the afternoon

and evening was found to be important in the SVM, but not in the

tree-based models. Conversely, the tree-based models made more

use of genotypic information than the SVM. Interestingly, although

the models did not agree on the relative importance of genotypic

information, all three models found the categorical representation of

genotype A21 to be of greater importance than the other genotypes.

This suggests that A21 may exhibit variation across G ∗ E that is

worth exploring further. The extent to which feature importance

F IGURE 2 Statistics for observed versus predicted days to anthesis for the three machine learning models. (a) Pearson's correlation,
(b) coefficient of determination, (c) mean absolute error (days) and (d) root mean squared error (days). RF stands for random forest, XGB stands
for Extreme Gradient Boosting and SVM stands for support vector machine.
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varies between models highlights the importance of using multiple ML

techniques for physiological hypothesis generation.

The third aim was to test the hypothesis that the influence of

environmental drivers on flowering time is mediated by time of day. If

this were the case, then we would expect the time series of tempera-

tures at particular times of the day to be more powerful predictors

than summary measures like the maximum or minimum temperature.

We perform a test of this hypothesis by replacing maximum and

minimum temperatures with the 07:00, 13:00 and 19:00 temperature

time series. Table 1 compares the performance of these models and

shows that the inclusion of time of day information does not improve

the models, if anything the performance of the models is slightly

reduced. On the basis of these results, we cannot reject the null

hypothesis that the daily maximum and minimum temperatures ade-

quately provide the information required for phenological develop-

ment towards flowering.

F IGURE 3 The permutation feature importance describes the importance of each feature in the model to the prediction of flowering time.
Here, it is presented for all three machine learning models, where (a) refers to the random forest model, (b) refers to the XGBoost model and
(c) refers to the support vector machine model. ‘tt’ is the time series of thermal time as defined in our modelling and ‘cum evap’ is the time series

of accumulated evaporation. The x-axis labels in capitals are the names of the genotypes included in the model as categorical features. The error
bars represent the 95% confidence intervals.
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4 | DISCUSSION

4.1 | Modelling flowering time

We have presented an ML-based approach to modelling flowering

time in common bean across G ∗ E for a Colombian target population

of environments. We have demonstrated that within our ML frame-

work, the simple approach of incorporating genotypes as categorical

variables results in an accurate model of days to flowering. The

models presented in this paper are easy to build upon. To add data for

new genotypes, all that is required is days to flowering and maturity,

the name of the genotype and a weather time series for the duration

of the experiment. These variables will be collected as a matter of

course in breeding programmes, so no additional data collection

efforts linked to phenotyping or genotyping are required. Because

hyperparameter tuning occurs simultaneously for all genotypes,

updating the model can be automated so long as an excel spreadsheet

containing the simple phenological and weather information described

above is maintained and added to (see exact list of variables in the

Supporting Information).

This approach offers a number of advantages versus state of the

art statistical models which incorporate genetic information through

genomic markers. The use of high dimensionality marker data encoun-

ters the ‘curse of dimensionality’, in which the number of markers

exceeds the number of observations (Crossa et al., 2017). In addition,

many of these predictor variables are highly correlated, and so such

models must carefully guard against overfitting (Crossa et al., 2017).

This kind of statistical modelling requires careful data collection strat-

egies to ensure input data meets distributional assumptions and needs

intensive phenotyping and genotyping. While highly useful and a

proven source of genetic gain in breeding programmes (Crossa et al.,

2017), these models are less suited to real-time simulation of phenol-

ogy across target population of environments.

Our approach also offers advantages versus dynamic CGMs,

which are increasingly being used for characterising genotypic

responses across target populations of environments (Heinemann

et al., 2015). CGMs employ process-based equations to simulate the

impact of the environment on crop growth and development.

Genotypic information is incorporated through empirical coefficients

that mediate the relationship between the environment and the plant.

These genetic coefficients must be parameterised, and doing so is a

time consuming and skill intensive process (Wallach et al., 2022).

Indeed, the latest thinking on the calibration of phenology modules in

CGMs develops a detailed protocol that combines sophisticated calibra-

tion algorithms with expert knowledge (Wallach et al., 2022). Because

(in most current approaches) genotypes must be calibrated one by one,

the calibration of multiple genotypes in CGMs is by nature much more

involved than using the methods presented in this paper.

It is very difficult to compare the performance of new models

with those in the published literature. This is because existing studies

tend to use data sets of different sizes—both in terms of the number

of experiments they model and the genetic diversity within those

experiments. What is possible is to assess whether studies that com-

pare the performance of both ML approaches and traditional crop

modelling approaches find one to be better than the other. In this

study, we showed that ML-based approaches clearly outperform sim-

ple GDD approaches in a tropical bean growing target population of

environments. Our results support Chen et al. (2020), who found that

ML techniques outperformed traditional methods of simulating flow-

ering time in rice and McCormick et al. (2021), who found the same

for soybean.

We hypothesise that ML models are more accurate because

their more flexible structure allows them to more easily capture

non-linear interactions between genotype and environment. Tree-

based ML models such as random forests and XGBoost algorithms

are also flexible in the structure of these interactions across differ-

ent sub-samples of the data. This allows for changes in the structure

of non-linear interactions between input features in varying environ-

mental conditions and may explain why they outperformed both

SVMs and traditional crop models.

The inherent flexibility of ML architectures contrasts with the

structure of phenology algorithms in most process-based crop models.

These models assume a fixed structure of thermal time accumulation,

in which the rate of phenological development progresses above a

base temperature, is maximised at an optimal temperature and slows

as temperatures become sub-optimally warm (Wallach et al., 2019).

TABLE 1 Mean statistics across folds for the random forest (RF), XGBoost (XGB) and support vector machine (SVM) models of flowering
time.

ML type Input features R2 RMSE MAE

RF Original model .59 3.87 2.80

RF Sub-daily model .56 3.97 2.84

XGB Original model .59 3.89 2.82

XGB Sub-daily model .57 3.92 2.90

SVM Original model .53 3.89 3.18

SVM Sub-daily model .54 3.92 3.22

Note: For each of the three models, original and sub-daily versions of the model are presented. The sub-daily model differs from the original model by

replacing the daily time series of Tmin and Tmax, with the 07:00, 13:00 and 19:00 daily temperature time series. The root mean squared error (RMSE) and

the mean absolute error (MAE) are provided in days.
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Although temperature response functions can vary between

process-based crop models (Wang et al., 2017), the assumption that

there is a stable shape to this function across multidimensional envi-

ronmental space remains implicit in these models. For example, in

process-based crop models, the phenological response to temperature

does not change with realtive humidity—even though this would

clearly change the tissue temperature the plant experiences (Parent

et al., 2019), as has been shown for common bean (Deva et al., 2020;

Suárez et al., 2021). Tree-based ML algorithms do not make these

assumptions and instead learn how thresholds change in different

growing conditions. We hypothesise that this facilitates emergent

phenological responses across G ∗ E, leading to higher accuracy.

While the models presented here are easy to update, re-calibrate

and perform large volumes of simulations with, it is important to note

that they cannot estimate the phenological behaviour of new geno-

types for which no experimental information is yet available. This

challenge will need to be answered by different kinds of models that

directly incorporate the genetic drivers of flowering. The more com-

plex statistical models above or perhaps new methods building on the

pioneering work of Wallach et al. (2018) will be needed.

4.2 | The determinants of flowering time in
common bean

Our findings support the consensus in the literature that temperature

is the main determinant of flowering in the absence of variation in

photoperiod or vernalisation (Craufurd & Wheeler, 2009; Pose et al.,

2013). Figure 3 shows that all three of the models agree with the

notion that thermal time is the most important determinant of flower-

ing time in equatorial conditions. We employed a very simple defini-

tion of thermal time in our ML models (simply accumulating

temperature day by day), compared with the more complex definition

we used in our GDD model. Because common bean is not a vernalis-

ing plant, the importance of thermal time in the ML models highlights

the role of ambient temperature as an important development signal.

All three of the models also agree that accumulated evaporation

is the second most important determinant of whether the plant has

flowered or not on a given day. These results are in agreement with

Parent et al. (2019) who hypothesise that it is the combination of tem-

perature and VPD that drive phenological progression in maize plants.

Whether this is because of the direct effects of changes in water sta-

tus on the growth of leaves (Lacube et al., 2017) or because increased

evaporative demand impacts the temperature response curve by cool-

ing the plant, remains unclear. Our findings are consistent with both

hypotheses.

In addition to generating hypothesis on the determinants of flow-

ering time, our results also have implications for the timescales at

which common bean responds to temperature signals. Interpretation

of feature importance shows that it is the variables that accumulate

over time that are the most powerful determinants of whether the

plant has flowered or not. This supports the prevailing view that

plants integrate information from environmental signals over long

time periods to ensure that phenological changes are responding to

seasonal progression (Hepworth et al., 2018). Experiments in

A. thaliana and Arabidopsis halleri suggest a memory for temperature

signals of between 4 and 6 weeks (Kudoh, 2016), and our results are

consistent with the magnitude of these estimates.

Our finding that the two time integrated features are the most

important drivers of flowering differs from those of Jánosi

et al. (2020), who found that the most powerful predictors in their

model of flowering time in bulbous taxa were daily snow depth anom-

alies on 1–3 days of the growing season. It is possible however as

Wesselingh (2020) suggest that these few days acted as a proxy for a

winter signal, which would reconcile their findings with the prevailing

view that phenological development is driven by the integration of

information over longer periods of time.

The hypotheses above should be viewed in the context of an

equatorial target population of environments. While the data set

contains a large number of treatment ∗ genotype combinations and

includes experiments in cold, hot, dry and wet conditions, the

majority of experiments were conducted at sites that are well

adapted to breeding beans. To date, a comparably sized number of

experiments have not been conducted in more extreme conditions.

Future work could repeat this process once a suitably large tranche

of field experiments from more extreme environments becomes

available.

4.3 | Societal impact

There is an urgent need to accelerate crop breeding for adaptation to

a changing climate (Ramirez-Villegas et al., 2020). To do so, we must

be able to conduct accession selection experiments with a clear

understanding of how available germplasm behave across environ-

ments. In recent years, breeding programmes have begun incorporat-

ing dynamic CGMs to their teams, as it is much faster and cheaper to

simulate the behaviour of germplasm across environments than it is

to perform the hundreds of experiments that would be required to

truly sample climate variability.

In addition, the careful calibration and precise evaluation required

to ensure that CGMs accurately capture a genotypes behaviour across

environments is skill intensive and time consuming (McCormick et al.,

2021). These labour-intensive steps preclude rapid and real-time input

to the selection process. For this reason, Ramirez-Villegas et al. (2020)

recommended that CGIAR breeding institutes also consider the devel-

opment of simpler models that can simulate key traits across G ∗ E

with high levels of accuracy. The modelling approach for flowering

time in this paper meets that recommendation directly.

We have created a tool that allows CIAT common bean breeders

to simulate flowering time across G ∗ E in their Colombian bean grow-

ing TPE more accurately and easily than was previously possible. The

ML pipeline only requires the user to be able to run scripts in Python,

and re-calibration of the model as more experiments become available

is an automated objective procedure that does not require more pro-

gramming or a detailed understanding of the underlying algorithms.
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Computing requirements are minimal, and the simulation of hundreds

of experiments takes minutes rather than days.

In addition to being an important trait in itself, days to anthesis is

also an essential component of the length of the growing season. The

enhanced capacity to conduct accurate simulations of flowering time

across G ∗ E in real time can help to deepen the information available

to breeders about the phenological characteristics of their germplasm

and can aid the design of experiments to ensure targeted inclusion of

early and late flowering genotypes.

This can be useful both to increase the efficiency of the selection

process and to ensure that the design of heat and drought stress

experiments take account of the probability of escape through pheno-

logical variation. For example, an a priori classification of genotypes

into those likely to flower early under heat can help breeders to

understand the contribution of avoidance vs. true tolerance in their

germplasm. Further, combining the ability to predict flowering time

with an understanding of pest dynamics can help breeders to ensure

that experiments are sown to avoid flowering coinciding with severe

attacks of insect or fungi.

The methodology demonstrated in this paper is modular and

could be imported into existing crop models to improve their ability to

simulate G ∗ E. The inclusion of modular ML classification modules

into existing crop models has been successfully demonstrated by

Droutsas et al. (2022), and a similar approach could be taken for the

genotype-specific classification algorithm presented in this paper. As

part of rapid modernisation of breeding programmes targeted at

increasing genetic gain, software is being built to simulate the breed-

ing pipelines themselves, and a modular phenological model such as

this one could also feed into these optimisation procedures.

4.4 | Conclusion

We have shown that using ML, it is possible to build an accurate

model of days to anthesis across G ∗ E for common bean with only a

simple representation of genetic information as categories. The model

we have developed can be used by breeders at CIAT to explore the

phenological variation of existing germplasm in their Colombian target

population of environments. It is easy to update the underlying data

set on which the model is built to include more genotypes. Having

demonstrated proof of concept, it would be useful to begin incorpo-

rating heat tolerant germplasm of interest. In particular, experiments

with inter-specific crosses including Phaseolus acutifolius (tepary) and

Andean genotypes exhibiting drought tolerance could be introduced

to the training data set and the extent to which they utilise phenologi-

cal heat avoidance strategies compared.

Our equatorial common bean data set has provided a useful set

of environments in which to test this approach; however, it did not

include changes in photoperiod which is a feature of bean growing

environments from the outer edge of the subtropics to the poles. It

would be interesting to see if this modelling framework can be

extended to simulate G ∗ E in common bean grown under conditions

of changing photoperiod or to simulate different crop species for

which larger volumes of data are available. All that would be required

is the addition of day length as a prediction feature.

In addition to their utility in prediction, ML techniques can be

useful in the plant sciences to help ask interesting questions of large

collections of unstructured field experiments. By identifying patterns

across G ∗ E, these techniques provide a new source of hypothesis

generation about environmentally driven plant processes. For the

equatorial population of environments studied in this paper, we found

that thermal time and accumulated evapotranspiration were powerful

drivers of flowering in all three ML models.

While hypotheses generated by ML models offers an exciting

new path for modellers to contribute towards understanding, our

work also suggests a note of caution. Different families of ML models

used information in different ways, resulting in some variation in the

environmental variables they determined to be important. It is there-

fore essential to use multiple ML models with assorted mathematical

structures to generate physiological or genetic hypotheses. More

work is needed to explore how the mathematical underpinnings of dif-

ferent models impacts feature importance in this context.

It is only through the experimental work of physiologists, biolo-

gists and geneticists that ML-generated hypotheses can be defini-

tively tested and a deeper understanding of the causal mechanisms

driving these empirical signals revealed. For example, this ML frame-

work could identify the categorical variable associated with a particu-

lar genotype as being an important determinant of flowering. This

information could provide a starting point for allocating some

resources towards increased phenotyping and genotyping of a partic-

ular genotype. In this context, ML-based models can utilise existing

experimental data to help breeding programmes to coordinate pheno-

typing and genotyping with information from experimental work that

has already been conducted.
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