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Towards Robust and Efficient Musculoskeletal

Modelling Using Distributed Physics-informed

Deep Learning
Jie Zhang, Member, IEEE, Ziling Ruan, Qing Li, Zhi-Qiang Zhang, Member, IEEE

Abstract—This paper develops a novel distributed framework
based on physics-informed deep learning for robust and efficient
musculoskeletal modelling in nonstationary scenarios, which
could simultaneously strengthen the robustness and general-
ization, and reduce the time cost of model training. Without
loss of generality, we utilize surface electromyogram (sEMG)-
based muscle forces and joint angle prediction as an example
to demonstrate the proposed distributed framework. Specifically,
the whole collected sEMG data are first divided into several sub-
domains, and then corresponding number of physics-informed
deep learning-based local models is built using these grouped
data. Finally, all the local models are integrated into a global
model to obtain the final predictions. Moreover, weights inversely
proportional to the training errors of local models are added to
the corresponding local models to reduce and control negative
effects of unknown factors. Different from existing distributed
modelling methods, the proposed distributed framework embeds
the prior physics knowledge, i.e., the equation of motion, into
local models to regularise loss functions of deep neural networks,
it thus could overcome limitations of the conventional data-driven
and physics-based musculoskeletal models while preserving their
advantages. The local-global distributed modelling mechanism
could locally achieve better representation for sub-domains while
preserving global performance, and reduce the computational
cost and memory requirements. Additionally, the embedded prior
physics knowledge enables local models to reflect physical or
physiological mechanisms during the training process, which
could alleviate overfitting problem and reduce the need of the
number of training data, and thus the global model is more
robust and better generalizes to the unseen data. Comprehensive
experiments on six healthy subjects demonstrate the feasibility
and effectiveness of the proposed distributed framework.

Index Terms—Musculoskeletal modelling, muscle forces and
joint angle prediction, physics-informed deep learning, local-
global distributed modelling.
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I. INTRODUCTION

HUMAN movement is actually a complex interaction of

neuromusculoskeletal system, but the dynamical proper-

ties of biological components, including muscle and tendon,

could be altered by aging, injury or disease, which may

change how neural commands are converted to muscle forces

and joint torques [1]–[5]. Therefore, understanding how the

neuromusculoskeletal system learns and adapts to the phys-

iological modification is crucial for describing the dynamics

of human movements [6], [7]. Musculoskeletal modelling has

been commonly utilized to quantify the neuromuscular activ-

ity, and could provide important insights into the mechanics

and control of human movements, which has great benefits

of patients with motor dysfunction to recover control ability

of the motor cortex and strengthen the athletic ability of

athletes [8]–[10]. However, most of existing physics-based

musculoskeletal modelling approaches are time-consuming,

limiting the large-scale implementation in various clinical

applications [11]–[14].

In the past years, data-driven musculoskeletal models have

been widely developed based on machine/deep learning tech-

niques [15], [16]. Specifically, Hajian et al. [17] implemented a

two streams of convolutional neural network (CNN) to extract

discriminative features from the raw electromyogram (EMG)

signals using different scales, and predicted the generated

motions during elbow flexion and extension. Dao et al. [18]

first designed a recurrent deep neural network for skeletal

muscle force prediction, and then developed a modified trans-

fer learning strategy to enhance the performance. Yang et

al. [19] proposed a modified CNN to decode wrist movements

of multiple degrees of freedom (DoF) from the raw EMG

singals. Kim et al. [20] designed a modified deep transfer

learning approach for the hand movement estimation, in which

CNNs were first pre-trained utilizing several subjects’ EMG

data, and then fine-tuned for the targeted subject through the

signal-trial analysis. Compared with physics-based modelling

methods, the inference of machine/deep learning-based data-

driven musculoskeletal modelling approaches are much faster

once the neural networks are well-trained [21], [22].

Although data-driven musculoskeletal modelling methods

have made promising achievements, there are still some

challenging issues should be addressed when we want to

implement such data-driven musculoskeletal models in real-

world application scenarios. Firstly, machine/deep learning

are the “black-box” tools to build the nonlinear mapping
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relationship between the input and output, and the training

usually does not associate with the mechanisms underlying the

observed variables [23], [24]. It means that existing data-driven

musculoskeletal models are without interpretable neurome-

chanical processes [25], [26]. Secondly, most of existing data-

driven musculoskeletal modelling methods mainly focus on

prediction accuracy improvement, but ignore the robustness.

When a high-accuracy data-driven musculoskeletal model is

implemented in real-world application scenarios, unexpected

results may still be obtained due to various unknown factors,

such as shift of the electrode and muscle fatigue [27], leading

to the created model unstable in robustness [28], [29]. Finally,

the training of deep neural networks with complicated archi-

tectures is very time-consuming especially when the amount

of the available training data is large or the dimension of

the training data is high, the large training cost associated

with deep neural networks thus cannot be ignored in practical

scenarios [30]–[32].

To tackle the above challenges of existing musculoskeletal

modelling methods, a novel distributed framework based on

physics-informed deep learning is proposed for musculoskele-

tal modelling in non-stationary scenarios by simultaneously

strengthening the robustness and generalization, and reducing

the time cost in model training. Without loss of generality, we

utilize surface EMG (sEMG)-based muscle forces and joint

angle prediction as an example to demonstrate the proposed

distributed framework. Specifically, the whole sEMG data are

first divided into several sub-domains, and then corresponding

number of local models is built using these grouped data

with physics-informed deep learning. Different from exist-

ing deep learning-based musculoskeletal modelling methods,

the equation of motion is considered as the prior physics

knowledge and embedded into local models to regularise

the loss functions of deep neural networks, it thus could

overcome limitations of existing data-driven and physics-

based musculoskeletal modelling methods while preserving

their advantages. Finally, all the local models are integrated

into a global model to obtain the final predictions, such

distributed modelling mechanism could accelerate the training

of the deep learning-based model. Moreover, weights inversely

proportional to the training errors of local models are added to

the corresponding local models to reduce and control negative

effects of unknown factors. In summary, the main advantages

of the proposed distributed framework are multi-fold:

• Representation capability. The proposed distributed

framework develops a set of individual local models with

different characteristics complied to the prior physics

knowledge to represent the grouped sEMG data sepa-

rately, such physics-informed deep learning-based models

enable intermediate functional relationships to reflect the

mechanisms underlying the observed variables. Addition-

ally, local models could flexibly select appropriate archi-

tectures and hyperparameters (such as depth and width

of networks, and activation function types, etc.), and

even implement different types of networks depending on

the statistical characteristics of sub-domains. Therefore,

it makes the conventional “black-box” modelling pro-

Fig. 1. Electrodes and markers placement in the data collection process.

cess more interpretable, and could locally achieve better

representation for sub-domains while preserve global

performance.

• Efficient training. The partial independence of local

models in the divided sub-domains enables a set of paral-

lel computations, thereby reducing the computational cost

and memory requirements. Additionally, smaller number

of training data in each sub-domain usually requires

simpler network architectures and less hyperparameters

to be adjusted, which can avoid the overfitting problem,

and thus its training process is more efficient.

• Robustness and generalization. Weighting strategy en-

ables local models with smaller training errors to domi-

nate the global performance, even some grouped data are

seriously contaminated by unknown factors, the created

global model still could achieve satisfactory performance.

Furthermore, the embedded prior physics knowledge

makes local models reflect physical or physiological

mechanisms during the training process, which also could

alleviate the overfitting problem and reduce the need of

the number of training data, making the global model be

with better robustness and generalization.

The remaining of the paper is organised as follows: Details

of the data collection and processing, data partition, dataset

construction, the proposed distributed framework and error

analysis are given in Section II. Experimental results and

corresponding analysis are shown in Section III. Advantages

and limitations of the proposed distributed framework, and

future works are discussed in Section IV. Finally, conclusions

are summarized in Section V.

II. METHODOLOGY

In this section, the data collection and processing, data

partition and dataset construction for domain decomposition

are first shown, the proposed distributed framework is then

detailed, including the main framework, architecture, training

and loss function of local models, aggregation of local models

for global modelling, and error analysis.

A. Data Collection and Processing

The experimental data were collected from six able-bodied

volunteers, approved by the MaPS and Engineering Joint
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Faculty Research Ethics Committee of University of Leeds

(MEEC 18-002). During the data collection, all the volunteers

were asked to keep a fully straight torso with the 90◦ abducted

shoulder and 90◦ flexed elbow joint supporting by the vertical

bar (see Fig. 1), and continuous wrist flexion and extension

motions were captured by the VICON system. Additionally,

joint motions could be computed by the upper limb model with

reflective markers (the sampling rate is 250 Hz), and sEMG

signals were measured using Avanti sensors (the sampling rate

is 2000 Hz) from five wrist muscles, including the extensor

carpi radialis longus (ECRL), flexor carpi radialis (FCR),

extensor carpi radialis brevis (ECRB), flexor carpi ulnaris

(FCU), and extensor carpi ulnaris (ECU). Each volunteer was

asked to perform five repetitive trials, and a short break was

done between trials to avoid negative effects of the muscle

fatigue on the data quality. Both the motion data and EMG

measurements were synchronised and resampled at 1000 Hz.

After that, EMG measurements were processed with band-

pass filtered, fully rectified, and low-pass filtered, and then

they were normalized concerning the maximum voluntary

contraction (MVC) recorded before experiments, resulting in

the enveloped EMG data. MVC represents the peak EMG

activity observed during a task and provides an estimation of

the theoretical maximum amplitude of the muscle activation

during a contraction. The normalized EMG signal is presented

as a percentage of the maximum activation level [33]. The

marker’s data were utilized to compute the wrist kinematics

through the inverse kinematic (IK) tool based on the upper

limb extremity model [34]. The joint torque and wrist muscle

forces were obtained from the inverse dynamic (ID) and com-

puted muscle control (CMC) tools. Specifically, we utilized

the ID tool to calculate the joint torques based on the input

joint angles, and the CMC tool to generate a set of muscle

excitation levels to control muscle forces, enabling them to

drive the desired kinematic trajectory [35], [36].

B. Data Partition and Dataset Construction

The data collected from six volunteers were partitioned into

several sub-domains for the distributed modelling purpose.

Specifically, among the collected data, for every ten samples,

we selected the first seven samples as one training candidate

group to construct the training dataset, and the remaining three

samples as one testing candidate group to construct the testing

dataset. After that, training dataset was constructed by training

candidate groups, while the testing dataset consisted of testing

candidate groups. The constructed training dataset was then

divided into several sub-domains, the number of sub-domains

is equal to the number of local models, and the number of

data in each of sub-domains should be the same or at least not

significantly different. It should be noted that the data from

each muscle were included in each sub-domain, and the range

of sub-domains is between 3 and 5 in this study.

C. Main Framework of Distributed Physics-informed Deep

Learning for Musculoskeletal Modelling

As shown in Fig. 2, we utilize CNN as the baseline network

in local models to demonstrate the proposed distributed frame-

work. Specifically, all the collected sEMG data are first divided

Local Model CNN-1

Local Model CNN-2

Local Model CNN-(Q-1)

Local Model CNN-Q
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lo
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el

…

Sub-domain 1

Sub-domain 2

Sub-domain (Q-1)

Sub-domain Q

…

Fig. 2. CNN is used as the baseline network of local models to demonstrate
the proposed distributed framework, and Q (q=1,2,...,Q) denotes the number
of local models. Weighting strategy is implemented to reduce and control the
negative effects of unknown factors imposed on local models.

Data-driven Modelling

Minimize data prediction error

Minimize governing equation

Knowledge-driven 

penalization/regularization

MSE Loss

Total 

LossKnowledge-

based Loss

…

…

Fig. 3. Illustration of the physics-informed deep learning-based local model.
Inputs are sEMG measurements and the corresponding time steps, while out-
puts are muscle forces Fn

t
and joint angles θt (n = 1, . . . , N, t = 1, . . . , T ).

into Q sub-domains, and then Q local models are created using

these grouped data in a parallel manner. Finally, all the local

models are integrated into the global model to obtain the final

predictions. During the aggregation of local models, weighting

strategy is considered to reduce and control negative effects of

unknown factors imposed on local models. In this way, local

models with smaller training errors could dominate the global

performance, making the created global model more robust.

D. Training of Local Models

As demonstrated in Fig. 3, training local models involves

two phases, including the data-driven modelling phase and

knowledge-driven regularization phase. Specifically, the col-

lected sEMG data and corresponding time steps are used as

the inputs of local models, and the predictions of muscle forces

and joint angle are then obtained with the extracted high-level

features. Different from existing methods, the predicted out-

puts of CNNs are also guided by the prior physics knowledge

in the loss function. Therefore, the modified loss function is

to simultaneously minimize both the data prediction loss and

knowledge-based loss. For the training of local models, the

initial learning rate is 0.001, the maximum iteration number

is 2000, the batch size is 1, and the dropout rate is 0.3.

E. Architecture of Local Models

To simplify the training of the proposed distributed frame-

work, all the local models are with the same architecture in this
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study. To be specific, each local model has two convolutional

blocks (activation function is ReLU, batch normalization and

dropout are employed in each convolutional block), two fully

connected blocks (ReLU is selected as the activation function,

batch normalization and dropout are also considered in each

fully connected block), and one regression block. The final

predictions of each local model could be obtained in the

regression block.

F. Loss Function of Local Models

As shown in the right part of Fig. 3, the loss function of the

local model has two components, i.e., the data prediction loss

and knowledge-based loss. Different from the conventional

data prediction loss, the novel loss function is to simul-

taneously minimize the mean square error (MSE) between

the ground truths and predicted values, and the embedded

prior physics knowledge, i.e., the equation of motion. In

this manner, the novel loss function of the local model not

only considers to minimize the data prediction error, but also

brings the prior physics knowledge to make the created feature

mapping satisfy the physical constraints of human movements.

The knowledge-based loss component plays a regularization

role, which could help strengthen the robustness of the created

model due to the constraint of the prior physics knowledge.

Moreover, the generalization of the local model also could be

enhanced through encoding such physical information into the

local model. The total loss function of the qth local model is

Ltotal = Ldata + Lknow

= MSE(F, θ) + Γ(F, θ)
(1)

where Ldata is the MSE loss component, and Lknow denotes

the knowledge-based loss component, respectively.

Specifically, the MSE loss component is

MSE(F ) =
1

T

T
∑

t=1

N
∑

n=1

(Fn
t − F̂n

t )
2 (2)

MSE(θ) =
1

T

T
∑

t=1

(θt − θ̂t)
2 (3)

where Fn
t denotes the force of muscle n at time step t, θt

represents the joint angle at time step t, while F̂n
t and θ̂t

are the corresponding predicted values. In addition, T denotes

the number of samples, and N is the total muscle number,

respectively.

Considering the equation of motion enables to reflect under-

lying relationships among the muscle forces and joint angle,

we embed it into the knowledge-based loss component to

strengthen the local model training:

Γ(F, θ) =
1

T

T
∑

t=1

(M(θt)θ̈t + C(θt, θ̇t) +G(θt)− τt)
2 (4)

where M(θt) denotes the mass of the hand, which could be

estimated based on the subject’s body mass and height [8],

C(θt, θ̇t) is the Centrifugal and Coriolis force, G(θt) is

the gravity, θ̇t and θ̈t are the angular velocity and angular

acceleration, and τt is the joint torque.

τt could be calculated by

τt =

N
∑

n=1

rnF
n
t (5)

where rn denotes the moment arm of muscle n.

G. Aggregation of Local Models for Global Modelling

The proposed distributed framework establishes a number of

local models, in which different types of neural networks could

be freely selected for each of sub-domains. Such distributed

structure enables easier parallelization of neural networks,

which is quite essential in terms of achieving computational

efficiency for the time-consuming deep learning training. After

the local modelling for the separate representation of all the

sub-domains, these local models should be integrated into a

global model to obtain the final predictions.

Let x, N q(x) and Ωq denote the input vector, output vector

and parameter set of the qth local model, thus the outputs of

the qth local model could be represented as

uΩq
(x) = N

q(x,Ωq) (6)

Therefore, the integrated output of the global model is

uΩ(x) =

Q
∑

q=1

wquΩq
(x) (7)

where wq is the weight added to the qth local model:

wq ∝ ξq (8)

where ξq is the total training error of the qth local model.

Accordingly, the weight of the qth local model could be

calculated by

wq =
1

ξq
/

Q
∑

q=1

1

ξq
(9)

In this manner, all the local models are assigned weights

based on training errors. Local models with small training

errors could dominate the predictions of the global model,

while the local models with larger training errors will impose

less negative effects on the global performance. Therefore,

the global model should be more robust and could better

generalize to the unseen data.

H. Error Analysis

Total errors associated with local models could be summa-

rized as the local optimization error ξqlo, local approximation

error ξqla, and local generalization error ξqlg , q = 1, . . . , Q.

Specifically, ξqlo is highly depending on the architecture and

hyperparameters of the qth local model, such as depth, width,

maximum iteration number, batch size and learning rate, etc.

To reduce ξqla, we should enhance the representation capability

of the qth local model. The proposed physics-informed deep

neural network should have better representation capability

due to the embedded prior physics knowledge, thus its approxi-

mation error is smaller than state-of-the-art methods. However,



5

it may cause a relatively larger ξqlg , which is known as the bias-

variance trade-off in the machine/deep learning field [37], [38].

According to [39]–[41], all the three errors in each local

model are inter-connected, it means that the total error of the

proposed distributed framework should be smaller than the

summation of the three errors of all the local models and errors

of conventional machine/deep learning methods. Therefore, we

have the following expression:

ξtotal ⩽

Q
∑

q=1

ξqlo + ξqla + ξqlg (10)

where ξtotal denotes the total error of the proposed distributed

framework.

III. PERFORMANCE EVALUATION

In this section, the baseline methods and evaluation crite-

ria are first detailed, and the effectiveness of the proposed

distributed framework for musculoskeletal modelling is then

evaluated, including comparisons with selected baseline meth-

ods, evaluation in intersession scenario, effects of the number

of local models, effects of the number of training data, effects

of the weighting strategy, and the time cost.

A. Baseline Methods and Evaluation Criteria

To comprehensively evaluate the feasibility of the proposed

distributed framework, several methods are selected as base-

line methods in the experiments.

1) CNN: CNN denotes the conventional CNN with the

same network architecture with the local model of the pro-

posed distributed framework. Similarly, during the training of

CNN, its initial learning rate is 0.001, and the batch size is 1.

2) CNN-q: CNN-q is the qth local model utilized in the

proposed distributed framework, its detailed parameter settings

and training strategy have been given in Section II. CNN-q is

trained using the data of the qth sub-domain.

3) Kn-CNN: Kn-CNN has the same architecture with CNN

and CNN-q, its parameter settings and training strategy are

same as CNN-q, and its loss function is with the knowledge-

based loss component. Differently, it utilizes the whole data

equally for the training purpose.

In the experiments, two criteria are considered to quantify

the performance of all the methods, including the root mean

square error (RMSE) and Pearson’s correlation coefficient

(CC). RMSE can be calculated by

RMSE =

√

1

T̃

∑T̃

t̃=1
(yt̃ − ŷt̃)

2
(11)

where yt̃ represents the ground truths (i.e., the true muscle

forces and joint angles), ŷt̃ is the corresponding predicted

values (i.e., the predicted muscle forces and joint angles), and

T̃ and t̃ denote the number of data used in the experiments

and index of data number, respectively.

CC is calculated by

CC =

∑T̃

t̃=1
(yt̃ − yt̃)

(

yt̃ − ŷt̃
)

√

∑T̃

t̃=1
(yt̃ − yt̃)

2

√

∑T̃

t̃=1

(

yt̃ − ŷt̃
)2

(12)

where yt̃ and ŷt̃ are the mean of the true muscle forces and

joint angles, and the predicted muscle forces and joint angles.

B. Overall Comparisons with Baseline Methods

The overall comparisons among the proposed distributed

framework and selected baseline methods are first demon-

strated. It should be noted that we set the number of local

models as three (i.e., q = 1, 2, 3) in this experiment, and

effects of the number of local models on the performance is

also investigated in the following experiment. The number of

training data of the proposed distributed framework, CNN and

Kn-CNN is 15000, and the number of training data of CNN-1,

CNN-2 and CNN-3 is 5000. The number of testing data of all

the methods is 2000.

Fig. 4 shows the representative predicted results of the

wrist angle, muscle forces of ECRL, FCR, ECRB, FCU and

ECU, and Table I lists the detailed quantitative comparison

results across six subjects, including RMSE and CC. Observed

from Fig. 4 and Table I, the proposed distributed framework

achieves better performance than selected comparison meth-

ods, and its performance is more stable across six subjects.

Because the proposed distributed framework employs a local-

global distributed modelling mechanism, local models with

smaller training errors dominate the global performance, which

makes it more robust. In addition, the performance of all

the three local models (i.e., CNN-1, CNN-2 and CNN-3)

is better than that of CNN and Kn-CNN, because training

deep learning models with smaller number (but sufficient)

of data may significantly avoid the overfitting problem. In

some situations, the performance of the proposed distributed

framework is better than that of three local models, which

demonstrates the feasibility and effectiveness of the local-

global distributed modelling mechanism. Kn-CNN achieves

better performance than that of CNN, indicating the effec-

tiveness of the modified knowledge-based loss component in

Kn-CNN. The performance of deep learning models with

knowledge-based loss component is also enhanced through

regularizing neural networks by the embedded prior physics

knowledge.

Additionally, the pairwise analysis between the proposed

distributed framework and each baseline method is carried out,

where RMSE is selected as the response variable. A post-

hoc analysis with Tukey’s Honest Significant Difference test

is employed. The significance level is p < 0.05. Fig. 5 depicts

the average RMSEs and CCs across six subjects. According to

Fig. 5, the performance of the proposed distributed framework

is better.

C. Evaluation of Robustness and Generalization in Interses-

sion Scenario

To verify the robustness and generalization of the proposed

distributed framework in the intersession scenario, we select

some of the collected data from four subjects as the training

data, and the collected data from the remaining two subjects as

the testing data. The number of training data and testing data

of the proposed distributed framework, CNN, Kn-CNN, long

short-term memory (LSTM), and CNN+LSTM is 15000 and
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Fig. 4. Representative predicted results of the proposed distributed framework and selected baseline methods, including the predicted wrist angle, muscle
forces of FCR, FCU, ECRL, ECRB, and ECU.

TABLE I
RMSES AND CCS OF THE PROPOSED DISTRIBUTED FRAMEWORK AND BASELINE METHODS ACROSS SIX SUBJECTS

Variables Methods S1 S2 S3 S4 S5 S6 Variables Methods S1 S2 S3 S4 S5 S6

Angle

Ours 6.67/0.98 6.83/0.98 6.53/0.98 6.93/0.98 6.77/0.98 7.99/0.98

FCR

Ours 4.52/0.97 4.21/0.97 3.76/0.97 3.98/0.97 3.89/0.97 4.09/0.97

CNN 13.03/0.91 14.75/0.91 11.97/0.93 13.69/0.91 12.95/0.92 13.08/0.90 CNN 7.15/0.92 8.20/0.89 9.13/0.90 8.82/0.91 8.55/0.92 9.06/0.91

Kn-CNN 9.61/0.97 10.73/0.96 9.08/0.96 10.57/0.96 7.18/0.98 8.91/0.97 Kn-CNN 5.26/0.95 5.98/0.93 6.29/0.94 5.36/0.95 5.60/0.95 5.33/0.95

CNN-1 7.95/0.98 8.55/0.97 6.79/0.98 9.28/0.96 7.59/0.98 8.99/0.97 CNN-1 4.62/0.96 4.69/0.97 3.98/0.97 5.25/0.95 4.21/0.96 4.95/0.96

CNN-2 7.66/0.98 8.01/0.97 9.43/0.96 9.04/0.97 7.23/0.98 8.93/0.96 CNN-2 5.07/0.95 4.83/0.96 5.05/0.95 5.10/0.95 5.39/0.95 4.74/0.96

CNN-3 7.52/0.98 8.12/0.98 9.67/0.96 9.03/0.97 7.06/0.98 9.27/0.96 CNN-3 4.75/0.96 4.72/0.96 5.23/0.95 4.62/0.96 4.75/0.96 5.21/0.96

FCU

Ours 4.91/0.98 4.62/0.98 4.56/0.98 4.54/0.98 6.11/0.97 4.09/0.98

ECRL

Ours 3.11/0.99 2.91/0.99 2.52/0.99 2.53/0.99 2.07/0.99 2.51/0.99

CNN 8.11/0.95 8.67/0.94 9.52/0.90 10.73/0.91 11.33/0.91 8.65/0.94 CNN 6.89/0.96 8.17/0.95 6.59/0.97 7.55/0.95 7.99/0.95 7.69/0.95

Kn-CNN 6.52/0.96 6.03/0.98 6.57/0.96 7.25/0.96 7.21/0.96 5.97/0.97 Kn-CNN 4.91/0.98 4.19/0.98 3.92/0.99 4.21/0.98 5.01/0.97 4.27/0.98

CNN-1 5.36/0.97 5.59/0.97 4.90/0.98 5.43/0.97 5.10/0.98 5.71/0.98 CNN-1 3.46/0.99 3.56/0.99 3.13/0.99 3.63/0.99 3.15/0.99 3.46/0.99

CNN-2 5.47/0.97 5.17/0.98 5.87/0.97 5.68/0.97 5.69/0.98 5.02/0.98 CNN-2 3.61/0.99 3.55/0.99 3.39/0.99 3.68/0.99 3.22/0.99 3.19/0.99

CNN-3 5.29/0.98 5.22/0.98 5.96/0.97 5.99/0.97 7.07/0.97 4.23/0.98 CNN-3 3.76/0.99 3.38/0.99 3.58/0.99 3.32/0.99 3.69/0.99 3.98/0.99

ECRB

Ours 3.96/0.97 3.85/0.97 3.61/0.97 3.52/0.97 3.78/0.97 3.66/0.97

ECU

Ours 1.23/0.99 1.17/0.99 0.95/0.99 0.91/0.99 0.97/0.99 1.13/0.99

CNN 6.83/0.90 7.83/0.87 6.96/0.88 8.02/0.90 8.21/0.89 7.09/0.90 CNN 2.17/0.95 2.85/0.94 3.02/0.92 3.57/0.92 3.25/0.93 3.77/0.91

Kn-CNN 5.57/0.95 6.06/0.92 4.62/0.98 5.23/0.95 5.03/0.95 4.96/0.95 Kn-CNN 1.99/0.97 1.73/0.97 1.36/0.98 1.81/0.97 1.56/0.98 1.41/0.98

CNN-1 4.32/0.96 4.64/0.95 4.09/0.97 4.50/0.95 4.23/0.96 4.40/0.96 CNN-1 1.57/0.98 1.49/0.98 1.44/0.98 1.42/0.98 1.40/0.98 1.37/0.98

CNN-2 4.35/0.96 4.19/0.96 4.13/0.96 4.31/0.96 4.29/0.96 3.86/0.97 CNN-2 1.49/0.98 1.47/0.98 1.37/0.98 1.34/0.98 1.25/0.99 1.29/0.99

CNN-3 4.40/0.96 4.42/0.96 4.56/0.95 4.37/0.96 4.09/0.97 4.11/0.96 CNN-3 1.55/0.98 1.39/0.99 1.34/0.98 1.22/0.99 1.38/0.98 1.46/0.98

2000. Table II lists the comparison results, it could be found

all the methods achieve worse performance than the results

listed in Table I. Because the training data and testing data

are from different subjects, their statistical characteristics may

be different, degrading the predicted performance. Moreover,

the proposed distributed framework could achieve the best

performance among these methods in the intersession scenario,

indicating its good robustness and generalization.

D. Effects of Number of Local Models

To further investigate the characteristics of the proposed

distributed framework, we set different number of local models

during the training phase and the maximum iteration is 2000.

The total number of training data and testing data is 15000 and

2000, which are randomly selected from the collected data.

TABLE II
COMPARISON RESULTS AMONG THE PROPOSED DISTRIBUTED

FRAMEWORK AND BASELINE METHODS IN INTERSESSION SCENARIO

(RMSE)

Methods Angle FCR FCU ECRL ECRB ECU

Ours (q = 3) 8.29 6.92 6.81 4.62 5.78 2.60

CNN 18.21 12.55 13.09 10.07 10.36 5.37

Kn-CNN 11.37 7.72 8.13 6.98 8.55 3.09

LSTM 16.39 10.38 15.32 8.39 9.92 5.79

CNN+LSTM 14.23 10.29 14.22 9.25 9.73 5.40

For CNN, we use the whole data for the training purpose,

i.e., the number of training data of CNN is 15000. For the
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Fig. 5. Average RMSEs and CCs of the proposed distributed framework and
baseline methods across six subjects. The proposed distributed framework
achieves satisfactory performance. The significance level is set as 0.05
(∗∗∗p < 0.001,∗∗ p < 0.01, and∗p < 0.05).

proposed distributed framework, the whole data are divided

into several sub-domains, the number of sub-domains equals

to the number of local models. When the number of local

models of the proposed distributed framework is 3, the number

of training data of each local model is 5000. When the number

of local models of the proposed distributed framework is 4,

the number of training data is of CNN-1, CNN-2, CNN-3 and

CNN-4 is 4000, 4000, 4000 and 3000. When the number of

local models of the proposed distributed framework is 5, the

number of training data is of CNN-1, CNN-2, CNN-3, CNN-

4 and CNN-5 is 3000. Fig. 6 illustrates the changes of losses

under different number of local models and CNN during the

training processes. According to Fig. 6, separate losses of all

the local models could converge quickly, while the losses of

CNN are still divergent after 2000 iterations, indicating that the

convergence speed of the proposed distributed framework is

faster than that of CNN. Furthermore, we can find that losses

of local models are more stable during the training process

with the increase of the number of local models, because the

number of training data in each sub-domain is smaller, the

negative effects of unknown factors of specific sub-domains

on the global performance are smaller, making the proposed

distributed framework is less sensitive to unknown factors.

Table III lists the predicted results of the proposed dis-

tributed framework with various number of local models and

CNN, it can be found that the proposed distributed framework

TABLE III
RMSE AND CC OF THE PROPOSED DISTRIBUTED FRAMEWORK WITH

DIFFERENT NUMBER OF LOCAL MODELS AND CNN

RMSE

Methods Angle FCR FCU ECRL ECRB ECU

Ours (q = 3) 6.83 4.21 4.63 2.91 3.85 1.16

Ours (q = 4) 6.52 3.76 4.55 2.52 3.61 0.96

Ours (q = 5) 6.93 3.98 4.51 2.53 3.52 0.91

CNN 14.74 8.20 8.66 8.17 7.83 2.82

CC

Methods Angle FCR FCU ECRL ECRB ECU

Ours (q = 3) 0.98 0.97 0.98 0.99 0.97 0.99

Ours (q = 4) 0.98 0.98 0.98 0.99 0.97 0.99

Ours (q = 5) 0.98 0.97 0.98 0.99 0.98 0.99

CNN 0.92 0.89 0.94 0.96 0.87 0.95

achieves better performance than CNN in different scenarios.

In addition, the predicted results of the proposed distributed

framework with different number of local models are similar,

indicating that its performance is not sensitive to the number of

local models. Therefore, it could significantly reduce the time

consumption of selecting appropriate number of local models

when implementing the proposed distributed framework.

E. Effects of Number of Training Data

Aside from effects of the number of local models, effects of

different training data sizes are also considered. We randomly

select 10000 data pairs from the collected data for training

and 2000 data pairs for testing, the number of local models in

the proposed distributed framework is still set as 3. Table IV

demonstrates the comparison results among the proposed dis-

tributed framework (q = 3), local models (i.e., CNN-1, CNN-

2 and CNN-3) and CNN, in which the number of training

data is from 1000 to 10000. According to Table IV, when

the number of training data is small, the performance of the

proposed distributed framework and CNN is comparable or

the performance of the proposed distributed framework is even

worse than CNN, and the performance of three local models

is worse than CNN. Because the whole training data are

divided into three sub-domains for training local models, and

we cannot achieve good local models without enough training

data, which also leads to the unsatisfactory performance of the

proposed distributed framework. In addition, we can find that

the performance of both the proposed distributed framework

and local models becomes better than CNN with the increase

of the number of training data. For example, when the number

of training data is larger than 5000, the performance of both

the proposed distributed framework and local models is much

better than CNN. Furthermore, the experimental results also

indicate that it is not very easy to train a good deep learning

model when the number of training data is limited or large.
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Fig. 6. Illustration of separate losses of the proposed distributed framework with different number of local models. The proposed distributed framework with
various number of local models is with much faster convergence speed than CNN.

TABLE IV
COMPARISON RESULTS AMONG THE PROPOSED DISTRIBUTED

FRAMEWORK, LOCAL MODELS AND CNN UNDER DIFFERENT NUMBER OF

TRAINING DATA (RMSE)

Methods No. Training Data Angle FCR FCU ECRL ECRB ECU

1000 19.85 8.88 10.52 8.80 7.37 2.07

Ours 3000 17.72 8.07 8.15 12.31 6.69 3.18

(q = 3) 5000 11.95 6.24 7.06 7.66 5.65 2.82

8000 12.01 6.13 7.36 8.15 6.25 2.93

10,000 15.46 6.81 8.17 8.86 6.16 2.75

CNN-1

1000 24.26 10.78 12.30 9.99 8.57 2.40

3000 20.67 8.89 9.02 13.20 7.29 3.41

5000 14.41 6.52 8.12 8.39 6.46 3.03

8000 15.59 7.01 7.98 7.82 6.29 2.44

10,000 18.65 7.96 9.15 8.15 6.31 3.36

CNN-2

1000 27.81 10.09 14.99 11.93 8.81 3.47

3000 15.34 8.07 8.73 10.52 6.90 2.89

5000 15.02 7.82 8.56 10.15 7.26 3.83

8000 13.56 6.54 7.53 7.09 6.35 2.96

10,000 19.31 7.77 9.98 10.80 7.39 3.14

CNN-3

1000 24.53 9.78 12.88 11.97 8.89 2.62

3000 15.69 7.72 8.81 11.14 6.99 3.58

5000 14.49 7.91 8.23 7.39 6.57 2.64

8000 16.63 8.02 10.26 11.24 7.83 3.62

10,000 14.46 7.10 8.12 6.75 6.42 2.56

CNN

1000 17.92 9.13 8.38 8.87 6.33 2.55

3000 16.43 7.67 8.79 10.29 6.25 2.98

5000 30.17 12.67 19.60 21.99 12.75 5.79

8000 33.34 14.77 18.97 20.89 13.45 4.79

10,000 23.69 11.98 11.65 22.56 9.88 5.41

F. Effects of Weighting Strategy

Considering that some local models may be degraded by un-

known factors during the training process, weighting strategy

is employed in the proposed distributed framework to reduce

and control negative effects of unknown factors on the global

performance. The number of training data and testing data is

15000 and 2000, and Table V shows the comparison results.

According to Table V, it could achieve better performance

when weights are added to local models. Because local models

with larger training errors are assigned smaller weights, which

makes such local models impose smaller effects on the global

performance, thus the proposed distributed framework is more

robust especially in nonstationary scenarios.

G. Time Cost

The time costs among the proposed distributed framework

and baseline methods are considered to verify the efficiency

of the local-global distributed mechanism during the train-

ing phase. Table VI depicts the time costs of the proposed

distributed framework with different number of local models

and CNN when the number of training data is 8000, we can

find that the time cost of the proposed distributed framework

is much less than that of CNN. Moreover, the time cost is

becoming less with the increase of the number of local models.

Accordingly, we can find that with the increase of the number

of training data, the proposed distributed framework should

significantly outperform CNN in terms of time cost.

TABLE V
COMPARISON RESULTS OF THE PROPOSED DISTRIBUTED FRAMEWORK

WITH AND WITHOUT WEIGHTING STRATEGY (RMSE)

Weights Angle FCR FCU ECRL ECRB ECU

With 6.61 4.06 4.55 2.73 3.89 1.08

Without 7.23 4.52 4.90 3.01 4.21 1.57

TABLE VI
COMPARISON RESULTS OF TIME COST OF THE PROPOSED DISTRIBUTED

FRAMEWORK UNDER DIFFERENT NUMBER OF LOCAL MODELS AND CNN
(MINUTE)

No. Training Data Ours (q = 3) Ours (q = 4) Ours (q = 5) CNN

8000 457 345 271 1388

IV. DISCUSSION

In this section, we discuss the potential advantages of the

proposed distributed framework, such as its scalability and

multimodal learning capability, limitations and future works.

A. Scalability in Training

In this study, we only use CNN as the baseline network of

local models to demonstrate the feasibility and effectiveness of

the proposed distributed framework, but it is actually scalable

during the implementation. As illustrated in Fig. 7, various

deep neural networks, such as CNN, recurrent neural network

(RNN), long short-term memory (LSTM), stacked autoencoder
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Fig. 7. The proposed distributed knowledge-driven deep learning framework
is scalable. Local models could be flexibly designed with various depths,
widths, activation functions, hyperparameters and types of neural networks
depending on the statistical characteristics of the collected sEMG data and
application requirements. The number of local models also could be set by
the users or depending on the application requirements.

(SAE), and ResNet, etc., could be the candidates of local

models. Additionally, the appropriate depth, width, activation

function and hyperparameters also could be flexibly selected

for the training of local models to achieve satisfactory perfor-

mance for each of sub-domains. Such partial independence of

local models training enables a set of parallel computations,

which could significantly reduce the computational cost and

memory requirements. Furthermore, it also makes the global

performance of the proposed distributed framework not be

seriously affected by specific local model(s). We can assign

smaller weights to the local models with bad performance or

directly remove them for global performance enhancement,

making the proposed distributed framework more robust.

Moreover, the training of local models also could be designed

individually. Different local models could set various initial

learning rates, batch sizes and stop criteria depending on the

architecture of neural networks and statistical characteristics

of the available training data in each of sub-domains.

B. Multimodal Learning Capability

State-of-the-art methods for musculoskeletal modelling are

unimodal, which are developed only considering the single

data source or modality for the defined tasks. However,

doctors usually handle clinical data from multiple sources or

modalities in real-world application scenarios, and thus the

performance of unimodal musculoskeletal models fed with a

single type of data is usually limited. In addition, Hendricks

et al. [42] has demonstrated that data from multiple sources

or modalities may be more useful than large number of data

from single source or modality.

Time Series Data

Images
Clinical Notes

Fig. 8. The proposed distributed framework has the potential capability to
learn from different sources or modalities in a unified framework, such as
time series data, images and clinical notes, etc.

As shown in Fig. 8, the proposed distributed framework

has the potential capability to learn from different sources

or modalities in a unified framework, such as sEMG text

data, images and data from various sensors. The proposed

distributed framework is not with modality-specific biases (for

example, RNN and LSTM are mainly for time series data,

while CNN is with the great performance in image-related

tasks), it thus may have satisfactory accuracy, robustness and

generalization across a range of modalities. Boosting the

multimodal learning capability of the proposed distributed

framework also could enhance the personalized musculoskele-

tal modelling to obtain a wider and deeper understanding of

musculoskeletal conditions of subjects [43], [44]. In the future,

we will consider to design modified local model aggregation

mechanism to make the proposed distributed framework be

with excellent multimodal learning capability to assist the di-

agnostic, personalized treatment and clinical decision-making.

C. Limitations and Future Works

Although the proposed distributed framework could achieve

satisfactory performance in several scenarios, there are still

some limitations need to be addressed and proprieties need

to be investigated in the future works. For example, how to

choose appropriate data partition method for different tasks?

We randomly select 6000 samples, and the number of local

models is set as 3. Table VII details the comparison results

between using k-means clustering method to partition the

whole data (denoted by clustering) and the partition method

mentioned in Section II-B (denoted by ours), we can find that

the performance of the clustering-based distributed framework

is worse. Fig. 9 visualizes the clustering results of the whole

sEMG data, the number of data of one of the clusters is more

than 5000 (denoted by yellow), while the number of data of

the other two clusters is little, which leads to the corresponding

two local models cannot be trained well, seriously degrading

the global performance. Moreover, we only utilize the equation

of motion in local models, more prior physics knowledge

should be considered to further enhance the performance, such

as the Hill muscle model [45]. In this study, all the local

models are first trained locally, and then integrated into the

global model, which actually makes the local-global modelling

process relatively separate. In the future, we will consider to
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Fig. 9. Visualization of clustering results of sEMG data. The number of
grouped data in the yellow cluster is much larger than the remaining two
clusters, making the local models trained with data from these two clusters
be with poor performance.

directly transfer the local model information to update the

global model, such as the gradient information of all the local

models [46].

TABLE VII
COMPARISON RESULTS OF THE PROPOSED DISTRIBUTED FRAMEWORK

WITH DIFFERENT DATA PARTITION METHODS (RMSE)

Methods Angle FCR FCU ECRL ECRB ECU

Clustering 20.90 9.96 10.85 10.5367 7.93 3.07

Ours 7.02 4.15 5.11 3.89 3.82 1.17

V. CONCLUSION

In this study, a modified distributed framework based on

physics-informed deep learning is designed to enhance the

performance of the musculoskeletal modelling in nonstation-

ary scenarios. The proposed distributed framework employs

a local-global distributed modelling mechanism, where lo-

cal models could flexibly select appropriate network types,

architectures and hyperparameters depending on statistical

characteristics of the collected data and application require-

ments, enabling locally to achieve better representation while

preserving the global performance. Weighting strategy enables

local models with better performance to dominate the global

performance, and the negative effects of unknown factors can

be reduced and controlled. In addition, the time cost of model

training is also significantly reduced. Different from existing

distributed modelling methods, prior physics knowledge is

embedded into local models to regularise the loss functions of

deep neural networks. The embedded prior physics knowledge

not only helps enhance the robustness and generalization of

the proposed distributed framework, but also makes the con-

ventional “black-box” data-driven musculoskeletal modelling

reflect underlying physical mechanisms.
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