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A GSVD-Based Precoding Scheme for

MIMO-NOMA Relay Transmission
Chenguang Rao, Zhiguo Ding, Fellow, IEEE, Kanapathippillai Cumanan, Senior Member, IEEE and Xuchu Dai

Abstract—Recently, the multiple-input multiple-output
(MIMO) non-orthogonal multiple-access (NOMA) transmission,
denoted as MIMO-NOMA, has been widely applied for Internet-
of-Things (IoT) systems due to its spectral efficiency. As a
promising precoding method, the generalized singular value
decomposition (GSVD) based precoding scheme has been studied
in MIMO-NOMA. In this study, we apply the GSVD-based
precoding scheme to a downlink MIMO-NOMA communication
system with an amplify-and-forward (AF) relay and two IoT
users. A closed-form expression of the probability density
function (PDF) of two channel matrices’ generalized singular
values (GSVs) is obtained in order to facilitate the performance
analysis for cooperative MIMO-NOMA transmission. In
particular, by this distribution characteristic result, the users’
rates and outage probabilities achieved by MIMO-NOMA are
studied for the insightful performance evaluation. In addition,
the asymptotic approximations for outage probabilities at the
high signal-to-noise-ratio (SNR) condition are presented. In
addition to characterize the performance achieved by cooperative
MIMO-NOMA, resource allocation for the addressed NOMA
system is also investigated in this paper, where a suboptimal
power allocation algorithm to maximize the sum rate is given.
The solution obtained by the proposed algorithm is studied,
where the optimality condition of the solution is obtained.
Finally, simulation results are presented to show the superiority
of the scheme and verify these analytical results.

Index Terms—Amplify-and-forward (AF) relay, generalized
singular value decomposition(GSVD), internet of things (IoT),
multiple-input multiple-output (MIMO), non-orthogonal multiple
access (NOMA).

I. INTRODUCTION

A. Related works and the Motivation.

With the rapidly development of internet of things (IoT),

there is an urgent need for high-quality wireless communica-

tion systems. Among the potential enabling technologies for

future IoT networks, multiple-input multiple-output (MIMO),

a technology with high spectral efficiency, has been regarded

as a crucial technology and has got broad application [1]–

[4]. In addition, MIMO systems usually combine with non-

orthogonal multiple access (NOMA) for rational use of the

spectrum, which is termed the MIMO-NOMA technology and

has been widely studied and applied [5]–[8]. However, in
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the long distance communication, the feasible transmission

distance between the base station and the IoT devices or

users may not support a stable and efficient communication

condition, in which case a relay station is required to improve

link quality [9]. This promotes the development of cooperative

MIMO-NOMA transmission research [10]–[12]. The relaying

techniques can be classified into two types: amplify-and-

forward (AF) relaying and decode-and-forward (DF) relaying.

Compared with DF, AF has a simpler implementation and

a lower dissipation [13], which make it more attractive in

practice. The precoding schemes of MIMO with an AF relay

can be developed from conventional MIMO transmissions,

which have been studied in [14]–[16]. There are mainly two

types for MIMO precoding schemes: non-linear precoding

[17]–[19] and linear precoding [20], [21]. The non-linear pre-

coding is too complex to be often employed in practice, while

linear precoding schemes can better balance efficiency and

complexity and thus have been extensive used. The generalized

singular value decomposition (GSVD) has stood out among

the linear precoding schemes because of its implementation

simplicity and advantageous performance, especially when the

signal-to-noise-ratio (SNR) is high [22]–[24]. In the MIMO-

NOMA-GSVD-based scheme, the channel matrices of two

users are diagonalized simultaneously to achieve the purpose

of transforming an MIMO channel into several parallel single-

input single-output (SISO) channels. Then the NOMA prin-

ciple can be applied to each SISO channel individually. In

[23], the authors have studied a GSVD-based two-user MIMO-

NOMA download communication system. In [25], the authors

have analyzed the perturbation of GSVD-NOMA scheme with

imperfect channel state information. In [24], the authors have

considered the performance of GSVD-NOMA from the single

channel perspective, where the distribution characteristic of

the ordered GSVD has been analyzed. In [26], the GSVD-

NOMA scheme with the security constraint has been studied.

In [22] and [27], the authors have studied the GSVD-based

MIMO-NOMA system with a DF relay.

All works above have contributed to the GSVD-based

MIMO-NOMA schemes. However, to the best knowledge of

the authors, the design of GSVD-based MIMO-NOMA with

an AF relay is still unknown, which motivates our work

in this paper. The key contribution of this work is how to

characterize the distribution characteristic of the generalized

singular values (GSVs) of two channel matrices, which is

needed for the performance analysis of the scheme. In [23],

the probability density functions (PDFs) of two Gaussian

random matrices are calculated for both the two-user downlink

MIMO-NOMA scenario and MIMO-NOMA scenario with a

DF relay. In the DF relay scenario, the relay station can decode

the received messages and then encode the message before
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relaying. Thus, its end-to-end matrices can be decomposed into

several Gaussian matrices, and the distribution characteristics

of GSVs of these Gaussian channel matrices can be directly

obtained from existing works for the performance analysis.

However, in the AF relay scenario, the channel matrices are

the products of Gaussian matrices and no longer satisfy the

Gaussian distribution. As a result, those existing results about

GSVD-NOMA in [23] cannot be applied. Thus, we are devoted

to finding a new approach to solve this problem in this paper.

B. Contributions

In this paper, we consider a two-user downlink MIMO-

NOMA scenario with a single AF relay station and two IoT

users. The far user, i.e., the user which is farther from the

base station, receives messages via the AF relay station, while

the near user, i.e., the user which is close to the base station,

receives messages directly from the base station. Then the end-

to-end channel matrix pair consists of a Gaussian random ma-

trix and a new matrix which is a product between two Gaussian

random matrices. We calculate the distribution characteristics

of the corresponding GSVs for the channel matrix pair and

then analyze the performance of the communication system

by using these results.

The main contributions of this paper are shown as follows:

• A GSVD-based MIMO-NOMA IoT transmission system

with an AF relay precoding scheme is presented. Specif-

ically, the GSVD-based precoding scheme is applied to

this system. The distribution characteristic of the GSVs

of two channel matrices of the considered scenario is

analyzed. Closed-form expressions of both the PDF and

marginal PDF of GSVs are obtained.

• Based on the PDF of GSVs, the performance analysis

for the considered cooperative MIMO-NOMA scheme

is carried out. In particular, the expressions of average

rates and outage probabilities are obtained. Besides, the

asymptotic results at high SNR are also estimated.

• To maximize the sum rate of two users and meet those

communication quality requirements, a problem where

the objective function is the sum rate of the two users

is generated. As the solution of this problem, a subopti-

mal algorithm is proposed. Furthermore, this solution is

proved to be optimal in most cases in practice.

The rest of this paper is organized as follows. In Section

II, we briefly describe the system model and the GSVD-based

precoding scheme. In Section III, we present the performance

analysis of the system. In Section IV, we study the power

allocation strategy to get the maximum sum rate and give

a suboptimal power allocation algorithm. Simulation results

are provided in Section V, and conclusions are presented in

Section VI.

II. SYSTEM MODEL

A. System Setup and Parameters

Consider an AF-relay assisted downlink MIMO-NOMA

transmission system as Fig. 1. We denote the base station, the

relay station and the two IoT users by BS, R and Ui, i = 1, 2,

TABLE I
NOTATIONS AND PARAMETER DEFINITIONS OF THE SYSTEM MODEL.

Notations Definitions

X Matrix

x Column vector

{Xm,n} The m-th, n-th element of X

C,R Complex number field, real number field

E(.) Expectation

trace(.) Trace

det(.) Determinant

Pr() Probability calculation

I Identity matrix

G(.) Meijer G-function

ξi Permutations

sign(ξi) Sign function of permutations

U(.) Tricomi confluent hypergeometric function

Hi Channel matrices

Ui,BS Communication nodes

di Distances between nodes

M,Ni Numbers of antennas

s, si Message vectors

Ps,Di Precoding and decoding matrices

P0, PR Transmission powers

t0, tR Power normalization coefficients

li Power allocation coefficients

n,ni White noises

Fig. 1. System model.

respectively. 1 In this system model, U1 represents a ‘poor

channel’ user that is far from BS. The poor communication

condition of U1 blue to the requirement of relay station R.
2 Recall that NOMA performs better when the difference

between the users’ conditions is larger. Therefore, U1 is

paired with a ‘good channel’ user, U2, whose communication

condition is good enough to support direct communication to

BS. The distances between BS and R, R and U1, BS and

U2 are denoted by d0, d1, d2, respectively. The distances are

assumed to satisfy d0, d1, d2 > 1, d0, d1 > d2. The distance

between R and U2 is assumed to be large enough to ignore the

interference each other. BS and Ui are equipped with NB and

Ni antennas, respectively. R is equipped with M antennas.

Denote N = min{NB , N1, N2}. The numbers of antennas

satisfy that M ≥ N 3. H0 ∈ C
M×N is the downlink channel

matrix between BS and R, H1 ∈ C
N×M is the downlink

channel matrix between R and U1, and H2 ∈ C
N×N is

the downlink channel matrix between BS and U2. In this

1For the case with more than two users, a hybrid approach can be employed
in which users are divided into groups of two users, each group is allocated
orthogonal resources, and within each two-user group, the proposed GSVD-
based MIMO-NOMA scheme can be utilized.

2When there is a direct link between U1 and BS, the system can be
simplified to a GSVD-MIMO scenario. The detailed analysis can be found in
[23].

3This condition is to ensure the full rank of the channel matrix for
subsequent analyses.
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paper, the number of the multipath propagation is assumed

to be very large, and the channel matrices can be modeled

as independent and identically complex Gaussian random

matrices [28], whose all elements have zero means and one

variances. The large scale fading coefficient corresponding to

channel matrix Hi is modeled as 1/
√

dτi , i = 0, 1, 2, where τ
represents the path loss exponent. The message broadcasted by

BS is expressed as x =
√
P 0Pss. Ps represents the precoding

matrix. s = l1s1 + l2s2, where si is the signal vector for Ui,

E(sis
H
i ) = I. P0 is the transmission power. li denotes the

power allocation coefficient and satisfies l21+ l22 = 1. Then the

received message at R and U2 can be expressed as follows:


















yR =

√
P 0

t0
√

dτ0
H0Pss+ n0,

y2 =

√
P 0

t0
√

dτ2
D2H2Pss+D2n2

, (1)

respectively. t0 denotes the long-term power normalization

coefficient (see (9)) to reduce the power gap between the

various channels, and D2 denotes the decoding matrix at U2.

Each element of ni, i = 0, 1, 2 is independent white noise with

unit variance. In this paper, it is assumed that all of the white

noises have the same variances N0. Then R sends
√
PR

tR
yR to

U1. PR is the transmission power at R. To keep the average

power on each antenna within the power limit, the average

normalization coefficient tR is set as the average power of

yR, which can be expressed as follows:

tR =

√

E{trace(H0H
H
0 )} P0

t20d
τ
0

+N0. (2)

From [29], it can be shown that

E{trace(H0H
H
0 )} = MN. (3)

Therefore, tR can be simplified as follows:

tR =

√

MN
P0

t20d
τ
0

+N0. (4)

From (1), the received message at Ui can be expressed as

follows:














y1 =

√
P0PR

t0tR
√

dτ0d
τ
1

D1H1H0Pss+

√
PR

tR
√

dτ1
D1H1n0 +D1n1

y2 =

√
P 0

t0
√

dτ2
D2H2Pss+D2n2

,

(5)

where D1 denotes the decoding matrix at U1.

B. Application of GSVD

The design for Ps and Di is considered in this subsec-

tion. To diagonalize the channel matrices simultaneously for

eliminating the interference between subchannels, the GSVD-

based precoding scheme is applied [23]. From [30], the GSVD

is adopted to the matrix pair {H1H0, H2} as follows [30]:

H1H0 = U1Σ1V, H2 = U2Σ2V, (6)

where Ui ∈ C
N×N is a unitary matrix, and V ∈ C

N×N is

an invertible matrix. Σi = diag(µi,1, ..., µi,N ) that satisfying

µ2
1,q + µ2

2,q = 1, ∀ 1 ≤ q ≤ N . The generalized singular

values (GSV) are defined as ωq = µ2
1,q/µ

2
2,q, q = 1, 2, ..., N .

On the other hand, it can be shown that µ2
1,q = ωq/(1 + ωq),

µ2
2,q = 1/(1 + ωq).
By applying GSVD, the precoding and decoding matrices

can be designed as Ps = V−1 and Di = UH
i . The expressions

of (5) can be rewritten as follows:



















y1 =

√
P0PR

t0tR
√

dτ0d
τ
1

Σ1s+

√
PR

tR
√

dτ1
n′
0 + n′

1

y2 =

√
P 0

t0
√

dτ2
Σ2s+ n′

2

. (7)

Since the unitary matrices do not change the distribution of

Gaussian matrices, it can be shown that n′
i = UH

i ni, i = 1, 2,

is also a white Gaussian distributed vector. In addition, each

element of n′
0 = UH

1 H1n0 is the inner product of two

independent Gaussian random vectors with zero means and

diagonal covariance matrices. We denote n′
i,q by the q-th ele-

ment of n′
i. Then it is obvious that E{n′2

1,q} = E{n′2
2,q} = N0.

As for n′
0,q , we rewrite it as n′

0,q =
∑N

j=1 ajbj , where aj , bj
are independent Gaussian random variables with zero means

and unit variances. Then, its power can be obtained as follows:

E{n′2
0,q} = E{(

N
∑

j=1

ajbj)
2} = E{

N
∑

j=1

a2jb
2
j} = NN0. (8)

Similar to tR, the normalization coefficient t0 is set as the

average power of Pss, which can be designed as t20 =
E{trace(VssHVH)} = E{trace(VVH)}. From [23], it can

be shown that

t20 = E{trace(VVH)} =
N

2N −N
= 1. (9)

This result shows that when the antennas at both ends are

equal, the long-term average power of each channel is ap-

proximately equal, so normalization coefficient is not needed.

The q-th element of yi can be expressed as follows:















y1,q =

√
P0PR

tR
√

dτ0d
τ
1

µ1,q(l1s1,q + l2s2,q) +

√
PR

tR
√

dτ1
n
′
0,q + n

′
1,q

y2,q =

√
P 0

√

dτ2
µ2,q(l1s1,q + l2s2,q) + n2,q

,

(10)

where si,q is the q-th element of si. (10) also represents the

q-th SISO channel between BS and Ui. We denote signal-to-

interference-plus-noise-ratio (SINR) of sp,q at Ui as γp→i,q .

The SINR is defined as the ratio of the power of the required

message to the sum of the power of interference and noise.

As the Shannon–Hartley theorem, its relation to the rate ri,q
is expressed as follows:

ri,q = log(1 + γi→i,q). (11)

Since U2 has a better channel condition (If otherwise, U1

tends to be chosen as the relay-assisted users.), we apply the

successive interference cancellation (SIC) to U2. In particular,

U2 firstly decodes s1 by regarding s2 as noise. Then if s1 can

be decoded correctly, it can be eliminated from the message
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and s2 is decoded without interference. U1 decodes s1 by

regarding s2 as noise directly. From (10), γp→i,q are given by

γ1→1,q =
(

√
P0PR

tR
√

dτ

0
dτ

1

µ1,ql1)
2

(
√
P0PR

tR
√

dτ

0
dτ

1

µ1,ql2)2 + (
√
PR

tR
√

dτ

1

)2N0 +N0

, (12)

γ1→2,q =
(
√
P 0√
dτ

2

µ2,ql1)
2

(
√
P 0√
dτ

2

µ2,ql2)2 +N0

, γ2→2,q =
(
√
P 0√
dτ

2

µ2,ql2)
2

N0
.

(13)

After simplification, the following equations can be derived:

γ1→1,q =
l21ωq

(l22 + C1)ωq+ C1
. (14)

γ1→2,q =
l21

C2ωq + C2 + l22
, γ2→2,q =

l22
C2ωq + C2

, (15)

where

C1 =
dτ0N0

P0
+

t2Rd
τ
0d

τ
1N0

P0PR

, C2 =
dτ2N0

P0
. (16)

III. PERFORMANCE ANALYSIS

In this section, we first consider the distribution characteris-

tics of ω = 1
N

∑N

q=1 ωq , including its joint and marginal PDF.

Then we use the results to analyze the average achievable rates

and outage probabilities of two users.

A. The Distribution Characteristic of ω

Since all metrics for performance analysis are functions of

ω, it is necessary to find the PDF of ω first. In this subsection,

firstly, we construct a matrix with eigenvalues equal to GSVs

and then obtain the joint PDF of its eigenvalues from the

existing conclusion. Naturally, we can obtain the joint PDF

of ω1, ω2, ..., ωN right away. Then we can obtain the marginal

PDF via integral operations.

Theorem 1. The unordered joint PDF of ω1, ω2, ..., ωN can

be expressed as follows:

f(ω1, ω2, ..., ωN ) =
1

V

∏

1≤m<n≤N

(ωn − ωm) det({Gm,n}), (17)

where

Gm,n = G2,1
1,2

(

−N
M +m−N − 1, 0

∣

∣

∣
ωn

)

. (18)

G is the Meijer G-function [31]. The normalization factor V
can be expressed as follows:

V = NΓ(M)
N
∏

i=1

i4(N−i). (19)

Proof. See Appendix A.

Then we need to obtain the marginal PDF for further

analysis. We can directly obtain marginal PDF based on

joint PDF via integral operations, as shown in the following

theorem:

Theorem 2. The marginal PDF of ω can be expressed as

follows:

g(ω) =
1

V

∑

ξ1,ξ2∈SN

sign(ξ1)sign(ξ2)

N−1
∏

o=1

Woω
ξ1(N)−1

×G2,1
1,2

(

−N
M + ξ2(N)−N − 1, 0

∣

∣

∣
ω

)

,

(20)

where

Wo = Γ(ξ1(o))Γ(M −N + ξ1(o) + ξ2(o)− 1)

× Γ(N − ξ1(o) + 1).
(21)

ξ1 and ξ2 are permutations of length N . On the other word,

ξ = (ξ(1), ξ(2), ..., ξ(N)), ∀1 ≤ a, b ≤ N, a ̸= b, ξ(a) ∈
{1, 2, ..., N}, ξ(a) ̸= ξ(b). sign(ξ) is equal to -1 if ξ is an

odd permutation, otherwise sign(ξ) = 1 [24].

Proof. See Appendix B.

For the special case where each node is equipped with a

single antenna, the use of Theorem 1 immediately leads to the

following corollary.

Corollary 1. When M = N = 1, the marginal PDF of ω can

be expressed as follows:

g(ω) = U(2, 1, ωn), (22)

where U(a, b, x) is the Tricomi confluent hypergeometric func-

tion [32].

Proof. See Appendix C.

To illustrate the result of (22) visually, it will be pointed

out the relationship between this result and classical single-

antenna Rayleigh fading channel model. At the single-antenna

condition, the GSV degrades into

ω0 =
|h0|2|h1|2

|h2|2
. (23)

hi, i = 0, 1, 2 is the independent Rayleigh fading coefficient,

which is subject to Gaussian distribution with the zero mean

and the unit variance. Then the following remark can be given.

Remark 1. At the single-antenna condition, the PDF of ω0

from (23) is equal to the result of (72), i.e.,

g(ω0) = U(2, 1, ω0). (24)

Proof. See Appendix D.

Remark 1 shows that in the especial case where each node

is equipped with a single antenna, g(ω) will degenerate into

the PDF of the random variable ω0 = |h0|2|h1|2
|h2|2 , i.e., the SISO

model, which confirms the results in this subsection.

Next, the average rates can be calculated by using the

expressions of marginal PDF.
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B. Average Achievable Rate

In this subsection, we will obtain the expressions of the

average rates of the users by using the marginal PDF of ω.

To evaluate the effectiveness of the system, we need to get

the expressions of average achievable rates. According to (11),

(14), (15) and (20), the average achievable rates can be written

as follows:

R1 =
N

2

∫ +∞

0

log(
(1 + C1)ωq + C1

(l22 + C1)ωq+ C1
)g(ω)dω, (25)

R2 =
N

2

∫ +∞

0

log(
C2ωq + C2 + l22
C2ωq + C2

)g(ω)dω. (26)

According to the definitions, we can get the expressions of

average achievable rates as follows:

Theorem 3. The average achievable rates of two users can

be expressed as follows:

R1 =
N

2
log(

C1 + 1

C1 + l22
) +

N

2
J(

C1

C1 + 1
)− N

2
J(

C1

C1 + l22
), (27)

R2 =
N

2
J(1 +

l22
C2

)− J(1), (28)

where

J(x) = log x+
∑

ξ1,ξ2∈SN

sign(ξ1)sign(ξ2)

N−1
∏

o=1

WoG
4,2
3,4

(

0, ξ1(N)−N, 1
0, 0,M −N + ξ1(N) + ξ2(N)− 1, ξ1(N)

∣

∣

∣
x

)

.

(29)

Proof. See Appendix E.

To maximum the sum rate, a resource allocation opti-

mization scheme can be considered. The explicit expressions

obtained in Theorem 3 can be used as the objective function

of the optimization problem, as shown in Section IV.

C. Outage Probability

In this subsection, we will obtain the expressions of the

outage probabilities of the users by using the marginal PDF

of ω.

To evaluate the reliability of the system, it is necessary to

calculate the outage probabilities. It is assumed that the target

SINR of si is set as Ti. In this paper, the outage probability of

Ui is defined as the probability of the event that SIC can not

be carried out successfully (only for U2) or SINR falls short

of the target, i.e.

Pout,1 = 1− Pr{γ1→1 > T1},
Pout,2 = 1− Pr{γ1→2 > T1, γ2→2 > T2}.

(30)

According to the definition, the following theorem about the

outage probabilities achieved by cooperative MIMO-NOMA

can be obtained.

Theorem 4. The outage probability of U1 can be expressed

as follows:

Pout,1 =

{

G(D1), l
2
2 < CH,1

1, l22 ≥ CH,1

. (31)

The expression of outage probability of U2 is depended with

the parameters, which can be expressed as follows:

• When C2 ≥ 1
T1+T2+T1T2

,

Pout,2 = 1. (32)

• When C2 < 1
T1+T2+T1T2

Pout,2 =











1, l22 ≤ C2T2 or l22 ≥ CH,2

1−G(E), C2T2 ≤ l22 ≤ CT

1−G(D−1
2 ), CT ≤ l22 ≤ CH,2

. (33)

The constants are defined as follows:

CH,i =
1− CiT1

T1 + 1
, CT =

T2

T1 + T2 + T1T2
,

Di =
CiT1

−(T1 + 1)l22 + 1− CiT1
, E =

l22 − C2T2

C2T2
,

(34)

G(ω) is the indefinite integral of g(ω). From [33], we can

get G(ω) as follows:

G(ω) =

∫ ω

0

g(t)dt

=
∑

ξ1,ξ2∈SN

sign(ξ1)sign(ξ2)

N−1
∏

o=1

Wo

×G
2,2
2,3

(

1, ξ1(N)−N
M −N + ξ1(N) + ξ2(N)− 1, ξ1(N), 0

∣

∣

∣
ω

)

.

(35)

Proof. See Appendix F.

It can be seen from the theorem that sometimes the outage

probabilities will be 1, depending on the channel conditions,

the power transmission, the number of the antennas, the system

requirements, and the power allocation coefficients we choose.

The results facilitate how to choose parameters and power

allocation coefficients to avoid undesirable situation.

When Pout,1, Pout,2 ̸≡ 1 and P0 → +∞, Pout,1, Pout,2 →
0. We are interested in the decay rate when P0 → +∞. We

analyze them in the next subsection.

D. Asymptotic Analysis

Since the NOMA performs well at high SNR [6], [7], it

is meaningful to analyze the asymptotic outage probabilities

when P0 → +∞. In this subsection, we will obtain the

results by studying the asymptotic characteristic of G(ω).
Specifically, we have the following theorem:

Theorem 5. When P0 → +∞, the asymptotic results of P0

can be expressed as follows:

Pout,1 → 1

P0
, Pout,2 → 1

P0
. (36)

Proof. See Appendix G.

As shown in the theorem, the two users’ asymptotic results

are equal and independent of other parameters, such as the

antenna numbers, the power allocation coefficients or the

transmission distances. This result also demonstrates that the

proposed scheme is fair to two users.
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IV. POWER ALLOCATION FOR SUM RATE MAXIMATION

In this section, we formulate a power allocation problem.

To balance the performance of both users, we use the sum

rate, i.e., R1+R2, as the objective function. In addition, since

the minimum rates are often required in communication, the

constraints of R1 and R2 are need to be considered. Denote

the minimum transmission rate required by the system of Ui

as ri > 0. Then R1 and R2 need to satisfy

R1 ≥ r1, R2 ≥ r2. (37)

Besides, to meet reliability requirements, we set the max-

imum outage probabilities 0 < p1, p2 ≤ 1. Then Pout,1 and

Pout,2 need to satisfy

Pout,1 ≤ p1, Pout,2 ≤ p2. (38)

Therefore, the addressed resource allocation problem can be

formulated as follows:

P1 : max
l2
2

R1 +R2

s.t. 0 ≤ l22 ≤ 1, R1 ≥ r1, R2 ≥ r2,

Pout,1 ≤ p1, Pout,2 ≤ p2.

(39)

In the remainder of the paper, the data rates are defined as

R1(l
2
2) and R2(l

2
2), in order to highlight the fact that l22is the

optimization variable. For simplicity, we represent l22 as x in

the following analysis, i.e., we will use R1(x) and R2(x) to

denote R1(l
2
2) and R2(l

2
2).

Since R1(x)+R2(x) is a non-convex function, it is hard to

solve. On the other hand, the convexity of R1+R2 depends on

parameters C1 and C2. Therefore, we are going to solve this

problem by analyzing the properties of the function R1 +R2.

Specifically, our approach to solve this problem is as follows:

First, we focus on the constraints and transform them into

one inequality like xL ≤ x ≤ xH . Next, we simplify the

original objective function to a simpler function of f(x) by

removing the terms independent of l22. Then by analyzing the

monotonicity of the objective function, we prove that f(x) is

a monotonically increasing function under a certain condition,

that is to say, x∗ = xH when a condition holds. Otherwise,

when the condition does not hold, we offer a suboptimal so-

lution by applying Taylor’s first-order approximation. Finally,

we discuss the condition under which the obtained solution is

optimal. It provides a reference for the parameter selection in

practical.

A. Problem Transformation

In this subsection, we will transform the proposed problem

for analyzing more intuitively.

Firstly, we consider the constraints of effectiveness. The

intervals that x should satisfy are shown visually in Fig. 2.

It is obvious that R1(x) is monotonically decreasing because

a larger x means less power to be allocated to U1. On the

other hand, R2(x) is monotonically increasing. In the extreme

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

(a) Rates

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) Pout

Fig. 2. Rates and outage probabilities vs l22 with the constraints.

case where all power is allocated to one user (i.e., x = 0 or

x = 1), the rates can be calculated as follows:

R1(0) =
N

2

(

log(1 +
1

C1
) + J(

C1

C1 + 1
)− J(1)

)

,

R2(1) =
N

2

(

J(1 +
1

C1
)− J(1)

)

, R1(1) = R2(0) = 0.

(40)

Then the constraints R1 ≥ r1, R2 ≥ r2 can be calculated as

follows:

xr2 ≤ x ≤ xr1, (41)

where

xr1 =

{

R−1
1 (r1), r1 < R1(0)

0, r1 ≥ R1(0)
. (42)

xr2 =

{

R−1
2 (r2), r2 < R2(1)

0, r2 ≥ R2(1)
, (43)
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R−1
i (r) is the inverse function of Ri(x). The value of R−1

i (ri)
can be obtained by bisection search.

Then we consider the constraints of reliability. For brevity,

Pout,1, Pout,2 will be denoted by P1, P2 below. Since G(ω) is

a monotonically increasing function, we can know from (31)

and (33) that P1(x) is monotonically non-decreasing. When

x = 0, P1(x) reaches a minimum as

P1(0) = G(
C1T11

1− C1T1
). (44)

The piecewise function P2(x) is monotonically non-increasing

before CT , and then non-decreasing in the condition of C2 ≥
1

T1+T2+T1T2

. In this case, the minimum of P2(x) is

P2(CT ) = 1−G(
CT − C2T2

C2T2
). (45)

Otherwise, when C2 < 1
T1+T2+T1T2

, P2(x) is a constant

function as P2(x) = 1. To combine these two cases, we set

P2(CT )
′ =











1−G(
CT − C2T2

C2T2
), C2 ≥ 1

T1 + T2 + T1T2

1, C2 <
1

T1 + T2 + T1T2

.

(46)

Then the constraints P1 ≤ p1, P2 ≤ p2 can be calculated

as follows:

xp2L ≤ x ≤ min{xp1, xp2H}, (47)

where

xp1 =







1− C1T1(1 + (G−1(p1))
−1)

T1 + 1
, p1 > P1(0)

0, p1 ≤ P1(0)

. (48)

xp2L =

{

C2T2G
−1(1− p2) + 1, p2 > CT

1, p2 ≤ P2(CT )
′ , (49)

xp2H =







1− C2T1(1 +G−1(1− p2))

T1 + 1
, p2 > CT

0, p2 ≤ P2(CT )
′

. (50)

G−1(p) is the inverse function of G(ω). The value of G−1(pi)
can be also obtained by bisection search.

After removing the independent terms of l2 from −R1−R2,

P1 can be equated to the following problem:

P2 : min
x

f(x)

s.t. xL ≤ x ≤ xH ,
(51)

where

f(x) = log(C1 + x) + J(
C1

C1 + x
)− J(1 +

x

C2
), (52)

xL = max{xr2, xp2L}, xH = min{xr1, xp1, xp2H}. (53)

B. The Suboptimal Algorithm

In this subsection, we offer a suboptimal algorithm for the

proposed problem. We propose an optimal algorithm and a

suboptimal algorithm for two different cases, respectively. At

last, we unify them into a suboptimal algorithm.

1) The optimal solution when the optimality condition

holds: To find the extremum of the objective function to solve

the proposed problem, we analyze the monotonicity of f(x).
It can be proved that f(x) is monotonically decreasing when

a certain condition holds, which is shown as the following

theorem:

Theorem 6. f(x) is monotonically decreasing when

C1

C2
>

1

2

(

d

dx
J(1 +

1

C2
)

)−1

. (54)

Proof. See Appendix H.

According to the above analysis, when C1

C2

>

1
2

(

d
dx
J(1 + 1

C2

)
)−1

, the optimal solution x∗ = xH .

However, when the condition doesn’t hold, we need to solve

it by using another method.

2) The suboptimal solution when the optimality condition

does not hold: When C1

C2

< 1
2

(

d
dx
J(1 + 1

C2

)
)−1

, the function

f(x) is non-convex, which is difficult to solve. Thus, we apply

the first-order Taylor expansion to approximate it in order to

get a suboptimal solution x∗. The first-order Taylor expansion

of f(x) is expressed as follows:

f(x) ≈ f(0) + f
′(x)x

= logC1 + (
1

C1
− 1

C1

d

dx
J(1)− 1

C2

d

dx
J(1))x.

(55)

Then it can be shown that when C1

C2

>
(

d
dx
J(1)

)−1−1, f ′(x)
is monotonically decreasing, i.e, x∗ = xH . Otherwise, f ′

1(x)
is monotonically increasing, and x∗ = xL.

After determining the optimal solution, we can calculate

xL and xH by applying the bisection search. According to

the above analysis, we design a suboptimal power allocation

algorithm as IV-B2.

Algorithm 1 Suboptimal Power Allocation Algorithm

Input: C1, C2, r1, r2, p1, p2,M,N
Output: l2∗2 , when l2∗2 does not exist, output l2∗2 = −1.

1: Obtain R−1
1 (r1), R

−1
2 (r2), G

−1(p1), G
−1(1−p2) by using

bisection search, respectively.

2: Obtain xr1, xr2, xp1, xp2L, xp2H from (42), (43), (48),

(49), (50), respectively.

3: xL = max{xr2, xp2L}, xH = min{xr1, xp1, xp2H}
4: if xL ≥ xH then

5: l2∗2 = −1
6: else

7: if C1

C2

> max{( 12 d
dx
J(1 + 1

C2

))−1,
(

d
dx
J(1)

)−1 − 1}
then

8: l2∗2 = xH

9: else

10: l2∗2 = xL

11: return l2∗2

Then we can analyze the complexity of the algorithm. Since

all operations of the algorithm except the dichotomy are single

operations, only the complexity of the dichotomy need to be

considered. The precision requirement of l2∗2 is assumed to



8

TABLE II
PARAMETERS OF THE CHANNEL OF SIMULATION.

N0 d0 d1 d2 τ

−50dBm 1000m 1000m 800m 2

be ϵ, then the complexity of the dichotomy can be known as

O(log 2
ϵ
). The complexity of the algorithm is 4O(log 2

ϵ
) .

In this subsection, we present a suboptimal power allocation

algorithm. However, when condition (54) holds, the algorithm

offers the optimal solution, which is what we expect. We are

interested in the possibility that this condition holds to judge

the practicability of the algorithm. We will discuss this in the

next subsection.

C. Discussions of the optimality

In this subsection, we will analyze the condition term (54).

Since (54) is not direct-viewing, i.e., it doesn’t give us any

clear condition for optimality, we need to deal with J(x) and

get an estimated expression. From the definition of J(x), the

right side of the inequality can be transformed as follows:

d

dx
J(1 +

P0

dτ2N0
) =

∫ +∞

0

1

ω + 1 + P0

dτ

2
N0

g(ω)dω. (56)

In practice, P0

N0

>> dτ2 . Then the approximation of (56) can

be expressed as follows:

d

dx
J(1 +

P0

dτ2N0
) ≈

∫ +∞

0

dτ2N0

P0
g(ω)dω

= C2.

(57)

Then inequality (54) can be transformed as follows:

C1 >
1

2
. (58)

By substituting (16) into C1, (58) can be rewrited as follows:






P0 ∈ R
+, PR > 2MNdτ1N0

P0 < 2
dτ0N0(NPR + dτ1N0)

PR − 2MNdτ1N0
, otherwise

. (59)

(59) can be used to select an appropriate transmitting power

to get optimal results. We will discuss this further in the next

section.
V. SIMULATION

In this section, simulation results are presented to intuitively

verify the proposed analytical results. The system parameters

of the channels are chosen as Tab. II. All the numerical results

are obtained from 106 times of simulation experiments with

Matlab.

Fig. 3 presents the average rates of the users (R1 +R2)/2
achieved by GSVD-NOMA, the MIMO-NOMA schemes in

[5], and the traditional OMA scheme, respectively. The trans-

mission powers are chosen as P0 = PR = P , and the power

allocation coefficient is set as l22 = 0.13. The unit of the data

rate here is ‘bit per channel use’ (BPCU). It can be observed

from the figure that the GSVD-NOMA scheme has higher

data rates. Besides, as the transmission power increases, the

gaps of the rates of GSVD-NOMA and the other schemes also

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

Fig. 3. The average rates achieved by the GSVD-NOMA, the MIMO-NOMA
schemes in [5], and the OMA scheme, respectively.
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Fig. 4. Analytical and simulation results of rates vs P0 at different M,N .
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Fig. 5. Analytical and simulation results of outage probabilities vs P0 at
different M,N .
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Fig. 6. Analytical and simulation results of rates vs PR at different M,N .

40 45 50 55 60
10

-6

10
-5

10
-4

10
-3

10
-2

Fig. 7. Outage probabilities at a high SNR condition.

increase, demonstrating the great advantage of GSVD at high

SNR.

Fig. 4 and 5 present the simulation and analytical average

rates and outage probabilities of two users with 2×2 and 4×4
antennas, respectively. The transmission powers are chosen as

P0 = P and PR = 20 dBm is a constant. The target SINRs

are set as T1 = T2 = 1. The results verify the accuracy of

Theorem 3 and 4, respectively. It can also be observed that

a larger number of antennas leads to higher average rates

and lower outage probabilities, which are confirmed by the

simulation figure. In practice, we can improve communication

efficiency by increasing the number of antennas. Besides, the

effect of P0 on U1 is far less than that of U2. It is because the

performance of U1 is limited by the relay transmission power

PR. To study the effect of relay transmission power PR, Fig.

6, the diagram of rates vs PR at different M,N , is presented.

The transmission power in BS is set as P0 = 20dBm. It can

be seen from the figure that PR has no effect on U2. On the

other hand, PR is decisive to the performance of U1, which

matches the actual circumstances.

As for asymptotic results from Theorem 5, Fig. 7 presents

the simulation results of the outage probabilities at a high SNR

condition. The antennas are chosen as 2× 2. For the analysis

of decay rate, the reference curve of 1
P

is also presented in

0 0.2 0.4 0.6 0.8 1
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4

6
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12

Fig. 8. Sum rates vs l22 with different P0.
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10
0

10
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10
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Fig. 9. I(d2) vs P0 with different PR.

the figure. As can be seen from the figure, the curves of both

P1 and P2 are approximately parallel to the curve of 1
P

, i.e.,

Pout1 , Pout,2 ∝ 1
P

. These results are consistent with (90) and

verify the asymptotic results of Pout.

Fig. 8 shows the sum rates vs l22 with different p0. It can be

seen from the figure that the sum rate increases monotonically.

According to Algorithm 1, we can get the optimal solution of

l2∗2 as l2∗2 = xL, respectively. We choose the required minimal

rates and maximal outage probabilities as r1 = 0.2, r2 =
1.5, p1 = p2 = 0.5. Then we obtain these results by using

bisection search and present them as points in the figure.

To verify the discussions of optimality of Algorithm 1 from

Subsection IV-C, Fig. 9 is presented and shows the graph of

the function

I(d2) =
C1

C2

/1

2

(

d

dx
J(1 +

1

C2
)

)−1

(60)

vs P0 with different PR. To verify the results, we can obtain

the range of P0 by solving (59) directly: when PR = 10dBm,

P0 ∈ R
+; when PR = 20dBm, P0 < 23dBm; when PR =

30dBm, P0 < 16.4dBm. It can be seen from the figure that

the threshold d2 of I(d2) > 1 is approximately equal to these

three theoretical values. This demonstrates the accuracy of our

analysis results about optimality.
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VI. CONCLUSION

In this paper, an AF relay-assisted MIMO-NOMA trans-

mission scenario with two IoT users was considered. The

expressions of the marginal PDF the GSVs of two channel

matrices were calculated and applied to the performance

analysis. Specifically, the expressions of average rates, outage

probabilities, and the asymptotic results of outage probabilities

at high SNR were calculated, respectively. A suboptimal

Algorithm was also proposed to maximize the sum rate within

the constraints of communication quality requirements. The

optimality conditions of the proposed algorithm are also ob-

tained. Simulation results showed the superiority of the scheme

and verified the conclusions above.

APPENDIX A

PROOF OF THEOREM 1

To facilitate the proof, first define the following matrix:

L = (H1H0)
H(H1H0)(H

H
2 H2)

−1. (61)

From (6), it can be inferred that

L =VHΣH
1 Σ1Σ

−1
2 Σ−H

2 V−H

=VHdiag{ω1, ω2, ..., ωN}V−H .
(62)

(62) is written in terms of eigenvalue decomposition. It can

be shown that the joint PDF of ω1, ω2, ..., ωN equals the joint

PDF of eigenvalues of L. Because the matrix multiplication

exchange order does not change the non-zero eigenvalues, the

eigenvalues of L are equal to the eigenvalues of

L′ = (H†
2)

H(H1H0)
H(H1H0)H

†
2

= ((H1H0)H
†
2)

H((H1H0)H
†
2).

(63)

From the [34], a Lemma can be known as follow:

Lemma 1. Define a matrix

X = GrGr−1...G1(ĜsĜs−1..Ĝ1)
−1, (64)

where Gk ∈ C
nk×nk−1 and Ĝk ∈ C

n̂k×n̂k−1 are Gaussian

random matrices with zero means and unit variances. n0 =
n̂0 = n̂s = N, nk = N + vk, n̂k = N + v̂k. Then the joint

PDF of the non-zero eigenvalues of XXH can be obtained as

follows:

f(ω1, ω2, ..., ωN ) =
1

V

∏

1≤m<n≤N

(ωn − ωm) det({Gm,n,v,v̂}).

(65)

Gm,n,v,v̂ is defined as follows:

Gm,n = Gr,s
s,r

(

v̂′1, v̂
′
2, ...,−v̂′s

v1, v2, ..., vr

∣

∣

∣
ωn

)

, (66)

where v̂′1 = −(v̂1+m−1+N), v̂′t = −(v̂t+N), t = 2, 3, ..., s.

Then the joint PDF of the non-zero eigenvalues of L′ can

be straightforwardly obtained via Lemma 1, and further obtain

the results of the theorem.

APPENDIX B

PROOF OF THEOREM 2

∏

1≤m<n≤N

(ωn − ωm) can be rewritten as a Vandermonde

determinant [35] as follows:

∏

1≤m<n≤N

(ωn − ωm) =











1 ω1 · · · ωN−1
1

1 ω2 · · · ωN−1
2

...
...

. . .
...

1 ωN · · · ωN−1
N











=
∑

ξ1∈SN

sign(ξ1)

N
∏

o=1

ωξ1(o)−1
o

(67)

Then by expanding (67) and the determinant det({Gm,n}) =
∑

ξ2∈SN
sign(ξ2)

∏N

o=1 Gξ2(o),o, (1) can be expressed as fol-

lows:

f(ω1, ω2, ..., ωN ) =
∑

ξ1,ξ2∈SN

sign(ξ1)sign(ξ2)

×
N
∏

o=1

ωN−ξ1(o)
o Gξ2(o),o.

(68)

The expression for marginal PDF is obtained by integrating

(68) as follows:

f(ωN ) =
∑

ξ1,ξ2∈SN

sign(ξ1)sign(ξ2)

×
N−1
∏

o=1

∫ +∞

0

ω
ξ1(o)−1
o Gξ2(o),odωoω

ξ1(N)−1
N Gξ2(N),N .

(69)

From [36],
∫ +∞
0

ω
ξ1(o)−1
o Gξ2(o),odωo can be simplified as

follows:
∫ +∞

0

ω
N−ξ1(o)
o Gξ2(o),odωo

=Γ(ξ1(o))Γ(M −N + ξ1(o) + ξ2(o)− 1)Γ(N − ξ1(o) + 1).
(70)

Then we can get the result of the theorem.

APPENDIX C

PROOF OF THEOREM 1

When M = N = 1, (20) can be rewritten as follows:

g(ω) =G2,1
1,2

(

−1
0, 0

∣

∣

∣
ω

)

=
1

2πj

∫

L

Γ(−u)2Γ(u+ 2)ωn
udu.

(71)

Since all poles of Γ(−u)2 are to the right of the vertical axis

in the complex plane, and all poles of Γ(u+2) are to the left

of the vertical axis in the complex plane. By the definition of

the Meijer G-function, we can choose the integral path L as

L = [−j∞,+j∞]. Then from [35], Gm,n can be calculated

as follows:

g(ω) =
1

2πj

∫ +j∞

−j∞

Γ(−u)2Γ(u+ 2)ωn
u
du

= U(2, 1, ωn).

(72)

Then the proof is completed.
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APPENDIX D

PROOF OF THEOREM 1

The results of definite integrals used in this proof are all

referenced from [35].

Since the modular square of a Gaussian random variable is

subject to the exponential distribution, we can rewrite (23) as

follows:

g(ω0) =
x0x1

x2
, (73)

where xi, i = 0, 1, 2 is the exponential random variable with

the unit rate parameter. Then by using the result of the product

distribution, the PDF of z = x1x2 can be expressed as follows:

f(z) =

∫ +∞

0

e−xe−
z

x

1

x
dx

= 2K0(2
√
z),

(74)

where K0(x) is the modified Bessel function of the second

kind [37]. Then we apply the result of ratio distribution to

ω0 = z
x2

as follows:

f(ω0) = 2

∫ +∞

0

xe−x
K0(2

√
xω0)dx

= ω
− 1

2

0 e
1

2
ω0W− 3

2
,0(ω0),

(75)

where W− 3

2
,0(x) is the Whittaker function [38]. Then by

expanding the Whittaker function into a definite integral,

f(ω0) can be rewritten as follows:

f(ω0) = ω
− 1

2

0 e
1

2
ω0ω

1

2

0 e
− 1

2
ω0

∫ +∞

0

e−ω0t
t

(1 + t)2
dt

=

∫ +∞

0

e−ω0t
t

(1 + t)2
dt

= U(2, 1, ω0).

(76)

The corollary is proved completely.

APPENDIX E

PROOF OF THEOREM 3

First, we define J(x) as follows:

J(x) =

∫ +∞

0

log(ω + x)g(ω)dω. (77)

log(ω+x) can be expressed by Meijer-G function as follows:

log(ω + x) = log x+ log(1 +
ω

x
)

= log x+G1,2
2,2

(

1, 1
1, 0

∣

∣

∣

ω

x

)

.
(78)

Then J(x) can be calculated as follows:

J(x) = log x

∫ +∞

0

g(ω)dω +

∫ +∞

0

G
1,2
2,2

(

1, 1
1, 0

∣

∣

∣

ω

x

)

g(ω)dω

= log x

+
∑

ξ1,ξ2∈SN

sign(ξ1)sign(ξ2)

N−1
∏

o=1

Wo

∫ +∞

0

G
1,2
2,2

(

1, 1
1, 0

∣

∣

∣

ω

x

)

×G
2,1
1,2

(

ξ1(N)−N − 1
M −N + ξ1(N) + ξ2(N)− 2, ξ1(N)− 1

∣

∣

∣
ω

)

dω.

(79)

From [35], the definite integral of the product of two Meijer-

G functions over the positive axis transforms a Meijer-G

function. Then J(x) can be simplified as follows:

J(x) = log x+
∑

ξ1,ξ2∈SN

sign(ξ1)sign(ξ2)

N−1
∏

o=1

WoxG
4,2
3,4

(

−1, ξ1(N)−N − 1, 0
−1,−1,M −N + ξ1(N) + ξ2(N)− 2, ξ1(N)− 1

∣

∣

∣
x

)

= log x+
∑

ξ1,ξ2∈SN

sign(ξ1)sign(ξ2)

N−1
∏

o=1

WoG
4,2
3,4

(

0, ξ1(N)−N, 1
0, 0,M −N + ξ1(N) + ξ2(N)− 1, ξ1(N)

∣

∣

∣
x

)

.

(80)

Then by substituting J(x) into (25) and (26), R1 and R2 can

be calculated as the expressions shown in the theorem.

Therefore, the proof for the theorem is complete.

APPENDIX F

PROOF OF THEOREM 4

Directly from the definitions, Pout,1 can be calculated as

follows:

Pout,1 = 1− Pr{ l21ωq

(l22 + C1)ωq+ C1
> T1}

= 1− Pr{((T1 + 1)l21 − T1(C1 + 1))ω > C1T1}.
(81)

When (T1+1)l21−T1(C1+1) ≤ 0, i.e., l22 ≥ CH,1, Pout,1 = 1.

Otherwise,

Pout,1 = 1−
∫ +∞

D1

g(ω)dω = G(D1). (82)

Similarly, Pout,2 can be calculated as follows:

Pout,2 = 1− Pr{ l21
C2ωq + C2 + l22

> T1,
l22

C2ωq + C2
> T2}

=1− Pr{ω <
(T1 + 1)121 − T1(C2 + 1)

C2T1
, ω <

l22 − C2T2

C2T2
}

= 1− Pr{ω < D
−1
2 , ω < E}.

(83)

When (T1 + 1)l21 − T1(C2 + 1) ≤ 0 or l22 − C2T2 < 0, i.e.,

l22 ≥ CH,2 or l22 ≤ C2T2, Pout,2 = 1. Otherwise,

Pout,2 = 1−
∫ min{D−1

L
,E}

0

g(ω)dω

=

{

1−G(E), C2T2 ≤ l22 ≤ CT

1−G(D−1
2 ), CT ≤ l22 ≤ CH,2

.

(84)

Then we need to compare CT with C2T2 and CH,2.

• When C2 < 1
T1+T2+T1T2

, we have the following equiva-

lence relation:

C2 <
1

T1 + T2 + T1T2
⇔ CH,2 > C2T2

⇔ CT > C2T2 ⇔ CT < CH,2.
(85)

Therefore, Pout,2 can be expressed as (33).

• When C2 ≥ 1
T1+T2+T1T2

, CH,2 ≥ C2T2, Pout,2 = 1.

As a result, the proof for the theorem is complete.
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APPENDIX G

PROOF OF THEOREM 5

To obtain the asymptotic outage probabilities, we need to

obtain the asymptotic characteristic of G(ω) of (35) first.

• When ω → 0, we can directly write the first order Taylor

expansion of G(ω) at ω = 0 as follows:

G(ω) ≈ G(0) + g(0)ω = g(0)ω. (86)

• When ω → +∞, it is difficult to get the asymptotic result

of G(ω) directly. We will transform G(ω) to a definite

integral of two Meijer-G functions’ product. Specifically,

G(ω) can be rewritten as follows:

G(ω) =
∑

ξ1,ξ2∈SN

sign(ξ1)sign(ξ2)

N−1
∏

o=1

Wo

×
∫ +∞

0

G
1,1
2,1

(

M −N + ξ1(N) + ξ2(N)− 1, ξ1(N)
−1

∣

∣

∣
t

)

G
1,1
1,1

(

ξ1(N)−N
0

∣

∣

∣
ωt

)

dt

=
∑

ξ1,ξ2∈SN

sign(ξ1)sign(ξ2)

N−1
∏

o=1

Wo

×
∫ +∞

0

G
1,1
2,1

(

M −N + ξ1(N) + ξ2(N)− 1, ξ1(N)
−1

∣

∣

∣
t

)

Γ(1− ξ1(N) +N)
1

(ωt+ 1)1−ξ1(N)+N
dt.

(87)

When ω → +∞, ωt + 1 → ωt, then G(ω) can be

expressed as follows:

G(ω) =
∑

ξ1,ξ2∈SN

sign(ξ1)sign(ξ2)

N−1
∏

o=1

Wo

×Kξ1,ξ2

1

ω1−ξ1(N)+N
≈ K

1

ω

(88)

where Kξ1,ξ2 ,K are coefficients independent of ω. Here

we omit the higher order terms of 1
ω

, because ( 1
ω
)n << 1

ω

when n ≥ 2.

From (16) and(34), it can be shown that when P0 → +∞,

D1 → 1
P0

, D2 → P0, E → P0. Then by substituting

these into the definitions of Pout, we have

Pout,1 → G(
1

P0
), Pout,2 → G(P0). (89)

From (86) and (88), the asymptotic results of Pout,1 and

Pout,2 can be obtained as follows:

Pout,1 → 1

P0
, Pout,2 → 1

P0
. (90)

Then the proof of the theorem is complete.

APPENDIX H

PROOF OF THEOREM 6

Since

d2J(x)

dx2
= −

∫ +∞

0

1

(ω + x)2
g(ω)dω < 0, (91)

it is known that d
dx
J(x) is monotonically decreasing. Then it

can be inferred that

d

dx
J(1 +

x

C2
) >

d

dx
J(1 +

1

C2
). (92)

Then we can know that

df(x)

dx

=
1

C1 + x
− C1

(C1 + x)2
d

dx
J(

C1

C1 + x
)− 1

C2

d

dx
J(1 +

x

C2
)

<
1

C1 + x
− 1

C2

d

dx
J(1 +

1

C2
) =

f0(x)

(C1 + x)2C2
,

(93)

where f0(x) is an inverted-U quadratic function as follows:

f0(x) =− d

dx
J(1 +

1

C2
)x2 + (C2 − 2C1

d

dx
J(1 +

1

C2
))x

− C
2
1
d

dx
J(1 +

1

C2
).

(94)

When C1

C2

> 1
2

(

d
dx
J(1 + 1

C2

)
)−1

, the axis of symmetry

−
C2 − 2C1

d
dx
J(1 + 1

C2

)

2×− d
dx
J(1 + 1

C2

)
< 0. (95)

Since f0(0) < 0, it can be inferred that f0(0) is negative on

the positive axis. On the other hand, f(x) is monotonically

decreasing. Then the proof of the theorem is completed.

REFERENCES

[1] A. Kaye and D. George, “Transmission of multiplexed PAM signals
over multiple channel and diversity systems,” IEEE Transactions on

Communication Technology, vol. 18, no. 5, pp. 520–526, 1970.
[2] Y. Huang, C. Zhang, J. Wang, Y. Jing, L. Yang, and X. You, “Signal

processing for MIMO-NOMA: Present and future challenges,” IEEE

Wireless Communications, vol. 25, no. 2, pp. 32–38, 2018.
[3] B. M. Lee and H. Yang, “Massive MIMO with massive connectivity

for industrial internet of things,” IEEE Transactions on Industrial

Electronics, vol. 67, no. 6, pp. 5187–5196, 2020.
[4] P. Liu and T. Jiang, “Channel estimation performance analysis of

massive MIMO IoT systems with ricean fading,” IEEE Internet of Things

Journal, vol. 8, no. 7, pp. 6114–6126, 2021.
[5] Z. Ding, F. Adachi, and H. V. Poor, “The application of MIMO

to non-orthogonal multiple access,” IEEE Transactions on Wireless

Communications, vol. 15, no. 1, pp. 537–552, 2016.
[6] Z. Ding, R. Schober, and H. V. Poor, “A general MIMO framework for

NOMA downlink and uplink transmission based on signal alignment,”
IEEE Transactions on Wireless Communications, vol. 15, no. 6, pp.
4438–4454, 2016.

[7] Z. Chen, Z. Ding, X. Dai, and R. Zhang, “An optimization perspective
of the superiority of NOMA compared to conventional OMA,” IEEE

Transactions on Signal Processing, vol. 65, no. 19, pp. 5191–5202, 2017.
[8] M. Zeng, A. Yadav, O. A. Dobre, G. I. Tsiropoulos, and H. V.

Poor, “Capacity comparison between MIMO-NOMA and MIMO-OMA
with multiple users in a cluster,” IEEE Journal on Selected Areas in

Communications, vol. 35, no. 10, pp. 2413–2424, 2017.
[9] U. Uyoata, J. Mwangama, and R. Adeogun, “Relaying in the internet

of things (IoT): A survey,” IEEE Access, vol. 9, pp. 132 675–132 704,
2021.

[10] D. Zhang, Y. Liu, Z. Ding, Z. Zhou, A. Nallanathan, and T. Sato,
“Performance analysis of non-regenerative massive-MIMO-NOMA re-
lay systems for 5G,” IEEE Transactions on Communications, vol. 65,
no. 11, pp. 4777–4790, 2017.

[11] M.-G. Bereeanu, C. Voicu, and S. Halunga, “AF relaying in a massive
MU-MIMO OFDM system,” in 2018 IEEE 24th International Sympo-

sium for Design and Technology in Electronic Packaging? (SIITME),
2018, pp. 226–229.

[12] X. Yue, Y. Liu, S. Kang, A. Nallanathan, and Z. Ding, “Exploiting
full/half-duplex user relaying in NOMA systems,” IEEE Transactions

on Communications, vol. 66, no. 2, pp. 560–575, 2018.



13

[13] J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless
networks: Efficient protocols and outage behavior,” IEEE Transactions

on Information Theory, vol. 50, no. 12, pp. 3062–3080, 2004.
[14] B. Lee and C. Lee, “A joint precoding scheme for MIMO systems with

distributed single antenna AF relays,” in 2012 International Conference

on ICT Convergence (ICTC), 2012, pp. 666–670.
[15] F. Heliot and R. Tafazolli, “Energy-efficient joint source and relay

precoding design for cooperative MIMO-AF systems,” in 2017 European

Conference on Networks and Communications (EuCNC), 2017, pp. 1–6.
[16] J. L. Bing, L. Gopal, Y. Rong, C. W. R. Chiong, and Z. Zang, “Robust

transceiver design for multi-hop AF MIMO relay multicasting from
multiple sources,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 2, pp. 1565–1576, 2021.

[17] M. Costa, “Writing on dirty paper (corresp.),” IEEE transactions on

information theory, vol. 29, no. 3, pp. 439–441, 1983.
[18] H. Harashima and H. Miyakawa, “Matched-transmission technique for

channels with intersymbol interference,” IEEE Transactions on Commu-

nications, vol. 20, no. 4, pp. 774–780, 1972.
[19] A. Li and C. Masouros, “A two-stage vector perturbation scheme for

adaptive modulation in downlink MU-MIMO,” IEEE Transactions on

Vehicular Technology, vol. 65, no. 9, pp. 7785–7791, 2016.
[20] C. Masouros, “Correlation rotation linear precoding for MIMO broadcast

communications,” IEEE Transactions on Signal Processing, vol. 59,
no. 1, pp. 252–262, 2011.

[21] X. Zhang, Y. Qi, and M. Vaezi, “A rotation-based method for precoding
in gaussian MIMOME channels,” IEEE Transactions on Communica-

tions, vol. 69, no. 2, pp. 1189–1200, 2021.
[22] L. Gerdes, L. Weiland, and W. Utschick, “Optimal partial decode-and-

forward rates for the gaussian MIMO relay channel using the GSVD,” in
2014 IEEE 15th International Workshop on Signal Processing Advances

in Wireless Communications (SPAWC), 2014, pp. 259–263.
[23] Z. Chen, Z. Ding, X. Dai, and R. Schober, “Asymptotic performance

analysis of GSVD-NOMA systems with a large-scale antenna array,”
IEEE Transactions on Wireless Communications, vol. 18, no. 1, pp. 575–
590, 2018.

[24] C. Rao, Z. Ding, and X. Dai, “The distribution characteristics of ordered
GSVD singular values and its applications in MIMO-NOMA,” IEEE

Communications Letters, pp. 1–1, 2020.
[25] M. F. Hanif and Z. Ding, “Robust power allocation in MIMO-NOMA

systems,” IEEE Wireless Communications Letters, vol. 8, no. 6, pp.
1541–1545, 2019.

[26] C. Rao, Z. Ding, and X. Dai, “GSVD-based MIMO-NOMA security
transmission,” IEEE Wireless Communications Letters, vol. 10, no. 7,
pp. 1484–1487, 2021.

[27] C. Rao, “Application of GSVD-based precoding in MIMO-NOMA
relaying systems,” IET Communications, vol. 14, pp. 3802–3812(10),
December 2020.

[28] D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge university press, 2005.
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