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Abstract
While Doppler resilient complementary waveforms (DRCWs) have previously been
considered to suppress range sidelobes within a Doppler interval of interest in radar
systems, their ability to provide Doppler resilience can be further improved. A new
singular value decomposition (SVD)‐based DRCW construction is proposed, in which
both transmit pulse trains (made up of complementary pairs) and receive pulse weights
are jointly considered. Besides, using the proposed SVD‐based method, a theoretical
bound is derived for the range sidelobes within the Doppler interval of interest. More-
over, based on the SVD solutions, a challenging non‐convex optimization problem is
formulated and solved to maximise the signal‐to‐noise ratio (SNR) with the constraint of
low range sidelobes. It is shown that, compared with existing DRCWs, the proposed
SVD‐based DRCW has better Doppler resilience. Further, the new optimised SVD‐based
DRCW has a higher SNR while maintaining the same Doppler resilience.
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1 | INTRODUCTION

In pulsed radar systems, pulse compression technology [1, 2]
has commonly been used to obtain large pulse energy, wide
bandwidth, and improved range resolution. Through the use
of a matched filter receiver, the returned signal reflected by a
target goes through a filter matched to the reverse and
conjugate version of the transmitted pulse. Then the echo
signal is compressed into a short pulse which is shown in the
matched filter output along with the well‐known maximum
SNR. However, the matched filter output also has undesired
range sidelobes if the pulses are not carefully chosen. Be-
sides, for active sensing systems such as air surveillance ra-
dars, it is a challenge to detect the illegally flying micro
drones in urban regions, since the signal‐to‐clutter ratio
(SCR) of the small moving object is usually quite poor [3].
Thus, it is a key issue for an active sensing system to sup-
press the sidelobes in an ultra‐low level under the consid-
eration of Doppler shift, to prevent strong scatterers from
masking weak targets [3].

In order to obtain these low range sidelobes, phase coding
is usually used in radar for a digital pulse compression. For a
phase coded waveform, it is phase coded by a unimodular code
or sequence. The matched filter output of a phase coded
waveform is controlled by an aperiodic auto‐correlation
function of a code (sequence). For bi‐phase codes, the
Barker code [4] is a famous code whose aperiodic auto‐
correlation function has low sidelobes with only one element
amplitude value. In addition, the polyphase codes proposed by
Heimiller [5] and Chu [6] also have low sidelobes of aperiodic
auto‐correlation functions. However, it is impossible to achieve
zero sidelobes of an aperiodic auto‐correlation with one
unimodular sequence [7]. This has resulted in the use of Golay
complementary pairs in phase coding.

In radar, Golay waveforms phase coded by Golay pairs are
coherently transmitted, and the returned signals are also
coherently processed through the matched filter. Then the sum
of the matched filter outputs has very low range sidelobes since
Golay pairs have an impulse‐like aperiodic autocorrelation
function. But the Golay pairs are sensitive to Doppler effects
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that result from the moving targets. In other words, as the
inter‐pulse Doppler shift changes the phase of the comple-
mentary waveforms, the matched filter outputs' sum of com-
plementary waveforms have fairly high range sidelobes. In
order to solve this problem, some methods for constructing
Doppler resilient complementary waveforms (DRCW) have
been proposed. These existing construction methods fall into
two categories.

The first category only concerns the transmission of the
basic Golay waveforms. The transmission is determined by
space‐time codes [7–14]. Examples of these codes that play a
key role in constructing Doppler resilient Golay waveforms
(pulse train) are first‐order Reed‐Müller codes [8]. The
Prouhet‐Thue‐Morse (PTM) sequences [7, 12, 13], over-
sampled PTM sequences [9], generalised PTM sequences [10],
and equal sums of powers (ESP) sequences [11]. Pezeshki et al.
[7] used the Prouhet‐Thue‐Morse (PTM) sequence to arrange
the transmission of Golay waveforms to obtain a DRCW
which can almost clear range sidelobes (which are approxi-
mately equal to −80 dB) in a small Doppler resilient interval
(i.e., [−0.1, 0.1] in rad). Chi et al. [9] proposed DRCWs based
on the oversampled PTM sequence which can also almost clear
range sidelobes not only near zero Doppler but also in all
rational Doppler shifts (in rad). Tang et al. [10] designed
DRCW with complete complementary codes based on the
generalised PTM sequence for MIMO radar, which can
significantly suppress the range sidelobes near zero Doppler.
However, these above transmit‐only designs do not provide a
large Doppler resilient interval.

To overcome the problem of transmit‐only DRCW design,
the second category focuses on not only the transmission of
the basic Golay waveforms but also on the weight of the
receiver filter. Dang et al. [15–17] proposed the binomial
design (BD) that puts binomial coefficients as the weight of the
receiver filter, and alternatively transmits Golay waveforms at
the transmitter. The BD method has a relatively large Doppler
resilient interval, in which range sidelobes are suppressed down
to almost zero. Wu et al. [18] extends Dang's idea to design a
Doppler resilient complementary waveform by semi‐definite
programing which can obtain the weight of the receiver filter
and improves the signal‐to‐noise ratio (SNR) without suffering
high range sidelobes. Furthermore, Wu et al. [19] also
considered an approach directly forcing the energy of the key
term in desired spectral bands under the low modulus variation
constraint and weight energy, which is solved by the major-
isation minimisation (MM) method efficiently. Besides, it re-
alizes flexible Doppler interval control and very low range
sidelobes if the parameters are chosen properly.

In this paper, new constructions of DRCWs based on a
singular value decomposition (SVD) method are proposed.
The main contributions of this paper are listed as follows:

� An SVD‐based DRCW construction is proposed, by
considering both transmit pulse trains (made up of com-
plementary pairs) and receive pulse weights.

� Based on the defined ambiguity function [17], a singular
value‐related upper bound is derived, indicating that our

new DRCW can guarantee near‐zero range sidelobes
(<− 80 dB) within the specified Doppler interval of interest.

� We prove that the upper bound of range sidelobes for MM‐
based DRCW [19] is not lower than that of the proposed
SVD‐based DRCW, based on the analysis of the optimiza-
tion problem (Eq. (18) in [19]). Therefore, SVD‐based
DRCW always outperforms MM‐based DRCW with
respect to Doppler resilience.

� A challenging non‐convex optimization problem is formu-
lated to maximise the signal‐to‐noise ratio (SNR) with the
constraint of low range sidelobes. Then the non‐convex
optimization problem is transformed into a simpler prob-
lem based on SVD solutions, which is subsequently solved
by introducing a basis selection (BS) method, and modified
coordinate descent (MCD) method, resulting in BS‐SVD‐
based DRCW and MCD‐SVD‐based DRCW respectively.

� The proposed methods of the SVD‐based DRCWs can have
lower range sidelobes and a higher peak within a broader
Doppler resilient interval than the previous ones. Besides,
the SNR of the proposed method is also better than the
previous weighed schemes (BD, MM). Thus, the proposed
SVD‐based DRCWs can help detect the moving targets
such as illegally flying micro drones.

1.1 | Notation

The superscripts (⋅)T, (⋅)* and (⋅)H denote transpose, complex
conjugate, and conjugate transpose, respectively. In addition, ◦
denotes the Hadamard product.

2 | SIGNAL MODEL

A pair of biphase sequences x and y is called a Golay pair or a
complementary pair if

Cx½k� þ Cy½k� ¼ 2Lδk; k¼ −Lþ 1;…; 0;…;L − 1 ð1Þ

where Cx[k] is the auto‐correlation function of x at lag k, δk is
the Kronecker delta function, and x = [x[0], x [1],…, x
[L − 1]]T, y = [y[0], y [1],…, y[L − 1]]T.

In the signal model, the basic Golay complementary
waveforms sx(t) and sy(t) are phase coded by the Golay com-
plementary pair (x, y) [9, 15, 16], that is,

sxðtÞ ¼
XL−1

l¼0

x½l�u t − lTcð Þ; syðtÞ ¼
XL−1

l¼0

y½l�u t − lTcð Þ; ð2Þ

where u(t) is a unit‐energy baseband pulse shape with
0 ≤ t ≤ Tc, and Tc is the chip length [9].

Let the vector p¼ p0; p1;…; pN−1½ �
T be the characteristic

vector to control the transmission of the basic Golay wave-
forms sx(t) and sy(t), where N is the number of pulses and
pn = 1 or −1. If pn = 1, sx(t) is transmitted, otherwise sy(t) is
transmitted. Thus the characteristic vector p and the basic
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Golay waveforms, sx(t) and sy(t) constitute the Golay trans-
mission waveform or complementary waveform, Zp(t), that is,

ZPðtÞ ¼
XN−1

n¼0

1þ pn
2
sxðt − nTÞ þ

1 − pn
2
syðt − nTÞ

� �

; ð3Þ

where T denotes the pulse repetition interval (PRI).
Let the input to the matched filter be ZP(t)e jνt, where

ν = 2πfd, and fd is the Doppler shift in Hz. Also, ZP(t)e jνt

passes through the linear filter with impulse response Z∗
W ð−tÞ,

where

ZW ðtÞ ¼
XN−1

n¼0
w∗
n
1þpn
2
sxðt−nTÞþ

1−pn
2
syðt − nTÞ

� �

; ð4Þ

wn 2 C is the coefficient of receiver filter and
w¼ w0;w1;…;wN−1½ �

T .
Then the output, that is, the cross‐ambiguity function is

given by

χP;W ðτ; f Þ ¼
Z þ∞

−∞
ZPðtÞZ∗

W ðt − τÞej2πf tdt: ð5Þ

The radar parameters (such as chip length Tc and PRI T ) are
chosen to ensure that LTc is much less than T and νLTc is almost
equal to zero, where f is the Doppler shift in Hz. After carefully
choosing the radar parameters, the centre lobe of χP,W(τ, ν)
depends on the discrete cross ambiguity function [17, 18].

AP;W ðk; θÞ ¼
1
2
Cx½k� þ Cy½k�
� �XN−1

n¼0
wne jnθ

þ
1
2
Cx½k� − Cy½k�
� �XN−1

n¼0
pnwne jnθ;

ð6Þ

where θ = 2πfT is the Doppler shift in radians. The complete
proof is given as follows.

Proof. Consider that sx(t) is phase coded by x = [x[0], …, x
[L − 1]]T, and the discrete time is τ = kTc, k = −L þ 1, …,
L − 1, then the discrete‐time ambiguity function of sx(t) is
written as [20].

χx kTc; fð Þ ¼

Z ∞

−∞
sxðtÞ ⋅ s∗x t þ kTcð Þe j2πf tdt

¼
XL−1

l¼0

x½l�x∗½kþ l� ⋅
sin πf Tcð Þ

πf Tc
⋅ e jπf ð2l−1ÞTc :

ð7Þ

Since πf(2l − 1)Tc < 2πfLTc, l = 0, 1, …, L − 1 and
πfTc < 2πfLTc, if 2πfLTc is almost equal to zero, that is, νLTc
is almost equal to zero, and it can be proved that

sin πf Tcð Þ

πf Tc
⋅ e jπf ð2l−1ÞTc ≈ 1; ð8Þ

so that

χx kTc; fð Þ ¼
XL−1

l¼0

x½l�x∗½kþ l� ¼ CxðkÞ; ð9Þ

which means that the ambiguity function can be equivalent to
the autocorrelation function. Similarly,

χy kTc; fð Þ ¼ CyðkÞ: ð10Þ

Since the cross ambiguity function χP,W(τ, f ) for τ 2 [−T,
T] is written as [17].

χP;W ðτ; f Þ ¼
Z þ∞

−∞
ZPðtÞZ∗

W ðtþ τÞe j2πf tdt

¼
XN−1

n¼0
wn

1þpn
2

χxðτ; f Þ þ
1−pn
2

χyðτ; f Þ
� �

e j2πf nT

¼
1
2

χxðτ; f Þ þ χyðτ; f Þ
h iXN−1

n¼0
wne j2πf nT

þ
1
2

χxðτ; f Þ − χyðτ; f Þ
h iXN−1

n¼0
pnwne j2πf nT ;

ð11Þ

then let θ = 2πfT, and we have

χP;W kTc;
θ

2πT

� �

¼
1
2

χx kTc;
θ

2πT

� �

þ χy kTc;
θ

2πT

� �� �
XN−1

n¼0
wne jnθ

þ
1
2

χx kTc;
θ

2πT

� �

− χy kTc;
θ

2πT

� �� �
XN−1

n¼0
pnwne jnθ;

¼
1
2
CxðkÞ þ CyðkÞ
� �XN−1

n¼0
wne jnθ

þ
1
2
CxðkÞ − CyðkÞ
� �XN−1

n¼0
pnwne jnθ:

ð12Þ

In our manuscript, notation AP;W ðk; θÞ is used to replace
χP;W kTc; θ

2πT

� �
, then Equation (6) holds. □
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On the right‐side of Equation (6), the first term only de-
termines the shape of jAP;W ð0; θÞj since the Golay comple-
mentary pair (x, y) makes the first term vanish at nonzero k.
However, a key term fz(θ) in the second term results in the
range sidelobes, where

fzðθÞ ¼
XN−1

n¼0
zne jnθ: ð13Þ

here, zn = pnwn and z¼ z0; z1;…; zN−1½ �
T . To judge the

Doppler resilient complementary waveform specified by {p,w},
two performance metrics are used, that is,

1) Doppler resilience: Let Θ be the Doppler interval of
interest, then it is Doppler resilient if the range sidelobes of
Equation (6) in dB are

20log10 jAP;W ðk; θÞj=jAP;W ð0; 0Þj
� �

≤ −80 dB; k ≠ 0; θ 2Θ;
ð14Þ

and Θ can be called the Doppler resilient interval, where the
threshold −80 dB is referred from [19].

2) Signal‐to‐noise (SNR) [17–19]: The SNR gain pro-
duced by coherent integration is kwk21=kwk

2
2, if we assume the

receiver noise is Gaussian white noise. The maximum SNR
gain is N, if w is an all‐one vector.

3 | SVD APPROACH AND BOUND
ANALYSIS FOR DOPPLER RESILIENCE

3.1 | SVD approach

According to [19], the Doppler interval [−π, π) can be
discretised into Φ¼ ~θ0; ~θ1;…; ~θ2N−1

� �
, where ~θi ¼ 2πði−NÞ

2N ,
i = 0, 1, …, 2N − 1. Let Θ � [−π, π) be the Doppler
interval of interest. If ~θim 2Θ, m = 0, 1, …, M − 1, im 2
{0, 1, …, 2N − 1}, then the set of Doppler shifts of in-
terest is ΘΔ ¼ ~θi0; ~θi1;…; ~θiM−1

� �
. Without loss of generality,

let θm ¼ ~θim, then we have ΘΔ = {θ0, θ1, …, θM−1}. Thus,
the key term Equation (13) can be transformed into a
discrete form:

fz θmð Þ ¼
XN−1

n¼0
zne jnθm ; m¼ 0; 1;…;M − 1; ð15Þ

which can be rewritten as a compact form:

fz θmð Þ ¼ eTmþ1z; m¼ 0; 1;…;M − 1; ð16Þ

where eTmþ1 ¼ e
j0θm ; e j1θm ;…; e jðN−1Þθm

� �
.

To simply the analysis of Equation (15), a Doppler Van-
dermonde matrix E 2 CM�N is defined as follows:

E¼

e j0θ0 e j1θ0 e j2θ0 ⋯ e jðN−1Þθ0

e j0θ1 e j1θ1 e j2θ1 ⋯ e jðN−1Þθ1

⋮ ⋮ ⋮ ⋮ ⋮
e j0θM−1 e j1θM−1 e j2θM−1 ⋯ e jðN−1ÞθM−1

2

6
6
4

3

7
7
5: ð17Þ

Then we have

fz θ0ð Þ;…; fz θM−1ð Þ½ �
T
¼ Ez ð18Þ

To satisfy Equation (14), |fz(θm)| should be as small as
possible which implies that kEzk22 should be small.

Generally, singular value decomposition (SVD) of E is in
matrix form which is given by E = UΣVH, or EV = UΣ, that
is,
• if M ≤ N, we have

E v1⋯vr⋯vM⋯vN½ �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V2CN�N

¼ u1⋯ur⋯uM½ �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

U2CM�M

σ1
⋱

σM

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Σ2CM�N

;

ð19Þ

where Σ in Equation (19) contains all‐zero column vectors
from the (M + 1)‐th column to the Nth column;
In other words,

Evi ¼
σiui; if i¼ 1; 2;…;M
0; if i¼M þ 1;…;N ;

�

ð20Þ

� if M > N, we have

E v1⋯vr⋯vN½ �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

V2CN�N

¼ u1⋯ur⋯uN⋯uM½ �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

U2CM�M

σ1
⋱

σN

2

6
6
6
4

3

7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Σ2CM�N

ð21Þ

where Σ in Equation (21) contains all‐zero row vectors from
the (N + 1)‐th row to the Mth row. In other words,

Evi ¼ σiui; i¼ 1; 2;…;N : ð22Þ

Note that in Equations (19) and (21), U and V are unitary
matrices whose 2‐norms of column vectors are equal to 1 and
Σ is the singular matrix whose diagonal elements are singular
values.
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Without loss of generality, the singular values in Equa-
tions (19) and (21) are sorted in descending order, that is,
σ1 ≥ σ2 ≥⋯ ≥ σmin{M,N}. If σr+1 ≈ 0, then according to
Equations (20) and (22), the desired z can be obtained, that is,

z¼ vi; i¼ r þ 1;…;N ð23Þ

which can be included in a desired matrix:

Z¼ vrþ1⋯vN½ �: ð24Þ

After that, p and w can be found from Z. Supposed that ẑ 2 Z,
then p and w are solved as follows:

pn ¼
þ1; if Re ẑnf g ≥ 0;
−1; if Re ẑnf g < 0;

�

ð25Þ

wn ¼
þẑn; if Re ẑnf g ≥ 0;
−ẑn; if Re ẑnf g < 0:

�

ð26Þ

Accordingly, we summarise the above approach in
Algorithm 1.

Algorithm 1 The SVD-based DRCW design

1: Input ΘΔ � Θ, N.
2: Generate matrix E shown in Equation (17).
3: Do SVD of E, obtain σr+1, …, σmin{M,N} < 10−4

and Z = [vr+1, …, vN].
4: Select a vector from Z, called ẑ
5: Obtain p and w based on Equations (25)

and (26).
6: Obtain SVD-based DRCW based on

Equations (3) and (4).

3.2 | Theoretical bound

In this subsection, with respect to the proposed SVD‐based
DRCW, an upper bound is derived for the range sidelobes of
Equation (6). Also, it is shown that the upper bound of range
sidelobes of the MM‐based DRCW is not lower than that of
SVD‐based DRCW.

In order to facilitate the derivation of the upper bound, a
lemma is provided.

Lemma 1. If θ 2 ΘΔ, E is in Equation (17), then for any given
z 2 CN with kzk2 = 1, the range sidelobes of discrete‐time
composite ambiguity function Equation (6) can be upper
bounded by LkEzk2.

Proof. According to Equation (18), we have

jfzðθÞj ≤ kEzk2: ð27Þ

Then we have

jAP;W ðk; θÞj ¼ j
1
2
Cx½k� − Cy½k�
� �XN−1

n¼0
pnwne jnθj ð28Þ

≤ LjfzðθÞj ≤ LkEzk2: ð29Þ

□

Thus, we can derive an upper bound of range sidelobes of
(6) for SVD‐based DRCW as follows:

Proposition 1. If θ 2 ΘΔ, E is in Equation (17), z = vi 2 Z,
and the associated singular value is σi, then the range sidelobes
of the discrete‐time composite ambiguity function Equation (6)
can be upper bounded by Lσi.

Proof. According to the definition of SVD, we have Evi = σiui,
and based on Lemma 1, we have

jAP;W ðk; θÞj ≤ LjfzðθÞj ¼ LjfviðθÞj

≤ LkEvik2 ¼ Lkσiuik2 ¼ Lσi:
ð30Þ

□

From Proposition 1, we know that σi ≤ 10−4 guarantees
that the range sidelobes are lower than −80 dB for SVD‐based
DRCW if jAP;W ð0; 0Þj ≥ L.

As for the comparison of the range sidelobes of an MM‐
based DRCW and that of an SVD‐based DRCW, let us first
consider the optimization problem (Eq. (18) in [19]) to be
solved by majorisation minimisation (MM), that is,

min
z

kEzk22

s:t: δl ≤ jznj ≤ δu

kzk22 ¼ 1;

ð31Þ

where δl ≤ |zn| ≤ δu is the modulus constraint which can
control SNR gain. However, the optimization problem cannot
be effectively solved based on the MM framework, if matrix E
or modulus parameters δl, δu are not chosen properly. Thus, it
is necessary for us to analyse the range sidelobes of an MM‐
based DRCW and compare it with the proposed SVD‐based
DRCW.

Proposition 2. If θ 2 ΘΔ, E is in Equation (17) with M ≥ N
and z 2 CN with kzk2 = 1, then the upper bound of range
sidelobes for an MM‐based DRCW is not lower than that of
the SVD‐based DRCW.

Proof.When M ≥ N, singular value decomposition (SVD) of E
is in matrix form which is given by E = UΣVH, that is,
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E¼ u1⋯uN⋯uM½ �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

U2CM�M

σ1
⋱

σN

2

6
6
6
4

3

7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Σ2CM�N

v1⋯vN½ �
H

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
VH2CN�N

ð32Þ

where U and V are orthogonal matrices. Then for any ~z 2 CN

and k~zk2 ¼ 1, we have

kE~zk2 ¼ kUΣV
H~zk2 ¼ kΣV

H~zk2
≥ σNkVH~zk2 ¼ σNk~zk2 ¼ σN :

ð33Þ

where σN is the smallest singular value. Based on Proposition
1, σN corresponds to singular vector solution z = vN and the
range sidelobes based on SVD can be upper bounded by LσN.
Based on Lemma 1, the range sidelobes based on MM can be
upper bounded by LkE~zk2. Then based on Equation (33), we
have LkE~zk2 ≥ LσN . Thus, the proposed SVD‐based DRCW
always outperforms MM‐based DRCW when Doppler resil-
ience is considered. □

4 | DOPPLER RESILIENCE AND SNR

In this section, we consider not only Doppler resilience but
also SNR, and design a DRCW based on two SVD‐based
approaches which will be introduced later.

The SNR is described as [15–17]:

SNR ¼
Lσ2b
N0
kwk21
kwk22

; ð34Þ

where σ2b is the power of the target and N0 is the power
spectral density (PSD) of the white noise [17].

We can maximise the SNR by maximising the SNR gain
kwk21=kwk

2
2. In fact, kwk21=kwk

2
2 can be replaced by kzk21=

kzk22, because

kzki ¼ kp ◦ wki ¼ kwki; i¼ 1; 2 ð35Þ

where the second equation holds since pn = 1 or − 1.
The Doppler resilience is still considered, that is, according

to Lemma 1, the range sidelobes should be controlled by

kEzk2 ≤ ε; ð36Þ

where z = p ◦ w, pn 2 {1, −1}. Then the optimization problem
is proposed as follows:

max
z

kzk21
kzk22

s:t: kEzk2 ≤ ε

ð37Þ

Although the constraint is a convex set, the optimization
problem Equation (37) is still challenging, since the objective
function in Equation (37) is not a concave function. To deal
with it, we can transform the complex style into a much
simpler form by decreasing the dimension of the optimization
problem. Before transforming it, another proposition is
required.

Proposition 3. After the SVD of E, the desired matrix Z is
obtained as in (24), and λ¼ λ1;…; λU½ �

T with λu 2 [−1, 1],
then kEZλk2 ≤ Umaxu{σu + r} where U = N − r.

Proof. Without loss of generality, let zu = vu þ r with u = 1, 2,
…, U. Then we can obtain that

kEZλk2 ¼ E
XU

u¼1
λuzu

 !�
�
�
�
�

�
�
�
�
�
2

≤
XU

u¼1
λuEzu

�
�
�
�
�

�
�
�
�
�
2

≤
XU

u¼1
jλuj Ezuk k2¼

XU

u¼1
jλuj Evuþrk k2

¼
XU

u¼1
jλuj σuþruuþrk k2¼

XU

u¼1
jλuj σuþrk k2

≤Umax
u

σuþrf g:

ð38Þ

□

From Lemma 1 and Proposition 3, we know that the
ambiguity function Equation (6) in dB can be upper bounded
by Umaxu{σu + r}. Thus, the constraint in Equation (37) can
be transformed into kEZλk ≤ ε and the dimension of the
optimization problem is changed from N to U where U < N.
In other words, the original long length‐N optimization vari-
able z is replaced by a short length‐U optimization variable λ
so that the complexity can be decreased.

Accordingly, the new DRCW design based on solving the
optimization problem, Equation (37) can be transformed into
two steps:

� Step 1. Solve the following

max
λ

kZλk21
kZλk22

: ð39Þ

� Step 2. Implement Equations (25) and (26) and obtain
DRCW based on Equations (3) and (4).

4.1 | Basis selection (BS)‐SVD‐based
DRCW

The optimization problem Equation (39) is still a difficult
problem, since its objective function is a non‐concave function
with a fractional term. In this paper, a BS algorithm is
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proposed which can remove the fractional expression form
and transform Equation (39) into a much easier, discrete
problem.

It is simple to show that if there is only one non‐zero
element in λ, and it has value “1”, then the optimization
problem Equation (39) is transformed into

max
λ
kZλk21 ð40Þ

Therefore, among {kzuk1 : u = 1, 2, …, v, …, U}, if kzvk1 is
the largest one, the optimal solution to Equation (40) is

λu ¼
1; if u¼ v
0; otherwise:

�

ð41Þ

In other words, the so‐called BS approach is to select a vector
from Z, called ẑ, such that kẑk21 is the largest one compared
with other vectors in Z (Algorithm 2).

Algorithm 2 Basis selection (BS)-SVD-based
DRCWdesign

1: z1, z2, …, zU 2 Z are the basis vectors.
2: Compute kz1k1, kz2k1, …, kzUk1.
3: if kzuk1 is the largest one, choose zu.
4: Let ẑ¼ zu, then p and w can be obtained

from Equations (25) and (26).
5: Obtain p and w based on Equations (25)

and (26).
6: Obtain BS-SVD-based DRCW based on

Equations (3) and (4).

4.2 | Modified coordinate descent (MCD)‐
SVD‐based DRCW

Although the BS‐SVD approach has a low computational
complexity, it has a very limited performance because the el-
ements of λ are restricted to the set {0, 1}. In order to improve
the performance, we now propose another method—called the
modified coordinated descent (MCD) algorithm with multiple
initial points where the binary constraint on λ is removed and
now λu 2 [−1, 1]. MCD can be viewed as a relatively effective
method to deal with the non‐convex optimization problem
with a much larger constraint set.

Generally speaking, the Coordinate Descent (CD) algo-
rithms [21] are iterative methods. The most common CD al-
gorithm is by fixing other elements of the variable vector and
obtaining the new iteration point by minimising (maximising)
the objective function with respect to a single element of
variable vector. In other words, when an optimization problem
was considered, that is,

min
x2RN

f ðxÞ; ð42Þ

then the CD algorithm starts with some initial vector x ð0Þ ¼

xð0Þ0 ; xð0Þ1 ;…; xð0ÞN−1

� �
and repeats the following iteration

xðkÞ0 ¼ argmin
x0
f x0; x

ðk−1Þ
1 ; xðk−1Þ2 ; …; xðk−1ÞN−1

� �
;

xðkÞ1 ¼ argmin
x1
f xðkÞ0 ; x1; x

ðk−1Þ
2 ; …; xðk−1ÞN−1

� �
;

xðkÞ2 ¼ argmin
x2
f xðkÞ0 ; xðkÞ1 ; x2;…; xðk−1ÞN−1

� �
;

⋮

xðkÞN−1 ¼ argmin
xN−1

f xðkÞ0 ; xðkÞ1 ; xðkÞ2 ;…; xN−1

� �
;

ð43Þ

where k = 1, 2, 3, ⋯.
Since the objective value of Equation (39) is always no less

than 0, maximising it is equivalent to minimising the reciprocal,
that is,

min
λ

kZλk22
kZλk21

: ð44Þ

In the optimization problem Equation (44), the objective
function is still a non‐convex function, so that it is difficult for
us to obtain the global optimal solution. To overcome these
difficulties, an MCD algorithm is proposed, which has
monotonicity to guarantee convergence.

The algorithm is based on the CD algorithm. It also

starts with some initial vector λð0Þ ¼ λð0Þ1 ; λð0Þ2 ;…; λð0Þn
� �

and

then repeats the procedure as Equation (43). For details,
the following formula shows the kth itertation of uth
element

λðkÞu ¼ argmin
λu

g λðkÞ1 ;…; λðkÞu−1; λu; λ
ðk−1Þ
uþ1 ;…; λðk−1ÞU

� �
: ð45Þ

where gðλÞ ¼ kZλk22=kZλk21.
However, the difference between the MCD and the general

CD is that MCD generates many initial vectors. For every
initial vector, we repeat the iteration procedure and obtain a
solution when it satisfies the stop criteria. For all these initial
vectors, we have many solutions from which we can choose the
best solution that has the smallest objective value. But the
MCD algorithm and the MCD‐SVD‐based DRCW are sum-
marised in Algorithm 3.
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Algorithm 3 Modified Coordinated Descent (MCD)-
SVD-based DRCW design:

for i = 1: Nλ
randomised initial vectors λ(0)

for k = 1: K
for u = 1: U
Compute λðkÞu as Equation (43)

end u
if kλ(k) − λ(k−1)k2 ≤ ε; λ̂i ¼ λðkÞ; end

end k
end i
• Output λ̂i, i = 1, 2, …, Nλ and from which
choose one as the best λ such that
Equations (44) is minimised.
• Let ẑ¼ Zλ, then p and w can be obtained from
Equations (25) and (26).
• Obtain MCD-SVD-based DRCW based on
Equations (3) and (4).

In each iteration, with regard to the suboptimal solution of
the uth variable λu in λ, it can be easily shown that its time‐
complexity is O Nλð Þ, where Nλ is the number of sample
points in an interval. Since the iteration number is K = αNλ
and the length of vector λ is U = βNλ, 0 ≤ α, β ≤ 1, the overall
time‐complexity is O N3

λ
� �

.

5 | NUMERICAL RESULTS AND
DISCUSSIONS

In this section, several numerical results are presented to
illustrate the performance of the proposed SVD‐based DRCW.
We compare the proposed DRCW based on SVD with that
based on PTM [7], BD [17] and MM [19].

Throughout this section, some parameters are chosen as
follows: the number of pulses is N = 50, the specified Doppler
interval of interest is given by θ 2 [−2.9, 2.5] and the Doppler
sampling resolution is π/N. The ambiguity function in dB is
given by

AP;W ðk; θÞðdBÞ ¼ 20 log10 jAP;W ðk; θÞ=AP;W ð0; 0Þj
� �

: ð46Þ

The Doppler profile is AP;W ð0; θÞðdBÞ, and the peak range
sidelobe level (PRSL) is given by

PRSLðθÞ ¼ 20log10 max
k≠0
jAP;W ðk; θÞ=AP;W ð0; 0Þj
� �

� �

: ð47Þ

Moreover, the Golay pair is length‐64 and is given by

x¼ 1; 1; 1;−1; 1; 1;−1; 1; 1; 1; 1;−1; 1; 1;−1; 1;½

1; 1; 1;−1;−1;−1; 1;−1; 1; 1; 1;−1;−1;−1; 1;−1;
1; 1; 1;−1; 1; 1;−1; 1;−1;−1;−1; 1;−1;−1; 1;−1;
−1;−1;−1; 1; 1; 1;−1; 1; 1; 1; 1;−1;−1;−1; 1;−1�;

ð48Þ

y¼ 1;−1; 1; 1; 1;−1;−1;−1; 1;−1; 1; 1; 1;−1;−1;−1;½

1;−1; 1; 1;−1; 1; 1; 1; 1;−1; 1; 1;−1; 1; 1; 1; 1;−1; 1;
1; 1;−1;−1;−1;−1; 1;−1;−1;−1; 1; 1; 1;−1; 1;−1;
−1; 1;−1;−1;−1; 1;−1; 1; 1;−1; 1; 1; 1�:

ð49Þ

5.1 | Doppler resilience and SNR

The Doppler resilience can be illustrated by the ambiguity
function (in Figure 1), Doppler profile (in Figure 2) and PRSL
(in Figure 3) for PTM‐based, BD‐based, MM‐based, and SVD‐

F I GURE 1 Ambiguity functions of previous DRCW methods and the
proposed SVD‐DRCW method, as a function of Doppler Shift and Delay
Index.

F I GURE 2 Doppler profile.
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based DRCWs. Besides, the SNR gains for the proposed SVD‐
based DRCW and two optimised SVD‐based DRCWs are
shown in Figure 4.

Ambiguity Function: Figure 1 shows four ambiguity
functions of the PTM‐based DRCW [7], BD‐based DRCW
[17], MM‐based DRCW [19] and the proposed SVD‐based
DRCW, respectively. In Figure 1a, the ambiguity function of
the PTM‐based DRCW has narrow Doppler resilient intervals.
In Figure 1b, the ambiguity function of the BD‐based DRCW
has a large Doppler resilient interval, but its mainlobe jAð0; θÞj
reduces quickly when |θ| > 1, which may result in missing fast
moving targets. In Figure 1c, the ambiguity function is based
on the MM method which has flexible parameter control and
excellent range sidelobes suppression performance, but its
range sidelobes are relatively higher than that of SVD‐based
DRCW. In Figure 1d which is based on the proposed SVD‐
based DRCW, the range sidelobes within the Doppler

interval [−2.9, 2.5] are no higher than −90 dB and that is an
ultra low level. Besides, the mainlobe jAð0; θÞj in Figure 1d
always maintains a high level in the Doppler interval θ 2 [−2.9,
2.5], which ensures that moving targets can be detected.

Doppler profile: In Figure 2, the Doppler profiles
AP;W ð0; θÞðdBÞ versus θ based on the four schemes are
compared. FromFigure 2, it is observed that theDoppler profile
of SVD‐based DRCW has the highest level compared with the
other DRCWs, which indicates that based on the proposed
method, the peak of the pulse compression can be hardly
masked by other sidelobes when Doppler shifts are considered.

PRSL: In Figure 3 the peak range sidelobe level (PRSL) for
the four DRCWs are compared. It is obvious that the PRSL of
SVD‐based DRCW is the lowest one compared with the other
schemes, indicating that the range sidelobes can hardly mask
other targets when Doppler shifts exist.

Remark: For the MM method in [19], if we carefully set
parameters in the constraint of modulus variation, the ambi-
guity function, Doppler profile, and the PRSL can be improved
significantly, but its still worse than that of the proposed SVD‐
based method, as proved in Proposition 2.

SNR: In Figure 4, the SNR gains versus pulse number N
for the DRCWs are compared. It can be observed that the
optimised SVD DRCW (i.e., BS‐SVD DRVW and MCD‐SVD
DRCW) significantly improve the SNR compared with the
original SVD‐based DRCW. Besides, the MCD‐SVD DRCW
has the best SNR compared with the other weighted DRCW
such as the MM DRCW and BD DRCW, when pulse number
N > 80. However, the SNRs of all weighted DRCWs are lower
than the transmit‐only DRCW (i.e, PTM DRCW), since higher
Doppler resilience is usually achieved at the cost of SNR loss.

Summary: Above all, the proposed SVD‐based DRCW
has better Doppler resilience than the PTM‐based, BD‐based,
and MM‐based DRCW in the Doppler interval [−2.9, 2.5].
Besides, the SNR gains of the proposed BS‐SVD‐based
DRCW and MCD‐SVD‐based DRCW are significantly better
than the original SVD‐based DRCW.

5.2 | Multiple targets with various velocities

For the scenario of multiple targets, we set the radar scene
containing one stationary reflector and four moving targets
with small or moderate speed. The four moving targets are
30dB weaker than the stationary reflector. The detailed pa-
rameters of these targets are given in Table 1.

F I GURE 3 Peak range sidelobe level.

F I GURE 4 SNR gain kwk21=
� �

�wk22Þ versus the number of pulses N.

TABLE 1 The parameters of targets.

Delay index Doppler (rad) Relative power

Target 1 10 −1.5 −30 dB

Target 2 30 1 −30 dB

Target 3 50 0.1 −30 dB

Target 4 67 0 0 dB

Target 5 100 −0.5 −30 dB

WANG ET AL. - 9 of 11
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With the parameters in Table 1, the matched filter outputs
are shown in Figure 5, where the PTM‐based DRCW (see
Figure 5a), the BD‐based DRCW (see Figure 5b), and the

MM‐based DRCW (see Figure 5c) are used to compare with
the proposed SVD‐based DRCW (see Figure 5d).

Firstly, the PTM has a very small Doppler resilient interval,
in which the range sidelobes are very small. However, if the
Doppler shift is outside the Doppler resilient interval, the
range sidelobes are very high. From Figure 5a, it can be shown
that the PTM‐based DRCW has high sidelobes which mask
target 1, 2, and 5 since the three targets have relatively higher
Doppler shifts.

Secondly, the BD‐based DRCW has a larger Doppler
resilient interval than the PTM‐based DRCW. From
Figure 5b, it is shown that the range sidelobes are sup-
pressed. However, target 1 is missing and target 2 is very low,
which results from the fact that the range mainlobe Að0; θÞ
is sensitive to the large Doppler shift. In other words, the
range mainlobe will tend to disappear when the Doppler shift
is large enough.

Thirdly, from Figure 5c, it is shown that the range sidelobes
of MM‐based DRCWare not suppressed thoroughly. However,
it has a robust range mainlobe jAð0; θÞj within the Doppler
resilient interval. It can be shown in Figure 5c that the five
targets can be distinguished since their amplitudes are high and
the sidelobes are suppressed partly.

Fourthly, the proposed SVD also has a larger Doppler
resilient interval than the PTM method. From Figure 5d, it is
shown that the range sidelobes have been suppressed. Besides,
it has a robust range mainlobe jAð0; θÞj within the Doppler
resilient interval. It can be shown in Figure 5d that the five
targets are very easy to distinguish since their amplitudes are
high and the sidelobes are suppressed.

6 | CONCLUSIONS

Because of the limited Doppler resilience of PTM/BD DRCW
and the difficulty of choosing optimization parameters of the
MM method, we have proposed an SVD‐based DRCW con-
struction, which can ensure that the discrete ambiguity func-
tion contains near‐zero range sidelobes in the specified
Doppler interval of interest. In addition, we use the SVD
approach to analyse the ambiguity function bound which is
related to the singular values. At the same time, we proved that
the upper bound of the SVD DRCW is lower than the MM
DRCW. Moreover, max‐SNR is also considered and optimised
by the BS method and MCD method which are based on the
SVD solutions. Our numerical results show that, compared
with the PTM‐based, BD‐based, and MM‐based DRCW, the
proposed SVD‐based DRCW has better Doppler resilience
performance. Finally, the optimised SVD‐based DRCWs (i.e,
BS‐SVD‐based DRCW and MCD‐SVD‐based DRCW) have
higher SNR and the same Doppler resilience compared with
the proposed SVD‐based DRCW. Above all, the proposed
SVD DRCWs can help the active sensing systems such as air
surveillance radars to detect moving targets (e.g., illegally flying
micro drones) to prevent strong scatterers from masking weak
targets.F I GURE 5 The filter outputs with parameters in Table 1.
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