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Abstract
Emerging technologies are continually redefining the paradigms of smart farming and
opening up avenues for more precise and informed farming practices. A tiny machine
learning (TinyML)‐based framework is proposed for unmanned aerial vehicle (UAV)‐
assisted smart farming applications. The practical deployment of such a framework on the
UAV and bespoke internet of things (IoT) sensors which measure soil moisture and
ambient environmental conditions is demonstrated. The key objective of this framework
is to harness TinyML for implementing transfer learning (TL) using deep neural networks
(DNNs) and long short‐term memory (LSTM) ML models. As a case study, this
framework is employed to predict soil moisture content for smart agriculture applications,
guiding optimal water utilisation for crops through time‐series forecasting models. To the
best of authors’ knowledge, a framework which leverages UAV‐assisted TL for the edge
internet of things using TinyML has not been investigated previously. The TL‐based
framework employs a pre‐trained data model on different but similar applications and
data domains. Not only do the authors demonstrate the practical deployment of the
proposed framework but they also quantify its performance through real‐world deploy-
ment. This is accomplished by designing a custom sensor board for soil and environ-
mental sensing which uses an ESP32 microcontroller unit. The inference metrics (i.e.
inference time and accuracy) are measured for different ML model architectures on edge
devices as well as other performance metrics (i.e. mean square error and coefficient of
determination [R2]), while emphasising the need for balancing accuracy and processing
complexity. In summary, the results show the practical feasibility of using drones to
deliver TL for DNN and LSTM models to ultra‐low performance edge IoT devices for
soil humidity prediction. But in general, this work also lays the foundation for further
research into other applications of TinyML usage in many different aspects of smart
farming.
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1 | INTRODUCTION

The rapid proliferation of drones in smart agriculture appli-
cations allows the implementation of artificial intelligence (AI)
on the edge [1, 2]. Nevertheless, distributed intelligence across
edge internet of things (IoT) devices, drones and the back‐end
cloud infrastructure can help realising the vision of Agriculture
5.0 [3, 4]. Inspired by the increased use of automation in other
verticals (e.g. Industry 5.0 and smart agricultural practices), the
increased use of unmanned aerial vehicles (UAVs) and ground
systems with the implementation of AI has been instrumental
in minimising input, optimising resources (e.g. water, pesti-
cides) and maximising yield [3, 5, 6].

While the combination of IoT and cloud computing ca-
pabilities [7, 8] has enabled a plethora of applications (from
industrial automation to healthcare), smart agriculture appli-
cations are particularly challenging. In particular, energy effi-
ciency for end devices, low latency for actuator control, high
data rate for machine vision and privacy for commercially
sensitive operations are all key factors [3, 9]. Continuous
connectivity across the edge‐cloud continuum, especially in
rural areas also poses a challenge. One way to improve the
operational lifetime of the end devices is to allow short‐range
communication, which can be provided by data ferrying from a
mobile data aggregator such as a UAV. Moreover, to reduce the
bandwidth requirement for processing raw sensor data, edge‐
based ML techniques (which allow the transmission of in-
ferences) are key.

To address these challenges, we propose a drone‐assisted
transfer learning (TL) framework that leverages the benefits
of tiny machine learning (TinyML) for smart agriculture
deployment. This new framework in IoT communication holds
the potential to improve the efficiency of data transmission and
processing while also enhancing privacy and reducing the
power consumption of connected devices.

AI and IoT naturally complement each other, with ML
being a crucial component in the development of data‐driven
smart agriculture. By combining edge IoT devices with ML,
it is possible to take advantage of TinyML and import pre‐
trained ML models to the edge. This can be seen as
providing ML‐as‐a‐service (MLaaS) to IoT devices, allowing
customers to perform inference without the need to develop
and deploy any ML training. In the context of farming, this can
be referred to as AgriML‐as‐a‐service (AgriMLaaS), with TL
playing a key role in enabling training‐free inference. To
perform inference through MLaaS, reliable connectivity is
necessary to stream data to the cloud and receive the results of
the cloud‐trained model. However, this type of connectivity is
not always guaranteed and requires high maintenance, such as
battery replacements for a large number of sensors in wide
areas. Additionally, cheap IoT edge devices for smart agricul-
ture are essential but often come with low‐performance ca-
pabilities, making it difficult to fully utilise the benefits of
MLaaS without an asynchronous connection to the cloud.

Motivated by the need to enable onboard inference on low‐
performance microcontroller units (MCUs), researchers have
focused on reducing the trained models' footprint. This has led

to the availability of libraries for using ML‐trained models on
single‐core, low‐speed reduced instruction set computer
(RISC) MCUs rather than devices with fully capable operating
systems (OS). TensorFlow Lite for MCUs from Google is a
powerful library that has opened up the possibility of trans-
ferring ML to edge devices. It offers a wide range of ML
models and deep neural network (DNN) layers [10]. Another
efficient library, CMSIS‐NN, is a set of neural network kernels
from Arm, designed for use on Arm Cortex‐M processors
embedded devices [11]. However, libraries such as TensorFlow
Lite are not yet capable of testing certain models like complex
recurrent neural networks (RNNs) and gated recurrent units
(GRUs) which require multiple graphs. Nevertheless, it can
handle simple DNN and long short‐term memory (LSTM)
models [12].

The challenges of deploying ML models to edge devices
are a result of their unique architecture and limited resources,
including memory and computer processing unit (CPU) ca-
pabilities. The architecture of edge devices is not uniform,
making it challenging to build ML‐enabled firmware with TL in
mind. Additionally, the limited memory and CPU capabilities
of MCUs can lead to a long inference time. To overcome these
challenges, TinyML with drone‐assisted TL provides a prom-
ising solution for achieving competitive inference accuracy
with a low network footprint and small inference time, as it
eliminates the need for long‐time inferences on central servers
and reduces the amount of data transfer from the edge device
to the central server. In this way, TinyML with drone‐assisted
TL offers a new approach to implementing the well‐studied,
even trivial, ML models on edge devices [10].

1.1 | Related work

1.1.1 | TinyML on the edge

In recent years, TinyML on the edge has received significant
attention on a wide range of applications and research efforts
extend to many types of edge devices.

TinyML is considered the intersection between ML and the
embedded MCU for IoT devices and hence it is expected to
revolutionise many industries with a vital role in agriculture.
Actually, TinyML is well known in different applications,
especially in smartphones where dedicated circuits work in
active modes utilising very low power (as little as 1 mW [13,
14]) and has also been proven to achieve high accuracy in a tiny
memory resource and even when quantising a 32‐bit floating
point model into only 8‐bits without any significant loss of
accuracy [15].

The authors in ref. [16] described a neural network archi-
tecture for the IoT commodity based on neural architecture
search (NAS) algorithms. The paper shows experimental re-
sults for using NAS algorithms and differential NAS for the
search of the NN models with low memory and inference time
by deploying the trained ML models using Tensorflow Lite
Micro. Results also show how ultra‐low‐power MCUs (ULP‐
MCUs) can be used to perform inference with high accuracy
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and short inference time. TinyML has also been proven to
achieve high accuracy in the field of continual learning quan-
tised latent replays and is achieving a memory reduction of
�4.5 over the required memory on 32‐bit float binary models
using frozen front‐end and compressed latent replays [17].
Another use of TinyML on IoT based on data eccentricity has
been presented in ref. [18]. The authors presented a
compression technique for the ML model based on a tiny
anomaly compressor on a field of a photo‐voltaic energy
management system with compression rates up to 98.33%.

The authors in ref. [19] addressed an RNN cell imple-
mentation named hybrid matrix decomposition on a Linux‐
based operating system single cortex‐A73 core of the Hikey
960 board. They show the trade‐off between the right
compression technique, the compression factor of the learning
model, the accuracy and the running time on the inference
phase. In ref. [20], the authors showed a novel framework
called TinyML with online learning (TinyOL). The framework
highlights the procedure of building and optimising an online
ML model under supervised and unsupervised setups with an
auto‐encoder neural network. They evaluated the trained
model on an Arduino Nano 33 Bluetooth low‐energy (BLE)
Sense board which is embedded with Cortex M4 CPU.

Another application of ML on the edge is given in ref. [21].
The authors presented a classification problem for the detec-
tion of adversarial data based on pre‐trained networks visual
geometry group‐16 (VGG‐16) and residual network‐50
(ResNet) that are implemented on a Xilinx deep learning
(DL) processing unit and multiprocessor system‐on‐chip
(MPSoC). This paper shows that the accuracy of the pre‐
trained networks is kept as good as if they are implemented
using software‐oriented approaches with less than 100 kilo-
bytes of code size. In our previous work, we introduced a Tiny
MLaaS (TMLaaS) architecture that inherently presents several
design trade‐offs in terms of energy consumption, security,
privacy, and latency. We also showed how the TMLaaS archi-
tecture can be implemented, deployed, and maintained for
large‐scale IoT deployment as a case study of the use of edge
TinyML [22]. For more details on the principle of TinyML,
some comprehensive surveys can be found in refs. [23, 24].

1.1.2 | TinyML in agriculture

For agriculture applications, ML is one of the key enablers for
the shift to farming 5.0 and ML will help in increasing the
productivity of the farms and decrease the needed resources to
maintain the farming cycle. An example of TinyML on the
edge is presented in refs. [25]. In this paper, a computer vision
solution with automated continuous pest detection inside fruit
orchards with a DNN model is presented. The authors also
show that the image classification can be done without the
transmission of the whole fruit image to a central server and a
high accuracy of detection can be achieved via the compression
of the DNN model and making the inference on the edge with
an accuracy of more than 95% tested on three independent
datasets. Concerning a similar application, another paper [26]

also presents a low complexity grape leaves diseases detector
based on a compressed convolutional neural network (CNN)
on the edge where an accuracy of more than 98% is achieved
with a very minimal memory footprint of less than 13 kilobytes
of ROM based on a low‐rank CNN architecture. Much
research has been undertaken in the field of ML in farming and
can be found in the comprehensive survey in ref. [27].

1.1.3 | Transfer learning

TL is the process of using a pre‐trained data model on
different but similar applications and data domains. That is,
with TL, we shift the focus from aggregating large amounts of
data and centrally training models to building inference models
to focus on the targeted groups of learners and how to
combine and transfer the knowledge between them.

In the context of TL in smart agriculture, many efforts
addressed the use of the knowledge gained in a certain appli-
cation in close domains and environments. The authors in ref.
[28] developed a smart irrigation greenhouse solution based on
artificial neural networks as an alternative to support vector
regression which requires a large number of samples for
training. They used a number of sensors in different layers of
the soil to predict the moisture of the soil in different locations
based on a trained model with a dataset from another location.
The paper showed that the TL technique is useful in speeding
up the training process even with a small amount of data for
training yet still achieving significant accuracy.

According to ref. [29], the use of DL in the field of se-
mantic segmentation for example, needs a huge amount of data
and data labelling to achieve state‐of‐the‐art performance in
classification on real‐time execution. To this end, they intro-
duced a TL prediction technique based on three different
datasets with different crop types using an encoder‐decoder
CNN. Based on their results, TL on different types of crops
is possible with very high accuracy and even with much less
training effort and saving up to 80% of the training time. The
authors in [30] used different types of pre‐trained (e.g. VGG‐
16 and ResNet‐50) TL models to extract the deep features
from images in the search for hot pepper diseases and pests.
Here, TL using pre‐trained models shows a very high accuracy
even when using the k‐nearest neighbour classical method for
classification. They also showed that the CNN model out-
performs the conventional k‐nearest neighbour model with
more than 8.62% higher accuracy in diseases classification and
14.86% higher in pests classification. [31] presents a DL per-
formance evaluation in the field of crop yield prediction with
remote sensing data. They used the LSTM technique for the
forecasting of the crop yield and achieved very interesting
results after fine‐tuning the model even in an area with a
limited amount of data.

Much research effort has also addressed the use of TL in
smart agriculture applications showing the promising advan-
tages of the approach in enhancing the agriculture process.
These efforts present the concept, tools, advantages and
application of TL in smart agriculture [32–37]. In our work, we
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focus on implementing ML on the no‐OS chips that run on
ultra‐low performance capabilities. We also focus on the use of
TL approaches to accelerate the inference on edge devices.

1.2 | Drones assisting TL

In the context of smart agriculture, drones can play an essential
role in delivering the enabling features of TL [38–40]. This
includes data collection, real‐time training, and distributing the
learnt model from the fog or the cloud to edge devices. In
some applications, such as rural areas, mountains, deserts and
forests, where a traditional cellular or broadband network is
weak or impossible to deliver with limited IoT device batteries
and where a long‐distance communication link is a power‐
inefficient solution, drones can be deployed as flying internet
and a TL enabling platform to provide a temporary network
connection and hence assist the bi‐directional TL paradigm
that can be delivered from the sky. Due to the agile and flexible
nature of drones, they can provide short distance and on‐time
communication which can help reduce the demand on the
batteries of the IoT devices [41]. Many of the IoT network
features, such as chaotic deployment and dynamic changes in
locations, require more resilient, dynamic management
communication platforms.

Here, drones can act as promising enablers for a self‐
organised network and as key enablers for smart agriculture,
especially when assisting edge ML. Obviously, drones can
efficiently and dynamically be utilised to improve IoT
communication and data inference.

In this paper, we present a novel approach to drone‐
assisted TL for IoT sensor networks, incorporating TinyML
for edge devices. In this application, drones enable close
proximity between system components, simplifying the inte-
gration of the development and operations cycle. This elimi-
nates the need for complex development operations (DevOps)
architecture, streamlining the deployment and maintenance of
TL models on edge devices.

1.3 | Contributions

The aim of this article is to highlight the capabilities of the low‐
performance edge sensor nodes (SNs) controllers by using
light ML algorithms, including DNNs and LSTM imple-
mentation, in order to reduce the expected congestion and
capital expenditure (CAPEX) of the IoT infrastructure in
smart agriculture applications. To ensure the feasibility and
efficiency of the proposed solutions, we show a minimum
viable solution utilising the commercially available MCU on
applications related to the agriculture domain. This will build
on the current state‐of‐the‐art to ensure that the deployed edge
IoT solutions will utilise the very best low‐performance MCU
and will add a minimal footprint on the communication net-
works, in particular, in terms of latency and sensor age of
information.

We present a drone‐assisting TL framework for time series
forecasting in a smart agriculture data‐driven application. In
particular, we aim to predict the future value from a time series
of soil humidity readings using both DNNs and LSTM net-
works. Then, we use TinyML techniques to transfer the model
into the edge SNs using drone‐enabled TL. So, the contribu-
tions of this paper are:

1. We introduce a novel framework to characterise TinyML's
performance in deploying DNNs and LSTM ML models to
edge IoT devices in the context of smart farming. This
demonstrates TinyML's potential in real‐time monitoring
and forecasting of critical farming metrics such as soil
moisture levels.

2. We employ time series forecasting models using both
DNNs and LSTM to estimate soil humidity, with knowl-
edge delivery to edge devices facilitated by UAVs through
OTA updates. This novel use of UAVs for the delivery of
updated TL models offers an innovative solution in the
domain.

3. We emphasise the intricate balance between accuracy and
processing complexity for TinyML models, and highlight
our approach to achieving end‐to‐end inference in the
smart agricultural ecosystem via UAV‐assisted TL. This
integrated use of TinyML and drones paves the way for
future research and can potentially amplify TinyML's
adoption in various domains with a focus on smart farming.

1.4 | Organisation

The rest of the paper is organised as follows: Section 2 in-
troduces the system model and deployment geometry of the
network. Section 3 gives the methodology. Section 4 presents
the results and discussion. Finally, Section 5 provides some
future work and conclusions.

2 | SYSTEM MODEL AND LEARNING
FRAMEWORK

2.1 | The global vision

In the proposed framework, as shown in Figure 1, the sensing
and TL process is divided into multiple phases. The first phase
involves collecting the initial sensor datas et from the ground
level, including soil humidity, air humidity, and air temperature.
This paper focuses on collecting and forecasting soil relative
humidity.

The sensors measure soil relative humidity values and store
them in the MCU's internal flash memory or an attached
memory card on a scheduled basis. The flash memory also
stores the trained forecasting model. It is important to note
that the trained model is intended for use only by the same
sensor at the same site for forecasting purposes. Foreign
farmers can utilise this drone‐assisted TL service without
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having access to training facilities, which can help them
manage in‐farm operations more efficiently. To maximise
prediction accuracy, users could be grouped into clusters of
farms with similar soil types and climate conditions for training
and TL.

Decision‐making can occur on multiple levels. First, at the
edge level, users can employ TinyML models on edge devices
for direct supervision of farm operations. Second, some de-
cisions may require higher‐performance controllers and com-
puters. In such cases, users can leverage UAV onboard
computing as second‐level edge computing for offline TL
model training, virtualisation‐based operations, data analysis,
dimensionality reduction, and feature clustering.

Third, for more complex data processing and training,
users may require cloud‐based offline or online computations,
large data storage, and big data analytics. These types of
computations necessitate more sophisticated tools and greater
computational power. However, this paper focuses solely on

decision‐making operations that can be addressed using edge
resources and TinyML techniques and tools.

2.2 | System model

Here, we consider a set of N edge devices in a farm field.
Every single edge device is custom‐made and carries three
types of measurements: (1) a capacitive soil moisture/hu-
midity sensor in terms of the volumetric water content of the
soil that measures the ratio between the water volumetric
content and the soil volume, (2) an air relative humidity
sensor and (3) an air temperature sensor. The three mea-
surements can be seen as relatively correlated since the air
temperature and humidity affect the evaporation rate of the
water in the soil [42]. Hence, we only focus on aggregating
the soil humidity data as the training process will use this
information.

F I GURE 1 Bi‐directional unmanned aerial vehicle (UAV) assisted edge machine learning (ML)‐transfer learning (TL) framework.

HAYAJNEH ET AL. - 5
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2.2.1 | Drone trajectory design

The approach taken for the trajectory of data collection and
model transfer using drones is application‐specific. The pri-
mary goal of implementing drones in such frameworks is to
enable them to independently fly and carry out data collection
and distribution. In this particular study, a hexacopter drone is
utilised, which features a Pixhawk‐PX4 32‐bit flight controller
pre‐programmed with an autonomous mission containing way‐
points that are contingent on the number of edge sensors
targeted in the mission. The choice of using the Pixhawk‐PX4
was driven by its robust customisation abilities and specific
technical features that aligned seamlessly with our experimental
requirements. Pixhawk‐PX4 is an open‐source platform, which
allows us to tailor its functionalities specifically to our research
needs. The planning of the flight details and the subsequent
data aggregation or model transfer processes are distinct and
separate from one another.

The data aggregation and TL methodologies will be
addressed in detail in subsequent sections of the paper. For the
present scenario, the drone's trajectory is designed to
encompass the designated way‐points within the target area.
The drone follows a route from its home location to the
succeeding way‐point and hovers over the sensor at a height of
8–12 m to ensure a reliable WiFi connection. The length of
the hovering period is determined by the duration required to
complete the data aggregation or trained model transfer
processes.

As an illustration, Figure 2 depicts a plot of 14 distributed
sensors spanning an area of 90 m � 150 m. These sensors
are uniformly arranged on a grid to cover the entire expanse
of the region. The hexacopter drone utilised in this study has
a battery flight lifespan of 25 min, which is sufficient to
enable the drone to hover over each of the 14 desired SNs
for 90 s. The duration required to travel between any two
way‐points is 10 s, resulting in a total flight time of
14 � 90 þ 14 � 10 = 23.33 min. The 90 s hovering period is
adequate for conducting OTA firmware updates and data
aggregation if necessary. The integrated optimisation of the
drone trajectory and the design of the TL model hyper‐
parameters to minimise the firmware's ML‐enabled size are
potential areas for future investigation. Additional details
regarding the parameters that impact the footprint on the
flash size of the chosen MCU can be found in the Section 4
(Results and Discussion) and Table 1.

2.3 | Hardware implementation and sensing
technique

The edge sensor utilised in this experiment is a custom‐made
parallel plate capacitive soil moisture sensor. The sensor
measures the relative volumetric water content by converting
the output frequency of an astable 555 timer to a corre-
sponding soil moisture value. The capacitive sensor is struc-
tured in such a way that the relationship between the output
frequency of the astable timer and the water content is nearly

linear, simplifying the on‐site calibration for different soil types
and environmental conditions1.

The SN is constructed around the ESP32 module, which
comes equipped with 512 Bytes of electrically erasable pro-
grammable read‐only memory (EEPROM) memory. This
means that the maximum amount of storage for sensor values
is 128 floating points. However, such a limited amount of
storage can only hold 21 h of soil humidity readings for a
sampling schedule of once every 10 min. An alternative to the
EEPROM memory is the 4 megabytes of flash memory
available for use by the ESP32. In our experiment, the readings
are stored every 10 min in the memory. Once the flying plat-
form collects the data and transfers the trained model, the
entire stored memory will be cleared. The previously stored
trained model will be updated using OTA updates with the
new version of the TL model based on a control mechanism
that will be incorporated into the design of the drone's
trajectory.

2.4 | Data exchange

To facilitate the exchange of data, assuming that a WiFi
connection is available, the data from the sensors is transmitted
to the flying server. To minimise delay and power consumption
during the data exchange phase, the message queueing telem-
etry transport (MQTT) IoT protocol is used for data collec-
tion. The edge device is linked to an MQTT flying broker,
which is also connected to an onboard structured query lan-
guage (SQL) database. Once the SN subscribes to the humidity
MQTT topic, it can publish the humidity readings to the flying
platform, which stores the data in the SQL database. This

F I GURE 2 Drone trajectory.

1
It is worth noting that while the specifics of the soil moisture sensor design and
calibration are not discussed in this paper, it is important to calibrate the sensor correctly
as the soil's characteristics significantly influence the soil's relative permittivity,
subsequently affecting the sensor's capacitive characteristics and this also emphasises the
novelty of UAV‐assisted TL. To minimise the complexity of the calibration process for
the end‐user, we have designed the sensor to yield a linear frequency versus soil moisture
characteristic curve.
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process allows the onboard TL learning model to fine‐tune the
model's weights before re‐publishing the trained model to the
edge devices.

Full training in the sky is one possible method for rapid
drone‐assisted ML. However, full training typically requires a
considerable amount of time and battery power from the flying
platform. Thus, the majority of training processes will be
conducted on the cloud or a centralised on‐premise computer
and then TL is used to fine‐tune the global model for infer-
ence. As previously mentioned, the trained ML model can be
delivered through OTA updates, which place the model into
the file system of the SN. There are numerous techniques that
can be employed to accomplish the model transfer to edge
devices.

For example, MQTT as a lightweight protocol can be used
to publish the trained model hexadecimal representative file
into the SN. The ESP32 can also be used to exchange data
using BLE that comes with WiFi capabilities. This will allow
the edge device to consume less power and preserve the energy
of the battery for longer life. In our experiment, we power the
edge device via a solar panel battery charger, and hence the
battery life is not of interest in the design of our framework.

Some other techniques for long‐life MCUs are to use
backscatter communication links with wireless power transfer
for SNs that are only capable of micro‐watt power

consumption (e.g. MSP430 from Texas Instruments). Many
studies have been investigating the use of the backscatter for
ULP type of communication with no onboard active compo-
nents for communication and some of them highlight the use
of drones for proximity communication [43–46].

2.5 | Datasets

In this paper, we utilise two distinct datasets. The first dataset
has been provided by Street and Wookey [47]. This dataset
comprises soil relative humidity, air temperature, and air hu-
midity readings for five distinct sites over the course of 3 years.
The data was collected using volumetric water content sensors,
which took measurements at a depth of 5 cm (from the ground
surface) using ECH2O EC‐5 volumetric moisture sensors. The
readings were taken at 10‐min intervals.

The second dataset is using the same set of readings that
have been collected by a custom‐made soil moisture sensor, as
can be seen in Figure 3, which was designed and assembled by
the authors of this paper in the city of Amman, Jordan. The
dataset consists of a 3 months of consecutive readings in a
schedule of 10 min span between every single reading. The
sensor reads the value of the soil volumetric water content as a
percentage. In addition to the soil moisture readings, the

TABLE 1 Results for forecasting with deep neural networks (DNNs).

Input (sequence
length) DNN structure

RAM
(bytes)

Flash
(bytes)

Inference time
(milliseconds)

MSE
(#)

Validation
MSE (#)

R2

(%)
Validation
R2 (%)

20 80 � 40 � 20 � 1 30,100 27,192 611.15 0.0038 0.00537 99.76 95.01

18 80 � 40 � 20 � 1 30,084 26,240 594.98 0.00347 0.00508 99.8 95.28

16 80 � 40 � 20 � 1 30,084 25,320 569.85 0.00425 0.00598 99.76 94.15

14 80 � 40 � 20 � 1 30,068 24,432 571.66 0.00353 0.00500 99.77 96.07

12 80 � 40 � 20 � 1 30,068 23,576 552.59 0.00395 0.00559 99.73 95.2

10 80 � 40 � 20 � 1 30,052 22,752 516.20 0.00358 0.00518 99.77 95.92

8 80 � 40 � 20 � 1 30,052 21,960 505.57 0.00351 0.00491 99.83 96.32

6 80 � 40 � 20 � 1 30,036 21,200 495.92 0.00323 0.00453 99.79 96.84

4 80 � 40 � 20 � 1 30,036 20,472 486.66 0.00357 0.00463 99.79 96.85

2 80 � 40 � 20 � 1 30,020 19,776 453.16 0.00378 0.00459 99.84 97.04

20 40 � 20 � 10 � 1 30,100 11,672 160.29 0.00363 0.00516 99.8 95.31

18 40 � 20 � 10 � 1 30,100 11,040 150.32 0.00382 0.00543 99.76 95.4

16 40 � 20 � 10 � 1 30,084 10,440 132.07 0.00334 0.00455 99.81 96.1

14 40 � 20 � 10 � 1 30,084 9872 124.78 0.00307 0.00427 99.81 96.84

12 40 � 20 � 10 � 1 30,068 9336 116.51 0.00347 0.00454 99.82 96.7

10 40 � 20 � 10 � 1 30,068 8832 110.00 0.00290 0.00416 99.76 96.96

8 40 � 20 � 10 � 1 30,052 8360 102.85 0.00257 0.00370 99.78 97.44

6 40 � 20 � 10 � 1 30,052 7920 97.80 0.00251 0.00350 99.68 97.14

4 40 � 20 � 10 � 1 30,036 7548 92.78 0.00246 0.00333 99.83 98.17

2 40 � 20 � 10 � 1 30,036 7172 87.44 0.0034 0.00426 99.84 97.35
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sensor is also capable of reading the air humidity and the air
temperature at 5 cm above the soil level. The reason for col-
lecting the readings of the air humidity sensor and the air
temperature sensor is to train the model on them and test them
against forecasting the value of future soil moisture. As will be
shown in the results section, the training models will be able to
forecast the soil moisture sensor with high values of accuracy
in terms of the adopted performance metrics. The training will
be made using 2 ML models (i.e. DNNs and LSTM) as will be
shown in the following subsections.

2.6 | ML models structure

2.6.1 | DNN model architecture

Figure 4 displays the hidden layer structure of the DNN
model. The hyper‐parameters of the network will be altered to
investigate the impact on the performance metrics of the
training and the resulting footprint on the MCU. Specifically,
we will examine how changes in certain hyper‐parameters
affect the compressed trained model's size, inference speed,
the accuracy of forecasting, and memory footprint on the
MCU.

The DNN model used is a fully connected network
structure with the rectified linear unit (ReLU) activation
function for the hidden layers. Given an input vector x ∈ RN ,
where N input features correspond to the previous readings of
the soil moisture, the output of the first hidden layer is
computed as follows:

h1 ¼ ReLUðW1xþ b1Þ; ð1Þ

whereW1 ∈ RL�N and b1 ∈ RL are the weight matrix and bias
vector of the first hidden layer, respectively. The second and
third hidden layers follow a similar structure:

h2 ¼ ReLUðW2h1 þ b2Þ; ð2Þ

h3 ¼ ReLUðW3h2 þ b3Þ; ð3Þ

where W2 ∈ RM�L, b2 ∈ RM , W3 ∈ RN�M , and b3 ∈ RN are
the corresponding weight matrices and bias vectors for the
second and third hidden layers.

The output layer gives the predicted value for the next
future soil humidity reading using a linear activation function:

ŷ ¼W4h3 þ b4; ð4Þ

whereW4 ∈ R1�N and b4 ∈ R are the weight and bias vectors
of the output layer, respectively.

The decision to employ a DNN for forecasting is due to its
relative ease of compression and embedding into the MCU
using the TensorFlow Lite Micro framework. However, it is
well known that using LSTM models can yield better perfor-
mance for time series forecasting. Hence, in the following
subsection, we will explore the use of LSTM models for soil
moisture forecasting and discuss their advantages, challenges,
and potential solutions for their implementation in MCUs.

2.6.2 | LSTM‐based forecasting for soil moisture

In time series forecasting tasks, LSTM networks serve as an
effective solution, specifically addressing the vanishing gradient
problem often encountered in RNNs [48]. This makes them
particularly suitable for applications such as predicting soil
moisture.

Structure and benefits of LSTM models
Comprising memory cells capable of remembering and storing
information over extended periods, LSTM networks excel at
capturing long‐range dependencies in time series data. This
unique capability renders them highly efficient for tasks like
soil moisture prediction. An LSTM layer can be described
using the following equations (??):

f t ¼ σ
�
Wf ⋅ ½ht−1; xt� þ bf

�
; ð5Þ

it ¼ σðWi ⋅ ½ht−1; xt� þ biÞ; ð6Þ

ot ¼ σðWo ⋅ ½ht−1; xt� þ boÞ; ð7Þ

~Ct ¼ tanhðWC ⋅ ½ht−1; xt� þ bCÞ; ð8Þ

Ct ¼ f t ○ Ct−1 þ it ○ ~Ct; ð9Þ

ht ¼ ot ○ tanhðCtÞ; ð10Þ

where σ denotes the sigmoid activation function, tanh is the
hyperbolic tangent activation function, and ◦ represents
element‐wise multiplication. The LSTM layer consists of input,
output, and forget gates, denoted by it, ot, and ft respectively, as

F I GURE 3 Soil moisture sensor in the ground collecting readings.
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well as a cell state Ct and a hidden state ht. The weight matrices
Wf ∈ RN�M , Wi ∈ RN�M , Wo ∈ RN�M , and WC ∈ RN�M

correspond to the forget, input, output, and cell candidate
gates, respectively, where N is the number of LSTM units, and
M is the size of the concatenated input [ht−1, xt]. The bias
vectors bf ∈ RN , bi ∈ RN , bo ∈ RN , and bC ∈ RN represent
the biases for each of the respective gates.

As depicted in Figure 5, each of the LSTM model layers
consists of a number of units (LLSTM) with the structure
described in Equations (5)–(10). In its original configuration,
the LSTM model architecture is designed with a single hidden
layer, ensuring a compact representation for the training phase.
For TL, it is vital to adapt our pre‐trained models to new
datasets efficiently. This often involves adjusting the model's
architecture to cater for new patterns or nuances present in the
new data. We enhance the adaptability of the LSTM model by
concatenating an additional dense hidden layer with Ldense
number of nodes during the TL phase. This layer is introduced
after the LSTM layer, aiming to capture and represent the
intricate nature of differences inherent in the new dataset.

Challenges and potential solutions for implementing LSTM
on MCUs
Despite their superior performance in time series forecasting
tasks, LSTMs pose several challenges when it comes to
embedding them on MCUs. The most notable challenge is that
LSTM models require multiple graphs for their internal
memory cells, while TensorFlow Lite has limited support for
multiple graph structures where only simple LSTM structures
can be implemented.

One potential workaround for this limitation is to explore
alternative frameworks and tools that support multiple graph
structures or find ways to convert LSTM models into a
compatible format for TensorFlow Lite. Additionally, re-
searchers could investigate the use of other memory‐efficient
neural network architectures, such as GRUs.

Another challenge is the increased memory footprint and
computational complexity of LSTM models compared to
DNNs. To overcome this issue, it is crucial to optimise the
LSTM model, by employing techniques like pruning, quanti-
sation, and knowledge distillation, which can help reduce the
size and computational requirements of the model without
compromising its predictive performance. The TensorFlow

Lite framework gives a handful of implementations of the
quantisation process for the ML‐supported models.

In conclusion, while LSTM models have the potential to
significantly improve soil moisture forecasting, their imple-
mentation on MCUs requires overcoming challenges related to
memory and computational constraints. Future research in the
field of TinyML should focus on exploring potential solutions
to these challenges, enabling more accurate and efficient
forecasting on resource‐constrained devices. In this paper, we
will implement simple LSTM structures and show the feasi-
bility and working conditions of deploying them into the edge
MCUs.

3 | METHODOLOGY

3.1 | Data cleaning, preparing, and pre‐
processing

The dataset that we used contains all the time series data that
have been read in 10 minutes per sample. However, the 10
minutes span is not useful in long‐term forecasting for future
readings and contains large amounts of noise. Hence, we
perform a simple averaging operation over the dataset such
that every six samples of the time series are averaged together
to transform the dataset into a sample per hour time series of
Ns samples. Also, we process the time series in a way such that
every Lb samples are considered as the input features of the
ML model network. That is, for a time series vector that looks

like y¼
n
y1; y2; y3;…; yLb; yLbþ1;…; yLbþSa;…; yNs

o
, we aim

to predict the value of yLbþSa based on all the time series values

y¼
n
y1; y2; y3;…; yLb

o
, where Lb is an integer number that

represents how many steps (look‐back samples) that we need
to perform the future value prediction for the value yLbþSa,
where Sa is the number of samples ahead we predict.

In other words, the ML model takes input features in the

shape of y¼
n
y1; y2; y3;…; yLb

o
and performs a regression

that outputs the future time series value yLbþSa. Hence, to
forecast the next hour value of the soil humidity (the value
after 1 hour), we require the previous Lb values in the series
(i.e. the previous Lb hours readings). After preparing the

F I GURE 4 Deep neural network (DNN) network structure (where ‘rectified linear unit (ReLU)’ means ‘rectified linear unit’).
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dataset and transforming it into an input/output relational
dataset, we perform the more advanced level of data pre‐
processing and cleaning.

The data cleaning process is aimed to fix or remove
incorrect, corrupted, incorrectly formatted, duplicate, or
incomplete data within a soil humidity dataset. In this paper,
we perform a set of steps for the data cleaning. The first is by
filling the missing values by performing a simple interpolation
process. Fortunately, the sensors that we used in the data
aggregation are custom‐made for our application and hence
the dataset needed only a very little amount of interpolation.
Data scaling is then performed as follows in the subsequent
section.

3.1.1 | Data scaling

To make it easier for the model to learn and to decrease the
error of the inference, we use a min‐max data scaling. Min‐max
data scaling is a technique that is used to normalise the dataset
to a specific range based on the minimum and maximum value
of the input features of the network. The min‐max scaling of
the data ensures better transfer of the trained model into
different applications in the transfer domain of applications.
The min‐max scaling of the dataset can be written as follows:

ŷ ¼
y − minðyÞ

maxðyÞ − minðyÞ
; ð11Þ

where ŷ is the normalised vector that contains all the data for a
certain input feature, y is the original vector that contains all
input feature vectors from the specific dataset. In order to
reverse the data scaling after the inference, we apply a direct
reverse of the previous equation such that:

y¼ y0 � ðmaxðyÞ − minðyÞÞ þminðyÞ; ð12Þ

where y0 is the estimated value after the inference of the future
value in the time series forecasting application. Min‐max
scaling is a simple but efficient and useful technique in opti-
mising ML processes like gradient descent algorithms and
usually results in a faster convergence in the learning process.

The scaling also gives more fairness when comparing different
models in terms of their performance.

3.1.2 | STL Seasonal Trend decomposition

In the pre‐processing stage, it is important also to make sure
that the data is denoised by searching for the trend in the time
series data and removing any seasonal and noise components.
In this paper, we perform a series of data processing that
consists of the aforementioned min‐max scaling and also the
Seasonal Trend decomposition using Loess (STL) [49]. We
decompose the data of the time series using STL decomposi-
tion. STL is a powerful technique for decomposing time series
data into seasonal, trend, and remainder components. The
seasonal component represents the cyclical patterns in the data,
such as weekly, monthly, or yearly fluctuations. The trend
component represents the long‐term changes in the data, such
as increasing or decreasing trends. The remainder component
represents the noise in the data that cannot be explained by the
seasonal or trend components.

A denoising technique that is usually used in time series
data is the moving average. However, simple averaging can be
problematic for non‐stationary data because it assumes a
constant mean and variance, while real‐world time series data
often exhibit non‐stationary behaviour, such as trends or sea-
sonal patterns. In addition, simple averaging can be susceptible
to outliers, which can significantly affect the mean value of the
signal and introduce errors.

Therefore, we chose to use STL instead of simple aver-
aging in our pre‐processing pipeline. Using STL can lead to
more accurate and reliable results in subsequent analysis or
modelling of time series data [49]. Hence, we decompose the
sensor's time series data as follows:

Y ðtÞ ¼ LTðtÞ þ STðtÞ þ RðtÞ; ð13Þ

where LT(t) is the trend at the time t, ST(t) is the seasonal
value at the time t and R(t) is the remainder at time t. The
trend component is considered the main component of the
time series, but it is not sufficient to do the forecasting with
high accuracy. Hence, a technique of measuring the strength of

F I GURE 5 Long short‐term memory (LSTM) model structure (where ‘tanh’ means‘ hyperbolic tangent activation function’) for the output of the LSTM
layer.
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the trends based on the variance of the data around the trend
can be used as follows:

ST ¼max
�

0; 1 −
VarðRðtÞÞ

VarðLTðtÞ þ RðtÞÞ

�

; ð14Þ

where ST is the strength of the trend. Figure 6 presents an
example of the STL decomposition on the volumetric water
content of the soil for 21 days. The window of the seasonal
decomposition is set to 1 day (i.e. 6 � 24 samples). For this
particular time frame of the data, the strength of the trend ST is
equal to 92.78%. This indicates that the trend is relatively
strong and driving the time series.

3.2 | Performance metrics

In order to measure the performance of the TL model's pre-
diction, we employ two types of measures. To measure the
accuracy of the prediction, we use the mean squared error
(MSE) as a measure of error between the predicted values and
the actual values.

MSEðy ; ŷ Þ ¼
1
Ns

XNs

i¼1

�
yi − ŷi

�2
; ð15Þ

where y ; ŷ are the actual and the predicted vector of readings,
respectively. The vector y ¼

n
y1; y2;…; yNs

o
represents the

times series values at time i where i = 1, 2, …, Ns and Ns is the
number of samples in the time series.2

In order to capture how well our model can predict future
values, we use the determinant coefficient R2. The determinant
coefficient is the proportion of the variance in the dependent
variable that is predictable from the independent variable. We
can write the determinant coefficient as follows:

R2ðy ; ŷ Þ ¼ 1 −
PNs
i¼1
�
yi − ŷi

�2

PNs
i¼1
�
yi − y

�2 ; ð16Þ

where y¼ 1
n
PNs
i¼1yi and

PNs
i¼1
�
yi − ŷi

�2
¼
PNs
i¼1e

2
i is the re-

sidual sum of squares.
Using MSE and R2 in combination allows us to assess both

the accuracy and the goodness of fit of the model. MSE
measures the accuracy of the model's predictions in terms of
the actual values, while R2 measures how well the model fits
the data. A high R2 indicates that the model explains a sig-
nificant proportion of the variability in the data, while a low R2

indicates that the model does not fit the data well. By using
MSE and R2 as metrics for evaluating the model, we can
ensure that the model's predictions are accurate and reliable,

and that the model fits the data well, which is essential for
making informed decisions in agricultural production.

Figure 7 shows the result of the trained model for fore-
casting one‐hour‐ahead readings utilising the last 6 h in the
time series for predicting the soil moisture sensor in one of the

F I GURE 6 Seasonal Trend decomposition using Loess (STL)
decomposition of soil relative humidity for a window length of 6 � 24
samples. (1) The original min‐max scaled data of the soil humidity. (2)
Long‐term trend. (3) The seasonal term, (4) the residual term and (5) the
residual term þ the long‐term trend.

F I GURE 7 (a) Time series forecasting for 1 h ahead on site 1 using site
1 dataset trained model. Deep neural network (DNN) parameters: L = 80,
M = 40, N = 20, Adamax optimiser, rectified linear unit (ReLU) activation
functions for the hidden layers, linear activation function for the output
layer, learning rate = 0.001. (b) Time series forecasting for 1 h ahead on site
1 using site 1 dataset for long short‐term memory (LSTM) trained model.

2
In our approach, we make use of the notation y ¼ y1; y2;…; yNs to represent the original
time series data, but we re‐purpose it to denote the trend component obtained through
STL decomposition. Specifically, we use each yi to represent the LT(ti), which is the trend
component at time ti. By doing so, we are able to conveniently refer to the trend
component of the time series data in subsequent analysis.
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sites. The dataset samples are averaged in a window of 6
samples such that the new dataset contains hourly readings
instead of the original 10 min samples. The training has been
performed with a 40 � 20 � 10 dense hidden layers units for
the fully connected DNN architecture and 8 units LSTM layer
and 1 output dense layer for the LSTM architecture. The DNN
and the LSTM are trained using Adamax optimiser.

In the context of TinyML on the edge, it is crucial to evaluate
the model's footprint for both the DNN and LSTMmodels. For
this particular setup, as shown in Figure 7, the DNN model was
trained with a fully connected architecture of size 7920 Bytes,
resulting in an average inference time of 97.80 milliseconds,
which is equivalent to 10.3 samples per second. The coefficient
of determination was 97.13% on average, with an MSE of
0.0036. The compressed model could be easily mounted in an
MCU's file system, and the required time for OTA updates was
less than 10 s on average.

In contrast, the LSTM model was trained with one LSTM
layer with eight units, and one dense layer with one output unit.
The model size was 32,816 Bytes, with an average inference time
of 3700 samples per second. The coefficient of determination
was 99.8% on average, with an MSE of 7.9228 � 10−5.

It is important to note that although the LSTM model had a
larger size compared to the DNN model, it achieved higher
accuracy with less error in predictions. However, the DNN
model had a smaller size but longer training time due to the larger
number of trainable parameters of the network to be trained and
the number of epochs required for the model to converge. The
choice of which model to implement usually depends on the
model footprint on the edge device (i.e. MCU) and the training
time for the TL model to be performed on the flying UAV.

Results in this section show a proof of concept on the TL
models of the drone‐assisted IoT network. The results are
based on the soil moisture readings provided by the authors in
ref. [47]. Data comprises soil temperature, air temperature, soil
volumetric moisture content, relative humidity, and surface
wetness. The objective here is to measure the accuracy of TL in
predicting soil humidity in different sites. Figure 8 shows the
results of using the DNN trained model using the dataset in

ref. [47] over our dataset that has been collected via our
custom‐made soil moisture sensor for the soil in Amman city
in Jordan. The TL training process is carried out on just 441
trainable parameters, out of the 5293 total parameters in the
DNN model. In the initial training phase without TL, the
model requires over 300 epochs to converge for the R2 value.
However, when employing the TL technique, the model con-
verges in less than 25 epochs on average. The results indicate
that the TL workflow yields an R2 value of 92.9%, which is
considered satisfactory for the TL model's forecasting
performance.

4 | RESULTS AND DISCUSSION

In this section, we show some of the results of the proposed
framework for TinyML‐TL. We show the quality of the chosen
DNN and LSTM networks and the results of practical testing
of the TinyML on the ESP32 MCU board.

Figures 9 and 10 show the quality of the used DNN
models in the forecasting of the future values of the soil

F I GURE 8 Transfer learning (TL)‐based time series forecasting for
2 h ahead on site 2 using site 1 dataset trained deep neural network (DNN)
model. DNN parameters: L = 80, M = 40, N = 20 with one extra dense
hidden layer with 20 nodes for the TL tuning, Adamax optimiser, rectified
linear unit (ReLU) activation functions for the hidden layers, linear
activation function for the output layer, learning rate = 0.001.

F I GURE 9 (a) MSE results against the number of the epochs in
training and validation over soil moisture readings for 8 h look‐back and 2 h
look‐ahead forecasting. (b) R2 results against the number of the epochs in
training and validation over soil moisture readings for 8 h look‐back and 2 h
look‐ahead forecasting. Deep neural network (DNN) parameters: L = 80,
M = 40, N = 20, Adamax optimiser, rectified linear unit (ReLU) activation
functions for the hidden layers, linear activation function for the output
layer, learning rate = 0.001.
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moisture. Figure 9 shows the MSE and R2 values for predicting
soil moisture readings for 8 h look‐back and 2 h ahead using a
DNN structure of 4 � 80 � 40 � 20 � 1. Figure 10 shows the
MSE and R2 values for predicting soil moisture readings for
4 h look‐back and 2 h look‐ahead using the same DNN
structure in Figure 9. The figures show a very high conver-
gence between the training and the validation results for the
forecasting for both of the performance metrics. The results
have been validated using 5 folds cross‐validation techniques
with random shuffling for the dataset and the shown result
matches the same numbers with very little variance around the
average of the performance metrics (i.e. MSE and R2).

In Figure 11, the performance of the LSTMarchitecturewith
8 units is shown for both training and validation over soil
moisture readings, with a 4‐h look‐back and a 2‐h forecast.
Compared to the models in Figures 9 and 10, this 8‐unit LSTM
model converges faster. This enhanced performance is attrib-
uted to the inherent capability of LSTM structures to better
manage time series data. Additionally, Figure 11 demonstrates
that the model operates effectively, with both the training and
validation curves converging without indications of over‐fitting.

Table 1 shows the results for various DNN structures. The
table shows the footprint of the chosen DNN structure on
performing the inference on the edge device. For these
particular test results, we used ESP32 MCU and all the per-
formance metrics are averaged over 104 iterations.

It is clear from the table that the structure of the DNN
does not seriously affect the required random access memory
(RAM) size of the controller. The flash memory that is needed
to perform and store the trained model is directly affected by
the structure of the DNN. The required flash memory size
decreases by decreasing the number of input features. That is,
as we decrease the number of look‐back steps, the required
flash size becomes smaller.

However, this will not seriously affect the accuracy of the
prediction in terms of the MSE and the determinant coeffi-
cient R2. The inference time required by the edge device MCU
shows a reduction of 25% when comparing the 20 and 2 steps
look‐back period and a reduction of 28% in the required flash
memory for the DNN structure of 80 � 40 � 20 � 1. The
table also shows that the structure of the DNN hidden layers
significantly affects the inference time and the required flash
memory. However, this does not come with a huge difference

F I GURE 1 0 (a) MSE results against the number of the epochs in
training and validation over soil moisture readings for 4 h look‐back and 2 h
look‐ahead forecasting. (b) R2 results against the number of the epochs in
training and validation over soil moisture readings for 8 h look‐back and 2 h
look‐ahead forecasting. Deep neural network (DNN) parameters: L = 80,
M = 40, N = 20, Adamax optimiser, rectified linear unit (ReLU) activation
functions for the hidden layers, linear activation function for the output
layer, learning rate = 0.001.

F I GURE 1 1 (a) Mean squared error (MSE) results against the number
of the epochs in training and validation over soil moisture readings for 4 h
look‐back and 2 h look‐ahead forecasting for the long short‐term memory
(LSTM) model. (b) R2 results against the number of the epochs in training
and validation over soil moisture readings for 8 h look‐back and 2 h look‐
ahead forecasting for the LSTM model with 8 units structure.
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in performance metrics. Hence, we may choose a less complex
DNN structure and achieve almost the same performance
while decreasing the inference time, computational complexity
on the edge and the flash memory footprint.

The results in Table 2 show the performance of various
LSTM structures for inference on edge devices. The table
compares different input sequence lengths (15, 12, and 9) and
various LSTM structures (64 � 1, 32 � 1, and 16 � 1). The
table shows that, as the input sequence length decreases, the
inference time decreases as well, showing that shorter input
sequences lead to faster processing times.

Comparing different LSTM structures, we can observe
that as the number of LSTM units decreases, RAM usage
remains constant, but Flash usage and inference time
decrease. This indicates that a smaller LSTM structure re-
quires less memory and computational resources, making it
more suitable for edge devices with limited capabilities. In
terms of model performance, the MSE and validation MSE
are relatively low, and the R2 and validation R2 scores are
high (above 99.9%) for all configurations, indicating that the
LSTM models perform well in predicting soil humidity. The
trade‐off between model complexity and performance can be
seen when comparing the 64 � 1, 32 � 1, and 16 � 1 LSTM
structures. The models with fewer LSTM units may have
slightly lower performance but require less memory and
computation time.

LSTM models with varying input sequence lengths and
structures can be effectively used for inference on edge devices
in smart agriculture applications. Smaller LSTM structures and
shorter input sequences can provide good performance while
requiring less memory and computation time, making them
suitable for resource‐constrained edge devices.

Figure 12 visually presents the impact of altering the time
series sequence length on the overall performance of the DNN
model, considering the MSE metric for both training and
validation. The model with 40 nodes in the input layer out-
performs the one with 80 nodes concerning the MSE per-
formance metric. However, the look‐back interval significantly
influences the MSE value. Specifically, the minimum value is
achieved with a 4‐step look‐back interval for the DNN

network having 40 input nodes. This variation in the look‐back
interval will affect the flash size and inference time, as
demonstrated in Tables 1 and 2.

Figure 13 demonstrates the rapid convergence of the
LSTM model during the TL phase after introducing an addi-
tional hidden dense layer to the pre‐trained LSTM model for
training on a new dataset. The LSTM model proves to be a
highly promising tool for employing UAV‐assisted TL, as it
exhibits quick convergence during the TL process. The figure
illustrates that the LSTM model converges after only 10 epochs
of TL training, even when there is a small number of extra
hidden dense layer nodes (i.e. the number of non‐trainable
parameters of the LSTM‐TL model).

TABLE 2 Results for forecasting with long short‐term memory (LSTM).

Input (sequence
length)

LSTM
structure

RAM
(bytes)

Flash
(bytes)

Inference time
(milliseconds)

MSE
(#)

Validation MSE
(#)

R2

(%)
Validation R2

(%)

15 64 � 1 32,768 81,440 34.5 0.000054 0.000046 99.95 99.96

12 64 � 1 32,768 68,016 27 0.000096 0.000096 99.95 99.94

9 64 � 1 32,768 50,400 17.5 0.000067 0.000064 99.94 99.95

15 32 � 1 32,768 68,320 17.0 0.000076 0.000076 99.97 99.93

12 32 � 1 32,768 54,896 13.5 0.000047 0.000040 99.96 99.95

9 32 � 1 32,768 42,064 10.0 0.000076 0.000073 99.94 99.93

15 16 � 1 32,768 64,832 9.0 0.000037 0.000037 99.97 99.96

12 16 � 1 32,768 51,408 7.5 0.000085 0.000085 99.91 99.91

9 16 � 1 32,768 38,576 5.5 0.000051 0.000051 99.96 99.95

F I GURE 1 2 Effect of the look‐back window size over the mean
squared error (MSE) for different shapes of the first layer of the deep
neural network (DNN).
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5 | CONCLUSIONS AND FUTURE
WORK

In this paper, we presented a comprehensive framework for
implementing TL on non‐terrestrial edge devices (e.g. UAV
using TinyML framework). The framework reduces the need
for transmitting raw data, which requires high data rates, as
well as allowing data ferrying from end sensors and extending
their operational lifetime. We also demonstrated the practical
feasibility of deploying the proposed model in the field through
a case‐study. The case‐study focuses on the accurate prediction
of relative humidity in the field. We employ a time‐series
forecasting model that uses the DNN and LSTM models.
These models are trained and then relayed by drones between
different locations for fine‐tuning the global model.

Practical testing of the TinyML was implemented on an
ESP32 MCU board. The inference metrics on the edge devices
(i.e. inference rate and accuracy in terms of MSE and R2) are
then shown for multiple DNN and LSTM models to study the
impact of changing some model hyper‐parameters on the
achieved performance in the inference time and accuracy on
MCUs.

Our results demonstrate that the proposed approach can
yield significant benefits in terms of energy efficiency and can
also be extended to other smart agricultural applications. For
instance, hyper‐spectral imaging, which reveals crop progres-
sion can be treated under a similar framework. Further
advanced techniques such as CNNs, CNN‐LSTM and Bi‐
directional LSTM (BiLSTM) architectures therefore need to
be implemented on the MCU through the TinyML framework.
Other promising areas for research include overcoming the
challenges related to memory and computational constraints,
implementing more complex LSTM models and examining
federated learning (FL) techniques (training on the edge before
submission of the trained model hyper‐parameters to the
cloud). So in conclusion, this work has shown the practical

feasibility of a framework that integrates drones, TL, IoT edge
devices and TinyML and that can easily be expanded and
developed into other applications of smart agriculture and
beyond.
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