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Intersecting Machining Feature Localization and
Recognition via Single Shot Multibox Detector

Peizhi Shi , Qunfen Qi , Yuchu Qin , Paul J. Scott , and Xiangqian Jiang

Abstract—In Industrie 4.0, machines are expected to be-
come autonomous, self-aware and self-correcting. One im-
portant step in the area of manufacturing is feature recog-
nition that aims to detect all the machining features from
a 3-D model. In this research area, recognizing and lo-
cating a wide variety of highly intersecting features are
extremely challenging as the topology information of fea-
tures is substantially damaged because of the feature in-
tersection. Motivated by the single shot multibox detector
(SSD), this article presents a novel deep learning approach
named SsdNet to tackle the machining feature localiza-
tion and recognition problem. The typical SSD is designed
for 2-D image objection detection rather than 3-D feature
recognition. Therefore, the network architecture and out-
put of SSD are modified to fulfil the purpose of this re-
search. In addition, some advanced techniques are also
utilized to further enhance the recognition performance.
Experimental results on the benchmark dataset confirm
that the proposed method achieves the state-of-the-art fea-
ture recognition performance (95.20% F-score), localization
performance (90.62% F-score), and recognition efficiency
(243.85 ms per model).

Index Terms—Deep learning, feature recognition, Indus-
trie 4.0, 3-D feature localization, single shot multibox detec-
tor (SSD).

I. INTRODUCTION

IN THE realm of manufacturing, every product starts with
a (or a set of) computer-aided design (CAD) model (or

models). As we are now marching toward a new era of smart
manufacturing (or so called Industrie 4.0), machines are ex-
pected to become autonomous, self-aware and self-correcting.
One of the essential steps toward such advance, is the ability of a
machine to “understand” a given CAD model, that is, recognize
any machining features of the model. This is called feature
recognition.
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Machining feature recognition has become an active research
topic since 1980s, where a large number of methods have been
proposed. Most methods were implemented based on manually
designed rules. In these rule-based approaches, recognizing a
wide variety of highly intersecting features remains a somewhat
challenging task [1]–[4] as in-depth knowledge about different
features and feature combinations is required. In recent years,
machine learning techniques have been widely utilized in the
area of smart manufacturing (e.g., machine fault diagnosis [5],
predictive maintenance [6], 3-D object acquisition [7], retrieval
[8], and recognition [9] for manufacturing automation), as well
as in other research areas (e.g., image retrieval [10], medical
volume segmentation [11]). These techniques enable intelligent
agents to automatically learn from data without being explicitly
programmed. To this end, two novel approaches named Fea-
tureNet [12] and MsvNet [13] that adopt machine learning tech-
niques for intersecting feature recognition have been developed.
The two approaches are general purpose method in which ad hoc
rules are not required any more, such that they can recognize
a wide variety of features without imposing the burdens on
the recognizer designer. In the two approaches, unsupervised
segmentation algorithms were utilized to divide intersecting
features into separated features according to the features’ shape
information. Then, the deep learning methods were employed
to recognize these segmented features one by one. However, it
is rather difficult to accurately segmenting intersecting features
according to the shape information in an unsupervised way, since
the topology information of the features might be destroyed
because of feature intersection. This will lead to a large amount
of features in a CAD model be misrecognized or mislocated, as
evident in the experiments carried out in [13].

Motivated by an effective yet efficient object detection al-
gorithm named single shot multibox detector (SSD) [14], this
article presents a novel method called SsdNet where feature
segmentation and recognition are carried out together via su-
pervised learning. The typical SSD is a deep neural network
designed for 2-D image objection detection, which cannot be di-
rectly employed to recognize 3-D models. Therefore, this article
modified the network architecture and outputs of SSD to tackle
intersecting 3-D machining feature localization and recognition
problem. This article further utilizes data augmentation (DA)
and transfer learning (TL) to improve the training performances.

The main contribution in this article is an approach named
SsdNet capable of yielding the state-of-the-art intersecting fea-
ture recognition performance, localization performance, and
recognition efficiency. As a minor contribution, a comprehensive
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evaluation of the SsdNet and other learning-based approaches
is also conducted in this article.

The rest of this article is organized as follows. Section II
reviews the existing intersecting feature recognition methods
and identifies the research gaps in this research area. Section III
presents a novel method called SsdNet that overcomes the
limitations arising from the existing methods. Section IV fully
examines the performance of the SsdNet, and compares the
SsdNet to other intersecting feature localization and recognition
approaches. Finally, Section V concludes this article.

II. RELATED WORK

Recognition and localization are two critical tasks in intel-
ligent system development [15], [16]. In the area of manu-
facturing, feature recognition refers to the task for predicting
the correct number and type of features appeared in the given
CAD model, whereas feature localization refers to the task of
finding the precise locations of features in the CAD model.
Machining feature localization and recognition can be carried
out by either rule-based [2] or learning-based approaches [17].
The former imply that human developers utilize the knowledge
and experience to design rules for localization and recognition,
whereas the latter aim to create feature recognizers via ma-
chine learning techniques from human labeled data. As isolated
feature recognition problem has already been perfectly solved,
this section will have a particular focus on an overview of the
intersecting feature localization and recognition approaches.

A promising rule-based intersecting machining feature recog-
nition approach is the hint-based approach [18]. In this approach,
an important concept named hint, which refers to the minimum
indispensable parts of a feature, was presented. During the recog-
nition, the hint-based system first achieves all potential hints
from a 3-D model. Then, a geometric completion procedure,
which includes a heuristic geometric reasoning and matching
procedure, is defined and adopted to find features from a given
CAD model according to the hint instances. Both hint-based and
other existing rule-based methods (e.g., STEP-based [19], [20],
volumetric decomposition [21], and graph-based approaches
[22]–[24]) suffer from a number of limitations: first, in-depth
knowledge about different features is required to design a re-
liable rule-based approach; second, designing heuristic rules
becomes more challenging in intersecting feature recognition,
as the topology of a feature is destroyed and most faces in the
feature are lost. Therefore, the rule developer has to consider
all combinations of features, and carefully check whether the
proposed rules (e.g., hints, geometric completion procedures)
are valid in all the situations; third, most rule-based approaches
adopt matching or searching algorithms to identify the poten-
tial feature in the 3-D model (e.g., the geometric completion
procedure in hint-based approaches), which is computationally
expensive [2].

As noted, designing heuristic rules for intersecting feature
localization and recognition is not an easy task. Some learning-
based approaches have been applied to reduce the effort required
for the rule developers. However, most of these approaches (e.g.,
[25]–[27]) can only tackle limited types of feature intersections,

and/or focus on specific type of CAD representations. To tackle
the abovementioned issues, Zhang et al. [12] presented a feature
recognizer named FeatureNet, which can locate and recognize
any types of intersecting features in a given CAD model. In
this approach, an unsupervised segmentation algorithm, called
watershed algorithm, was employed to divide intersecting fea-
tures into separated features according to the features’ shape
information. A 3-D convolutional network was then utilized to
recognize these segmented features one by one. In general, wa-
tershed algorithm can yield expected results when segmenting
features with low overlap degree, but fails to separate highly
intersecting features as the shape information of most features
is lost because of the feature intersection. To solve the issues
arising from the FeatureNet, Shi et al. [13] proposed a novel
intersecting feature recognition approach named MsvNet. In
this approach, a 3-D model with intersecting features was first
segmented into separated ones via another unsupervised learning
algorithm named selective search algorithm according to the
2-D shape information of the features. Then, these segmented
features were passed through a novel view-based 2-D convolu-
tional neural network (CNN) for further recognition. Unlike the
watershed algorithm that only produces one set of segmentation
results based on one 3-D model, the selective search algorithm
can enumerate most potential features in a 3-D model. Therefore,
more intersecting features are likely to be found by the selective
search algorithm, which leads to a better localization and recog-
nition performance than the FeatureNet. Both the FeatureNet
and MsvNet suffer from the following limitations: first, due to
the nature of unsupervised segmentation algorithms involved
in these methods, a large number of highly intersecting features
could still be misrecognised or mislocated as the topology infor-
mation of these features is substantially damaged because of the
feature intersection. Therefore, unsatisfactory localization and
recognition results could be produced, which is also illustrated
in the experiments; second, the FeatureNet and the MsvNet can
be regarded as two-stage methods in which feature segmentation
and recognition are conducted separately. Therefore, segmented
features need to be passed through the neural networks multiple
times, which will slow down the whole recognition process.

III. FRAMEWORK

This section first discusses the relevant issues raised in the
existing approaches, which motivate the proposed method, and
makes an overview on the proposed approach to intersecting
feature localization and recognition. Then, the neural network
construction process and the final feature localization and recog-
nition process are illustrated in details.

A. Overview

As discussed in Section II, existing learning-based methods
(MsvNet [13] and FeatureNet [12]) suffer from a number of
limitations, which motivate the research conducted in this article.
Therefore, the main research problem that this article aims
to tackle is: how to locate and recognize highly intersecting
machining features from a CAD model efficiently. To solve this
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research problem, several advanced methods are explored in this
article.

Both the MsvNet and FeatureNet are two-stage methods
with the abovementioned limitations. A one-stage method that
conducts feature segmentation and recognition together via su-
pervised learning seems to be a proper solution to the above-
mentioned issues. In a supervised algorithm, different kinds of
intersecting features can be seen at the training stage rather than
the test stage, which allows for producing much better segmen-
tation and recognition performances. In a one-stage algorithm,
feature segmentation and recognition are carried out together,
which could speed up the recognition process.

As evident in the experiments conducted in [13], segmenting
intersecting features in 3-D space is rather arduous. Experimen-
tal results also demonstrated that it was relatively easy to locate
and recognize 3-D intersection features from 2-D view images
[13]. To this end, a one-stage supervised feature segmentation
and recognition algorithm based on 2-D view images is an ideal
solution to the research problem. In other words, the proposed
deep neural network takes a view image as input, and predicts
the types and 3-D locations of all features appeared in this
view direction. Finally, the 3-D bounding boxes achieved from
different view directions are combined together to form the
final results. In summary, the SsdNet consists of two parts:
one-stage supervised feature localization and recognition (to
predict the types and locations of features appeared in different
view directions), and result fusion (to form the final prediction
results). The machine learning techniques employed in each part
are shown in the next two sections, respectively.

B. Network Construction

The main purpose of this section is to construct a deep neural
network that maps a 2-D view image to 3-D locations of all
features appeared in this view direction. To attain this goal,
SSD [14], an effective yet efficient one-stage object detection
algorithm, is adopted in this article, as it is capable of identifying
objects appeared in an image effectively. The original SSD is
designed for image object detection, where the output of the
algorithm is a set of 2-D bounding boxes. It means that it cannot
be applied to the research problem directly since the output in
feature localization should be 3-D locations of the features rather
than 2-D bounding boxes. Therefore, this article adjusts the out-
put of the original SSD to tackle the 3-D feature localization and
recognition problem. In addition to the output, the architecture
of the SSD is also modified to make the training and recognition
processes more efficient.

This section first discusses how to prepare the data for training.
Then, the novel network architecture designed based on the
research problem and its training process are presented in details.

1) Data Preparation: As the SSD-based approach is super-
vised learning, 3-D models with intersecting features and their
corresponding labels are required at the training stage. In prac-
tice, however, it may be easier to get 3-D models with single
features than models with intersecting features. To tackle this
problem, this approach synthesises multifeature models by com-
bining single feature models together. In this article, it is assumed

Fig. 1. 2-D images taken from different directions. (a) Original model.
(b) Transparent model. (c) View labels in six directions. (d) Images with
view labels. Each pixel value of images in (d) represents the maximal
depth of all features appeared at this position.

that a dataset which consists of different types of 3-D voxelized
single feature models is available. Before training, a number
of 3-D models with single features (e.g., two–ten models) are
randomly selected from this dataset, and combined together via
the boolean operation to form a multifeature model. The types
and bounding boxes of all the features in this newly constructed
model are also recorded, and denoted as the label of the 3-D
model. Then, a large number of 3-D multifeature models with
labels can be constructed effectively.

As discussed in Section II and [13], feature segmentation in
a 3-D space is much more challenging than in a 2-D space.
Therefore, a 3-D model with intersecting features is converted
into a number of view images in this article. These images
are employed as inputs of the proposed network as it will
allow for training an effective and efficient network for feature
segmentation and recognition easily. Suppose that the dimension
of a voxelized 3-D model is d× d× d. This approach scans
this model from six directions, and takes six d× d images from
this model accordingly. In each image, the value of each pixel
represents the maximal depth of all features appeared at this
position, as exemplified in Fig. 1.

To improve the training performances, DA, a widely used
technique in the area of machine learning, is adopted in this
approach. This method is able to considerably increase the
diversity of training samples. In this article, three DA strategies
are employed: random flipping, random resizing, and random
combination. In the first strategy, the 2-D image is horizontally
or vertically flipped with a small probability. This strategy is
capable of producing new training images that contain features
with different locations. In the second strategy, constant padding
is applied to the top, bottom, left, and right of the 2-D training
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Fig. 2. DA strategies. (a) Random flipping. (b) Random resizing. (c)
Random combination.

image. This padded image is finally resized to the original
size. This strategy could produce new training images with
smaller machining features. In the third strategy, the 2-D image
is combined with another training image via the element-wise
maximum operation. The labels (or bounding boxes) of two
images are also concatenated together. This strategy allows
for producing training images, which contain more machining
features. The detailed DA process is illustrated in Fig. 2.

2) Network Architecture: The original SSD [14] is a feed-
forward CNN, which maps a 2-D image to a set of 2-D bounding
boxes and class scores of objects appeared in this image. It
employed a high-resolution image (3 × 300 × 300) as input,
which is computationally expensive. The output of the proposed
framework is supposed to be a set of 3-D feature bounding
boxes rather than 2-D boxes. Therefore, this article adjusts the
architecture and output of the original SSD to fulfil the purpose
of this article. The modified network takes a smaller 2-D view
image as input, and predicts a set of 3-D bounding boxes and
class scores of all features appeared in this view direction. Such
a modification could produce a much better result in terms of
recognition accuracy and efficiency.

As shown in Table I, the network contains two components: a
base net and a multibox net. The former is employed to produce
six activation maps with different sizes based on the input view
image, whereas the latter is utilized to predict the types and
locations of the 3-D machining features at multiple scales based
on the six activation maps.

It is also observed from Table I that the network contains 25
convolutional layers in total (19 in the base net, 6 in the multibox
net). Each convolutional layer consists of a fixed number of
kernels, which are employed to apply some effects to the inputs
of neurons. The kernel operation is conducted as

z(i, j, k) =
∑
l,m,n

q(l, j +m− 1, k + n− 1)k(i, l,m, n) (1)

where q is the input of the neuron, z(i, j, k) is the output at a
location (j, k) for the ith channel, and k is the kernel matrix.
In addition to the convolutional layers, three l2 norm layers
[28] are adopted to normalize the activation maps achieved
from the earlier convolutional layers since the earlier activation

TABLE I
NETWORK ARCHITECTURE TABLE. THIS NETWORK CONSISTS OF A BASE
NET AND A MULTIBOX NET. THE BASE NET IS UTILIZED TO CREATE SIX

ACTIVATION MAPS, WHEREAS THE MULTIBOX NET IS EMPLOYED TO
PRODUCE THE FINAL RESULTS BASED ON THE ACTIVATION MAPS

maps usually have larger values than the latter maps. After the
l2 normalization, all activation maps will have a similar value
range. The l2 norm operation is defined as

o(i, j, k) = γi
z(i, j, k)√∑
i |z(i, j, k)|2

(2)

where γi is a learnable scaling factor for the channel i.
For an activation map, six predefined reference bounding

boxes are associated with each cell of the activation map in this
approach [see the dotted line boxes in Fig. 3(a)]. It is observed
from Fig. 3(a) that each reference box is centred at the cell of the
activation map, and has fixed shape and size. The bounding box
for a machining feature, however, is supposed to have arbitrary
shape, size, and location [see the purple dashed line box in
Fig. 3(b)]. To attain this goal, the multibox network predicts
offsets of the machining feature bounding box relative to the
predefined reference bounding box, and the confidence score for
each type of machining feature [as shown in Fig. 3(b)]. There-
fore, 6 ×m×m reference bounding boxes can be predefined
based on the activation map of size m×m, and 6 ×m×m
machining feature bounding boxes can be constructed based
on these predefined reference boxes. The dimension of the
final predictions is 6 × (c+ 5)×m×m, where 6 refers to the
number of machining feature bounding boxes per cell, c is the
number of feature types and 5 refers to the five offset values
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Fig. 3. Reference bounding boxes and machining feature bounding
boxes in the activation map (adapted from [14]). (a) 4 × 4 activation
map and the six corresponding reference bounding boxes (the dotted
line boxes) in one cell. (b) Machining feature bounding box (the purple
dashed line box) and its corresponding reference box (the red dotted
line box). Δ(h,w, l, cx, cy) in (b) refer to the location offset values of
the purple machining feature box relative to the red reference box.
(s1, ..., sc) refer to the confidence scores for all feature types.

[height h, width w, depth l, and centre coordinate (cx, cy)] of
the machining feature bounding box relative to the predefined
reference box [as illustrated in Fig. 3(b)].

3) Training: In the proposed deep neural network, it is es-
sential to know which reference bounding box is responsible for
predicting a certain ground truth bounding box. To tackle this
issue, Liu et al. [14] presented a positive and negative matching
strategy to find corresponding reference bounding boxes for a
ground truth bounding box. In this approach, the ratio between
the overlapped area over the joined area, called intersection
over union (IoU) value [13], is utilized to measure the degree
of overlap between two bounding boxes. A match is positive
when IoU value between two boxes is greater than 0.5. The
rest of matches are regarded as negative. It is obvious that there
are more negative matches than positive ones, which makes the
training data extremely imbalanced. Therefore, this approach
only selects negative reference bounding boxes with top loss
values and guarantees that the ratio between the selected positive
ones and negative ones is 1:3, as suggested in [14].

Suppose that there is a matching between a ground truth
bounding box t and reference box d. The width, height, depth,
and centre coordinate of a box are denoted as w, h, l, and
(cx, cy), respectively. The encoded offsets of the ground truth
box t relative to the reference box d are defined as

t̂w = log(tw/dw), t̂h = log(th/dh), t̂l = log(tl/dl)

t̂cx = (tcx − dcx)/dw, t̂cy = (tcy − dcy)/dh (3)

where tw, th, tl, and (tcx, tcy) refer to the width, height, depth,
and centre coordinate of the ground truth bounding box. dw, dh,
dl, and (dcx, dcy) refer to the width, height, depth, and centre
coordinate of the reference bounding box as illustrated in Fig. 3.
t̂w, t̂h, t̂l, (t̂cx, t̂cy) refer to the width, height, depth, and centre
coordinate offset values of the ground truth box t relative to the
reference box d.

In this approach, confidence loss (Lconf) and localization loss
(Lloc) are employed to train the neural network. The former
measures how confident the deep network is of making a class
prediction, whereas the latter is the mismatch between the pre-
dicted box and ground truth box. The confidence loss is defined

as

Lconf(x, s)=−
∑
i∈Pos

xk
i,j log

(
es

k
i∑

k e
ski

)
−
∑
i∈Neg

log

(
es

0
i∑

k e
ski

)

(4)
where xk

i,j is an indicator value, which equals to one when there
is a match between the ith reference bounding box and the jth
ground truth box for the feature type k. ski refers to the predicted
confidence score for the feature type k achieved from the ith
reference box. e is the exponential constant approximately equal
to 2.71828. The localization loss is defined as

Lloc(x, p, t) =
∑

m∈{cx,cy,w,h,l}

∑
i∈Pos

xk
i,jSmoothL1(p

m
i − t̂mj ),

(5)
where pmi refers to the predicted localization offset based on the
ith reference box, and SmoothL1 is the Smooth L1 loss [29].
This loss function is selected since it is less sensitive to outliers
than other loss functions, and is capable of preventing exploding
gradients during training [29]. The overall loss for all matches
is calculated as

L(x, s, p, t) =
1
N

(Lconf(x, s) + Lloc(x, p, t)) (6)

where N refers to the number of matches.
At the beginning of the training stage, network parameter ini-

tialization is an important step since a better learning result could
be achieved from a well-initialized neural network. To tackle
this problem, TL, a popular method for knowledge transfer and
parameter initialization, is adopted in this article. This technique
is capable of employing the knowledge gained from one problem
to solve another problem. In general, the network trained on
a dataset of visual objects contains deep knowledge of object
detection, and could be utilized to initialize the parameters (e.g.,
weights and biases) in the another network for object detection.
Therefore, this article employs a pretrained SSD network on
the pascal visual object classes (VOC) benchmark set [30] to
initialize parameters in the proposed network since the VOC is a
large set for object detection. The detailed process of utilizing TL
is presented in Section IV-B. During the training, this approach
employs the Adam optimizer to minimize the loss function
L(x, s, p, t), as this optimizer can converge to minimum faster
than other optimizers.

C. Feature Localization and Recognition

As illustrated in the previous section, a neural network which
maps a 2-D view image to a number of possible 3-D feature
locations is constructed. Therefore, the next issue is how to
utilize this network for feature localization and recognition
based on a 3-D model rather than the 2-D images. To attain
this goal, the six view images of the 3-D model are first passed
through the network. Then, the outputs of the neural network
are decoded [see Fig. 4(a) and (b)] as follows:

t̄w = dwep
w

, t̄h = dhep
h

, t̄l = dlep
l

t̄cx = pcxdw + dcx, t̄cy = pcydh + dcy (7)
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Fig. 4. Result fusion process. (a) Predicted features achieved from
each direction in 2-D images (the depth information about each bound-
ing box is not displayed). (b) Predicted features achieved from each
direction in 3-D models. (c) Combined features in a 3-D space. (d) Final
result.

where pw, ph, pl, and (pcx, pcy) refer to the predicted width,
height, depth, and centre coordinate offset values based on the
reference box d. t̄w, t̄h, t̄l, and (t̄cx, t̄cy) refer to the decoded
width, height, depth, and centre coordinate of predicted bound-
ing box.

After decoding, six sets of machining features could be pro-
duced based on the six view images of the 3-D model [see
Fig. 4(b)]. Then, the bounding boxes of these features are con-
catenated together, as illustrated in see Fig. 4(c). It is observed
that there are several redundant features in the result achieved
from the previous step since the neural network is designed to
find all potential features from a given CAD model. To remove
these features, soft nonmaximum suppression (Soft-NMS) [31],
the state-of-the-art bounding box selection method, with max-
imum cut algorithm [32] is adopted. As suggested in [13], this
method is capable of eliminating redundant features effectively.

The Soft-NMS [31] algorithm starts with a list of 3-D loca-
tion bounding boxes B = {b1, ..., bn} and their corresponding
localization-recognition scores S = {s1, ..., sn}. In this algo-
rithm, both the bounding boxes and corresponding score values

are captured from the output layer of the SsdNet. Then, a greedy
procedure is carried out to move a 3-D bounding box bm with
the highest score value from B to a new bounding box set D, and
reduce the score value of each bounding box bi inB proportional
to the IoU values between the bm and bi. This greedy procedure
is terminated when all boxes in B are moved to D. At the end,
boxes in D with high score values are selected as final results
via the max-cut algorithm [32]. It is observed from Fig. 4(d)
that, this approach effectively removes redundant and wrongly
recognized machining features.

IV. EXPERIMENTAL RESULTS

Based on the framework presented in the previous section,
this section first makes a comparison between the proposed
approach and other learning-based approaches (the MsvNet [13]
and FeatureNet [12]) in terms of intersecting machining feature
localization and recognition. Then, the effects of different learn-
ing strategies in the SsdNet are further examined. The source
code of the proposed framework as well as the experimental
results is available online1.

A. Benchmark Dataset

As shown in Section III and [12], [13], a single feature dataset
is required to fully train the SsdNet, MsvNet, and FeatureNet.
Therefore, the benchmark single feature set constructed in [12]
is adopted in this experiment since it is a diverse set with 24
different types of machining features. In total, there are 24 000
3-D STL models in this set, 1000 for each type of features.

In addition to the single feature dataset, a multifeature dataset
is also required to test the localization and recognition per-
formances of different approaches. Therefore, the benchmark
multifeature set presented in [13] is employed in this experiment
for testing purpose since this set consists of 1000 STL models
with highly intersecting features. Shi et al. [13] divided the
dataset into ten different groups according to the intersecting
degree of features.

All the methods in this comparative study require 3-D vox-
elized models for training and testing. Therefore, a toolbox
named binvox is employed to convert 3-D STL models in two
benchmark sets into 3-D 64 × 64 × 64 grids as carried out in
[12] and [13]. Therefore, each set contains models with shape
64 × 64 × 64. To make a fair comparison, all the experiments
are conducted under an identical optimal setting as suggested in
[13]. The abovementioned networks are trained and validated
on the benchmark single feature set [12], and tested on the
benchmark multifeature set [13]. The single feature set is divided
into training and validation sets (90%:10%). At the training
phase, only 512 models per feature type (51.2%) are utilized
to train the networks, the same as in [13]. All the models in
the benchmark multifeature set are selected to form a test set.
The information about the training, validation, and test sets is
summarized in Table II.

1[Online]. Available: https://github.com/PeizhiShi/SsdNet

https://github.com/PeizhiShi/SsdNet
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TABLE II
DATASET DESCRIPTION

B. Experimental Settings

In the SsdNet, 2-D images instead of 3-D models are required
for training the deep network. Therefore, 2.8 M training images
and 1 K validation images are created based on the 3-D models
in the training and validation sets by following the procedures
described in Section III-B1. As stated in Section III-B2, the
proposed network consists of a base net and a multibox net.
TL adopts a pretrained SSD network on the VOC dataset to
initialize parameters in the base net since the structures of the
base nets in the original SSD network [14] and the proposed
SsdNet are identical. The bias in each neuron of the multibox
net is set to zero, whereas each weight in the multibox net is
set to a small random number. Other technologies in TL (e.g.,
weight freezing) are not adopted in this article. The batch size
is set as 16, whereas the number of learning epochs is set to
4 (700 000 training steps in total). The probability of applying
each DA strategy to the training images is 50%. The learning rate
is initially set as 10−4 and then set as 10−5 in the third epoch.
This simple learning rate decay scheme for Adam is utilized
since it is able to yield better learning results [33]. The values of
the aforementioned hyperparameters are determined according
to the validation loss. In the MsvNet and FeatureNet, the values
of all the hyperparameters are identical to those in [13]. It is
worth noting that the intersecting feature segmentation part in
the FeatureNet is only a reimplemented version provided by
Shi et al. [13] where the watershed algorithm with a default
configuration is utilized. An Intel i9-9900X PC with a 128 GB
memory and NVIDIA RTX 2080ti GPU is employed to carry
out the experiments reported in the following sections.

For a machining feature detector, it is important to measure
its ability to locate and recognize the appeared features. As
suggested in [34], F-score is adopted in this comparative study
as this metric is suitable for multiobject classification and de-
tection problem [35]. The F-score is the weighted average of
precision and recall. The precision is the average fraction of
correctly recognized/located features (true positive) among all
the recognized/located features, the recall is the average fraction
of correctly recognized/located features (true positive) among
the total appeared features.

C. Recognition Performance

This section focuses on examining the recognition perfor-
mances of different approaches. Therefore, F-score is employed
as evaluation metric, where the true positive value tpi for a 3-D
model is calculated as

tpi = min(predi, gti) (8)

TABLE III
F-SCORE FOR FEATURE RECOGNITION (%)

as implemented in [13]. tpi refers to the true positive value
which is the number of correctly recognized type i feature
in a 3-D model, predi is the number of predicted type i fea-
ture in this model, and gti is the actual number of the type
i feature appeared in this model. For instance, a 3-D model
contains five holes (gthole = 5) and two pockets (gtpocket =
2). The feature recognizer, however, reports that there are
four holes (predhole = 4) and three pockets (predpocket = 3) ap-
peared in this 3-D model. Therefore, the number of correctly
recognized holes and pockets in this model should be four
[tphole = min(predhole, gthole) = min(5, 4)] and two [tppocket =
min(predpocket, gtpocket) = min(2, 3)], respectively. Such a cal-
culation only focuses on the evaluation of recognition perfor-
mance without considering whether the predicted features are
located correctly.

Table III shows the F-score for feature recognition on different
data groups. As illustrated in the table, the SsdNet achieves
the highest recognition F-score for all groups, which means
that the proposed method is capable of producing more correct
predictions than incorrect ones, and also finding more features
from CAD models. As discussed in Section II, the MsvNet and
FeatureNet were proposed based on unsupervised segmentation
algorithms, which are not very suitable for 3-D models with
highly intersecting features since the shape information of most
features are damaged because of feature intersection. Therefore,
the SsdNet could produce much better results as supervised
segmentation algorithm is utilized.

D. Localization Performance

While the recognition performances of different approaches
were examined in the previous section, this section further evalu-
ates whether these approaches can accurately find the locations
of the features from the CAD model. In this experiment, the
F-score metric is also employed, but the way of calculating the
true positive (tpi) is different. As suggested in [34], a detection is
considered as true positive only when the IoU value between the
ground truth and predicted boxes is greater than 0.5. If multiple
prediction boxes match a same ground-truth box, this metric
only keeps the box with the top prediction score. For instance,
there are five holes in a 3-D model (gthole = 5). The system
finds four holes from this model (predhole = 4). Among the four
holes, only one hole is located precisely. Therefore, the number
of correctly recognized yet located holes in this model should
be one instead of four (tphole = 1). Such a calculation allows for
evaluating whether the predicted features are located correctly.
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Fig. 5. Two 3-D models with intersecting features and their predicted bounding boxes yielded by the FeatureNet, MsvNet, and SsdNet. The
original CAD model in (a) contains five features with medium degree of overlap, whereas the original model in (b) consists of five features with high
degree of overlap. The intermediate and final results (e.g., results achieved from feature segmentation, recognition, and selection) yielded by three
approaches are presented.

TABLE IV
F-SCORE FOR FEATURE LOCALIZATION (%)

Table IV illustrates the F-score for feature localization on
different data groups. It is evident from the table that the Ss-
dNet produces the highest F-score for all groups, especially
when recognizing models with highly intersecting features (e.g.,
models in group 7–10). To fully examine the reason for this,
Fig. 5 illustrates two 3-D models with intersecting features
and their predicted bounding boxes achieved from different
approaches. The original CAD model in Fig. 5(a) consists of
five features: a rectangular through slot, a vertical circular end
blind slot, a triangular through slot, a chamfer, and a circular
blind step. Among these features, the rectangular through slot
and the vertical circular end blind slot are overlapped together;
the triangular through slot and the circular blind step are also
intersecting features. In the FeatureNet [12], an unsupervised
learning algorithm named watershed algorithm was first em-
ployed to segment features according to the their 3-D shape

information. From the segmentation result achieved from the
FeatureNet in Fig. 5(a), it is evident that this algorithm fails
to segment these intersecting features appeared in the given
CAD model. The MsvNet [13] employed another unsupervised
learning algorithm named selective search algorithm to seg-
ment the features. Unlike the watershed algorithm that only
produces one set of segmentation results based on one 3-D
model, the selective search algorithm aims to enumerate all (or
most) possible features in a given 3-D CAD model [see the
segmentation result achieved from the MsvNet in Fig. 5(a)].
Therefore, most intersecting features are very likely to be found
by the selective search algorithm, which could lead to a better
localization performance than the FeatureNet. Due to the nature
of unsupervised learning, however, six instead of five features
are detected by the MsvNet [see the final result achieved from the
MsvNet in Fig. 5(a)]. For 3-D models with highly intersecting
features, the topology of each feature may be destroyed. In these
situations, using unsupervised segmentation algorithms for fea-
ture segmentation and localization is particularly arduous. The
SsdNet is a one-stage method which directly segments, locates
and recognizes the intersecting features via supervised learning
algorithm. From the final result achieved from the SsdNet in
Fig. 5(a), different types of intersecting features can be identified
correctly since supervised segmentation algorithm is employed.
The CAD model in Fig. 5(b) also contains five features, while
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TABLE V
COMPARISON TABLE

four of them are overlapped together. It is observed that the
FeatureNet fails to segment these four intersecting features
correctly, which leads to the wrong localization result [see the
final result achieved from the FeatureNet in Fig. 5(b)]. From
this figure, it is evident that the MsvNet is capable of detecting
two features correctly, whereas the SsdNet could locate and
recognize all these highly intersecting features easily even when
the shape information of these features is substantially damaged
due to the feature intersection.

E. Efficiency

This section further compares the proposed method to others
in terms of the efficiency since the runtime performance of a
feature recognition system is critical to computer-aided manu-
facturing. In this experiment, the following evaluation metrics
are utilized.

1) The average time taken by different methods in recogniz-
ing a 3-D model in the test set.

2) The average time taken in data preprocessing (e.g., con-
verting a 3-D model into a set of 2-D images).

3) The average time taken in feature segmentation.
4) The average time taken in feature recognition (e.g.,

forward pass).
5) The average time taken in the postprocessing (e.g., con-

verting the outputs of the network into a set of 3-D
bounding boxes).

6) The average time taken in feature selection.
7) The average number of segmented features.
8) The average number of forward passes.

For a fair comparison, all the experiments are conducted on
an Intel i9-9900X PC with a 128 GB memory and NVIDIA RTX
2080ti GPU.

From the Table V, it is observed that the SsdNet is the most
efficient intersecting machining feature localization and recog-
nition method (243.85 ms per model). As stated in the previous
sections, the SsdNet and MsvNet employs 2-D images rather
than 3-D models as inputs. Therefore, these two approaches
take similar constant times for preprocessing the input data
(145.04 and 131.64 ms per model, respectively). As discussed
in Sections II and III, the MsvNet and FeatureNet are two-stage
methods in which feature segmentation and recognition are
conducted separately. In these approaches, machining features
are first separated via unsupervised algorithms. Then, the neural
networks need to recognize these segmented features one by one,
which is time-consuming. The SsdNet, however, is an one-stage
method where feature segmentation and recognition are carried
out together. It predicts the feature types and bounding boxes
from the input models directly without an independent feature

segmentation process. Therefore, the SsdNet can achieve a better
runtime performance than the others. This is supported by the
results illustrated in Table V. It is observed that the MsvNet
takes 519.16 (=373.32 + 145.84) ms for feature segmentation
and recognition, the FeatureNet takes 362.72 (=314.53 + 48.20)
ms, and the SsdNet only takes 9.49 ms. It is also visible that the
SsdNet and MsvNet take similar amount of times for postpre-
cessing the outputs and selecting features.

As discussed previously, the MsvNet and FeatureNet are two-
stage methods where the segmented features need to be passed
through the networks separately. Therefore, the average number
of segmented features and the average number of forward passes
are identical in these approaches (see Table V). The SsdNet is an
one-stage method where the average number of forward passes
is a constant value (six forward passes per model). Therefore,
the time complexity of the SsdNet is O(1).

F. Benefits Assessment of the SsdNet

As described in Section III, the SsdNet employs several
training strategies, which could affect the final prediction perfor-
mances. Therefore, the experiments under the following settings
are conducted to examine the effects of these strategies: (1)
The SsdNet with the default configuration suggested in previous
sections is employed. In this experiment, TL and DA are enabled
at the training stage. The output of the network is a set of 3-D
bounding boxes. The learning rate is initially set as 10−4 and then
changed to 10−5 at the third epoch. At the training phase, 512
models per feature type are utilized to train the networks. (2) In
this setting, the output of neural network is a set of 2-D bounding
boxes rather than 3-D boxes, which is identical to the original
SSD algorithm [14]. The depth information of a potential feature
is calculated based on a heuristic estimation method suggested in
[13]. In this estimation, the depth of a bounding box is set to the
maximal depth of all features appeared in this 2-D box. The rest
configurations are identical to those in the previous setting. (3)
The TL and DA in this setting are disabled during the training.
(4) In this setting, the SsdNet with 2-D outputs is employed.
The TL and DA are also disabled during training. (5) and (6)
To examine the benefits of the learning rate decay strategy,
the learning rates are set as fixed values in these two settings
(10−4 and 10−5, respectively). (7)–(10) To examine whether the
proposed method is capable of producing satisfactory results
when there are no sufficient 3-D models for training, the number
of models per feature type utilized for training is set as 256, 128,
64, and 32, respectively in these four settings. (11) and (12) For
the comparison purpose, the MsvNet and FeatureNet with the
default settings are adopted as baselines. 512 models per feature
type are employed for training.
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TABLE VI
EXPERIMENTAL RESULTS (%) BASED ON DIFFERENT CONFIGURATIONS

Table VI illustrates the recognition and localization F-score
(denoted as Fr and Fl, respectively) under the 12 experimental
configurations. It is evident from the setting (1)–(10) that the
SsdNet with the default configuration produces the best results
in terms of feature localization and recognition. From the setting
(1) and (2), it is observed that the network with 3-D outputs is
better than that of 2-D outputs. This result indicates the deep
learning algorithm outperforms the heuristic estimation method
in calculating the depths of features. It is evident from the setting
(1) and (3) that TL and DA could enhance the localization
and recognition performances. This phenomenon can also be
observed from the results captured from the setting (2) and (4).
It is evident from the setting (1), (5), and (6) that the SsdNet
with a simple learning rate decay strategy works better than
the SsdNet with a fixed learning rate. Such an evidence is also
supported by [33]. In the setting (7)–(10), it is observed that the
number of 3-D models utilized for training could largely affect
the final recognition and localization performances. The pro-
posed method could achieve near-optimal results when 128–256
models per feature type are employed for training. In addition,
the SsdNet with limited number of training samples (e.g., 32
models per feature type) could still produce better results than the
MsvNet and FeatureNet, as evident in the setting (10), (11), and
(12). From the setting (1), (11), and (12), it is visible that SsdNet
with supervised feature segmentation method outperforms other
approaches with unsupervised segmentation methods.

V. CONCLUSION

In conclusion, this article proposed a novel method for
intersecting feature localization and recognition via SSD. A
thorough evaluation was carried out to compare the proposed
method to the others. Experimental results demonstrated that the
SsdNet achieved the state-of-art localization and recognition
performances on the benchmark test set due to the nature of
supervised learning algorithm employed for feature segmenta-
tion. In addition, the training strategies adopted in this article
considerably enhanced the recognition performances. Further-
more, the SsdNet was more efficient than others as it was a
one-stage method. The proposed method could be utilized in
a computer-aided process planning system, which produced
a set of manufacturing operations and machine tools based
on the feature localization and recognition results. With the

insight obtained from this work, the feasibility in minimizing
the required training samples and extending this approach to
free-form features would be explored in the ongoing work.
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