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A Systematic Approach to Climate Resilience

Assessment of Infrastructure Networks
Qianqian Li, Giuliano Punzo, Craig Robson, Hadi Arbabi, Martin Mayfield

Abstract—With a changing climate, the frequency and intensity
of extreme weather events are likely to increase, posing a threat to
infrastructure systems’ resilience. The response of infrastructure
systems to localized failures depends on whether assets are
affected randomly, in a targeted strategic way, or in any way
in between. More than that, infrastructure decisions today,
including new routes or improvements to existing assets, will
underpin the behavior of the systems over the next century.
It is important to separate and analyze the case of climate-
based disruptions and how they affect systems’ resilience. This
paper presents a probabilistic resilience assessment framework
where failure scenarios and network disruptions are generated
using weather profile data from climate prediction models with
component-level fragility functions. A case study is then carried
out to quantify the resilience of Great Britain’s railway passenger
transport system to high-temperature-related track buckling
under the Representative Concentration Pathway 8.5 (RCP8.5)
climate change scenario. A 95-year horizon on the resilience of
the railway system is drawn. The results reveal the non-linear
responses of the railway system to the increasing temperature and
show that models considering random asset failures overestimate
the system’s resilience.

Index Terms—Network resilience, infrastructure networks,
climate change

I. INTRODUCTION

A. Background

The centrality of infrastructure systems in society, and there-

fore their resilience to disruptions in a complex, fast-evolving

environment, are now universally recognized [1], [2]. Extreme

weather events such as storms and floods can extensively affect

the functionality and serviceability of infrastructure systems

[3]–[5]. The current climate change trajectory is only likely to

result in an increased frequency and intensity of such events

[6], [7]. Although current infrastructure systems have been

stressed by various types of events from time to time, they are

generally considered to be resilient to specific natural hazards

as they are designed, built, and operated in compliance with

design codes and regulations set on historical meteorological

data [8]. Yet, design standards and operational standards, and

therefore the system’s capacity to absorb shocks, are defined

over expected magnitudes of shocks. Such expectations have

been largely surpassed by the scale of extreme weather events

caused by climate change [9]–[11]. Therefore, current infras-

tructure systems may not have the ability to withstand the

Manuscript submitted June, 2022
Q. Li, H. Arbabi, and M. Mayfield are with the Department of Civil and

Structural Engineering, The University of Sheffield
G. Punzo is with the Department of Automatic Control and Systems

Engineering, The University of Sheffield
C. Robson is with the School of Engineering, Newcastle University

future climate, characterized by more frequent and intense

weather extremes. What is resilient to the present-day climate

may be vulnerable to the future climate. An understanding of

how weather hazards impact infrastructure systems is required.

Since the publication of the Intergovernmental Panel on

Climate Change (IPPC) Fifth Assessment Report [6] and the

open access to climate model output data, there has been

an increasing body of literature on assessing the impacts

of climate change on infrastructure systems. For example,

the third Climate Change Risk Assessment [12] assesses the

future flood risk to Great Britain and estimates the number of

assets exposed by overlapping the flood risk maps with the

geographical maps of the assets and identifying those likely

to surpass specific indices or risk thresholds. Other impact

assessments appearing in the literature have been carried out

in a similar manner. They rely on estimating the likelihood

of surpassing certain design or operational thresholds under

several climate change scenarios [13]–[15].

For the classification and determination of the impact of

climate hazards, a two-tier approach is proposed in [16], where

the approach first distinguishes direct and indirect impact.

Direct impacts refer to consequences related to the infras-

tructure system itself, including complete or partial damage

to physical infrastructure assets, deviation of performance

from the fully functional level, and connectivity loss. Indirect

impacts refer to those received by the society that is served

by the infrastructure systems, such as causalities, community

isolation (both physical and in terms of communications), and

economic losses. By this classification, the majority of existing

climate change impact assessments, including [12]–[15], are

on the physical damage level.

Under the scope of climate change impact assessments,

functional damages are rarely analyzed, often just viewed as a

consequence. Works related to functional damage and system-

level loss of service, in particular, are comparatively more

limited in number [17], [18]. Limiting impact assessments

to the estimation of physical damages or even component-

level functional loss overlooks the complex interdependencies

of infrastructure systems [1]. Infrastructure systems are well

acknowledged as complex coupled systems, the behavior or

response of which is distinct from the combined behavior

or response of its components [19]. Impact assessments on

physical damage level certainly provide valuable insights into

the magnitude of climate-change-related disruptions. However,

the complex dynamics characterizing infrastructure systems’

responses are such that system-level effects cannot be derived

in a straightforward manner from the component level. There-

fore, an understanding of how more extreme weather events,
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including those not normally seen in geographic areas in the

past, may cause a hazard and impact infrastructure systems is

required.

B. State of the Art

Existing works on system-level responses to disruptive

events are often cast within research in resilience, as well as

the related areas of vulnerability and robustness. A resilience

assessment often starts with modeling real-world infrastructure

systems as networks. Network models in literature can be

categorized into two groups: topological models and flow

models. In a topological model, e.g., [20], [21], physical

infrastructure system assets, such as rail stations, transmission

lines, and airports, are modeled as nodes or edges in the

network. These models emphasize the topological structure of

the system but lack the ability to capture the functional aspect

of the infrastructure system: where the demands are, where

the supplies are, and how any demand can be met. A flow

model, e.g., [22], has its emphasis on the services and flows

delivered by the infrastructure system more than the network’s

topological structure. Flow models are normally expressed as

OD (origin-destination) matrices. In a flow model, nodes are

entities that either supply, demand, or transit services or goods.

Edges capture flows between pairs of nodes. Recent works on

system-of-systems, interdependent, or interconnected networks

adopt a combined topological and flow model (e.g. [23]–[25]).

Such models have separated asset and flow layers representing

the physical infrastructure assets as a graph and the services

provided, respectively. Inter-layer dependencies describe the

physical embedding of a service end-node into the asset layer,

that is, in which asset node a flow between two nodes of the

flow layer is originated or delivered by means of the physical

network of assets.

Disruptions are mostly simulated as strategic removals of

network components [26]. This type of network compo-

nent removal is often referred to as an attack in abstract

network studies [27]. The most common strategies used for

network attacks are either random, where nodes and edges

are randomly selected and removed from the network, or

targeted, where nodes and edges are selected based on their

structural/topological importance in the network [26]. The

random attack strategy resembles some real-world disruption

events like random equipment failure, operational faults, and

accidents [23]. The targeted attack strategy, to some extent,

aims at capturing events like malicious attacks [28] or some

theoretic worst-case scenarios. While random disruptions and

targeted attacks are useful simplifications, they do not com-

pletely cover the wide variety of possibilities that a real-world

scenario may present. Many disruptive events, particularly

weather-related events, may not fit into either.

Although weather events feature stochasticity, they are not

purely random because the climate has deterministic dynamics

that exhibit chaotic behaviors [29]. However, weather-related

disruptions certainly do not maliciously target any specific

network components, making the targeted attack strategy un-

realistically severe. Those approaches are not capable of cap-

turing the feature of weather-related disruptions. Furthermore,

complex networks behave differently under different attack

scenarios [30]. Even if the infrastructure network of interest

is shown to be resilient to random or targeted network attack

strategies, it is not necessarily resilient to climate or extreme

weather event-based disruptions. Therefore, the resilience of

infrastructure systems to weather-related events should be

simulated with realistic weather profiles in addition to random

and targeted strategies.

There exist extensive works in the literature on the resilience

of infrastructure systems to extreme weather events (e.g.,

[31]–[39]). The events are represented in various forms. For

example, in [31], the weather condition across the power distri-

bution system is characterized by two variables, the number of

thunders and the maximum wind gust speed. Here we are more

interested in works that use weather profiles to initiate network

disruptions and in particular, works that address the spatial

profiles and patterns of weather events in their assessments

instead of using one single homogeneous weather condition

across the entire network. A common strategy is to divide

the system under study into weather regions, within which the

weather conditions are assumed to be homogeneous (e.g., [34],

[35].

Panteli and Mancarella [36] propose a conceptual frame-

work to assess the influence of climate change on weather-

related power interruption. In their work, an explicit reference

is made to the use of weather profile data in both time

and space domains to initiate system component failure and

simulate cascading effects. However, subsequent works [37],

[38] appear not to implement such a strategy fully. The hourly

wind profiles in [37] are obtained by sampling three normal

probability distribution functions representing normal, high,

and extreme weather conditions. In [38], the space-varying

aspect is reached by dividing the network into six weather re-

gions. Within each region, the weather conditions are assumed

to be homogeneous and are sampled with a weather simulator.

Works that account for actual spatial weather patterns, e.g.,

[39], do so by reproducing historical wind extremes with

spatial correlation. This implies the assumption that historical

or present-day weather statistics will hold in the future, which

is now widely recognized as a fallacy due to the changing

climate and weather patterns [6], [7].

An important gap in current resilience assessment frame-

works, in relation to the effects of climate change on infras-

tructure systems, is that weather-induced failure scenarios are

simulated with manipulations of present-day weather statistics

[39], [40]. What is resilient to the current patterns may easily

be fragile to the future ones. Future weather profiles produced

by climate models are the only viable option to assess the

resilience of infrastructure systems to future extreme weather

events, moving beyond the widespread extremes of random

and targeted attacks, unable to capture the features and threats

of climate change. An approach to simulate failure scenarios

through future weather profiles generated by climate models

is hence needed and proposed here.

C. Main Contributions of the Work

This paper proposes a systemic approach to assess the

resilience of infrastructure systems to climate change. In doing
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so, it proposes a novel quantitative framework that returns the

statistical distribution of the system’s response as produced by

weather profile data for the relevant geographical area. These

are obtained from climate model outputs and projected onto

the geographical asset location of an infrastructure system.

Moving beyond the current approaches to quantify infrastruc-

ture network resilience, this work:

• proposes a method to initiate network disruption based on

local climate hazards obtained from weather profiles/data

with a 95-year horizon;

• assesses system-level functional loss based on the service

level retained, which considers possible reconfiguration,

as opposed to a mere count of the failed nodes or the

identification of a threshold for network fragmentation;

• brings the physical damage and service loss quantification

together to return a measurement of the infrastructure sys-

tems’ resilience to extreme weather events-based failure

scenarios;

• benchmarks the method through a case study on Great

Britain’s railway network, including disruptions to the

ability to satisfy the travel demand.

The proceeding sections are organized as follows. Section II

describes key components in the resilience assessment frame-

work, offering a clear account of the formulation proposed,

which can be replicated for further research or adapted to

specific infrastructure systems. In Section III, the proposed

framework is applied to Great Britain’s railway network with

high-temperature-related failures. Discussion and conclusions

are offered in Section IV and Section V.

II. THE RESILIENCE ASSESSMENT FRAMEWORK

The proposed method uses standard weather profiles ob-

tained from the Earth System Grid Federation [41], which

holds the most extensive collection of observational, reanal-

ysis, and simulation data for climate change research. Those

weather profiles are available as individual time series of

weather parameters, such as wind, precipitation, and humidity,

with different time resolutions and geographical ranges. The

key elements of the proposed approach, namely the network

model, the failure scenario generation, and the probabilistic

resilience measure are described in more detail later in this

section. It is worth mentioning that resilience in this work does

consider the recovery stage, where rerouting and repairing

activities are concerned, but the recovery algorithm is not

detailed in this section as they could be interchangeable

depending on the case study or the infrastructure sector

being analyzed. The high-level architecture of the proposed

framework is shown in Figure 1.

A. Network Representation of Infrastructure Systems

In this work, the infrastructure system is modeled as a bi-

layer network, constituting an asset and a flow layer. The

reason for this is twofold. Provided the ultimate purpose of

an infrastructure system is to provide a service or services,

a resilience measurement that relates to the system’s ability

to maintain the delivery of services when exposed to external

2006 2100

Local weather conditon for all 

network components: 

Remove network components that

Input - a failure scenario: 

Reconfiguration & repair

Calculate quality of service:

The cumulative loss of service

The resilience curve 

Resilience 

assessment

Climate data

(lon, lat, time) 

2006

2100

Fragility function

Probability of failure for all 

network components: 

Random sample    times

sets of failure scenarios: number of 

Raster layer

(weather event)

Projection

Infrastructure network

Slice

No

Yes

Probability distribution of 

measured loss of service 

for weather event 

For a weather event       defined by time stamp    : 

A collection 

of events

Fig. 1: Overview of the probabilistic resilience assessment

framework. Failure scenarios are sampled with weather pro-

files across the network. Service disruption is then calculated

for each sampled failure scenario, forming a probability dis-

tribution. The resilience of infrastructure systems to future

climate is assessed with a collection of such probability

distributions.

shocks would be better than one relating to the extent of dam-

age/change on its topological structure. The second reason is

that such separation makes it possible to incorporate multiple

asset layers and, therefore, multiple types of climate hazards

into the assessment. The successful delivery of a unit of service

can sometimes rely on multiple interdependent infrastructure

systems with components in each system affected by different

types of climatic hazards. The separation makes it possible

to initiate failures in different asset layers caused by different

climate hazards simultaneously while increasing the flexibility

of the modeling framework to adapt to different infrastructure

systems.

In the following, the asset and flow layers will be indicated

by subscripts α and φ, respectively. Hence, for the asset layer,

assets can be thought as a graph Gα = {Vα, Eα} where Vα

and Eα indicate the set of nodes and edges, respectively. The
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framework does not need to differentiate node assets and edge

assets rigidly. For layer α, A indicates the set of assets in

layer α, with elements Ai, i = 1, 2, · · · , .|Vα|+ |Eα|, with | · |
indicating the cardinality of a set. The equivalent definitions

for the flow layer φ are omitted for brevity.

B. Failure Scenario Generation

In this work, a failure scenario refers to a set consisting of

the simultaneous failure and removal of network components.

The generation of such failure scenarios follows a systematic

approach using the obtained climate model output (the blue

boxes in Figure 1 ). The climate outputs are three-dimensional

(3D) data, where spatial weather data are combined with the

third dimension of time. A weather event refers to a slice from

the 3D data with a desired geographical range and timescale.

For a given weather event, by projecting the weather data on

the asset layer, the local weather condition for all network

components in the asset layer can be found.

ω = {ωi, ...}, i = 1, 2, ...|Vα|+ |Eα|
where ωi is the local weather condition for asset Ai.

With the local weather condition allocated for each asset

network component, a non-zero asset failure probability arises

as the asset may fail due to local weather conditions. This

probability defines the likelihood that an asset can withstand

an assigned local weather condition and can be derived from

a fragility function, which returns the probability of failure as

a function of the magnitude of the local weather conditions.

Such fragility function can be obtained by gathering rele-

vant information from the asset management company where

available. The shape of a fragility curve reflects uncertainty

in the asset’s ability to withstand a shock. If the failure

is deterministic (e.g., a circuit breaker in an electric circuit

triggered by a given value of the current), the fragility function

takes the shape of a step function with a threshold (Figure 2a),

beyond which the probability of failure passes abruptly from

0 to 1. Examples used in the literature are air temperature

threshold for railway track buckling [15] and significant wave

height on port operation [42]. The threshold model, or step

function, assumes that asset failures are deterministic when

the assigned shock is above the threshold. When there are

greater uncertainties in the asset’s capacity to withstand a

shock, a more general sigmoid function can be used (Figure

2b). Examples of the latter include [37]–[39], where sigmoidal

fragility functions are associated with the failure of electricity

transmission lines and towers to local wind speed.

In the most general form, consider the fragility function for

each network component in the asset layer as

p
f
i = ξi(ωi), (1)

where ξi stands for the fragility function for asset Ai and p
f
i

is the calculated probability of failure for asset Ai when the

local weather condition is ωi. The probability of failure for all

network components in the asset layer is

pf = {pfi , · · · }, i = 1, 2, ...|Vα|+ |Eα|.
For the sake of simplicity, and without loss of generality, all

assets are assumed to have a binary state. The state of a single
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(a) Step Function Form
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(b) Sigmoid Function Forms

Fig. 2: Example fragility curves.

network component, Ai, can therefore be described by an

independent Bernoulli random variable Xi ∼ Ber(pfi ) that:

P (Xi) =

{

p
f
i , for Xi = 0

1− p
f
i , for Xi = 1

. (2)

The state of the whole network is therefore effectively con-

trolled by a set of independent Bernoulli random variables

X = {Xi, · · · }, i = 1, 2, ...|Vα|+ |Eα|,

where each Xi corresponding to some failure probability.

One sample of each random variable returns a failure

scenario for the system, where network component failures

are initiated by removing assets with Xi = 0. Each failure

scenario represents one possible outcome from the weather

event. The complete sample space for X is of size 2|Vα|+|Eα|.

To reduce the complexity of simulating the system’s response

to all 2|Vα|+|Eα| combinations, a Monte Carlo approach is used

to estimate the possible outcomes. Through repeated sampling,

N set of possible failure scenarios can be obtained with

S = {Sj , · · · }, j = 0, · · · , N,

where j denotes a single Monte Carlo run. Each subset, Sj ,

contains a combination of states for all network components

and is regarded as a single failure scenario.

C. Probabilistic resilience measure

The UK National Infrastructure Commission (NIC) lists

‘anticipate, resist, absorb, adapt and transform’ as key aspects

of infrastructure resilience [43]. While ‘robustness, resource-

fulness, rapid recovery, adaptability’ are identified as the four

main features of resilience by the National Infrastructure Ad-

visory Council of the USA [44]. Such definitions of resilience

include the recovery stage and consider not only the system’s

ability to maintain its service at the time of event happen-

ing but also its ability to maintain service between event-

happening to the time of full recovery. This paper considers

resilience as the ability of a system to maintain and return

to its normal operations after a disruption occurs. Here the

resilience metric proposed by Bruneau et al. [45] is adopted

for its general applicability and inclusion of the recovery stage.

Resilience, R, is measured as cumulative service degradation

from the time of the earthquake, or any disruptive events,

4
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happening, t0, to the time of full recovery, t1, as shown in

Equation (3):

R =

∫ t1

t0

[100%−Q(t)] dt, (3)

where Q(t) denotes the quality of infrastructure at time t in

percentage, with Q(t)= 100% meaning fully functional status.

In this work, the resilience metric from [45] is modified in

two aspects. First, instead of the quality of the infrastructure

assets, Q(t) here measures the quality of service provided.

Moreover, such a measure of the quality of services may take

different meanings depending on the nature of the infrastruc-

ture system under study. As a general case, it is expressed as

the percentage of satisfied demand

Q(t) =

∑

φ F
t

∑

φ D
t
, (4)

where F t and Dt denote the delivery and demand at time

t respectively. The resilience metric is then calculated as

cumulative loss of service

LOS =

∫

t1

t0

1−
(

∑

φ F
t

∑

φ D
t

)

dt. (5)

Second, to take the uncertainty of the system behavior into

account, resilience to a given weather event is associated with

the averaged LOS from all sampled failure scenarios (the red

boxes in Figure 1). For a given weather event, a set of N

failure scenarios, S = {Sj , · · · }, j = 0, · · · , N , are randomly

sampled. For each failure scenario, Sj , component failures

are initiated in the asset layer accordingly, and disruptions

in the service layer are then computed. Depending on the

system’s dynamics, reconfiguration and repair activities can

then be performed. Q(t), is calculated at every time step

until full service is recovered. The cumulative loss of service,

LOSj , from the j-th sampled failure scenario, Sj , is then

calculated with Equation 5. The statistical distribution of set,

LOS = {LOSj}, j = 0, · · · , N , describes the system’s

resilience to the given weather event.

III. CASE STUDY - GREAT BRITAIN’S RAILWAY SYSTEM

Heat-related track buckling is one of the most common

reasons for delays and cancellations in railway services. The

UK experienced a brief but unprecedented extreme heatwave

from 16 to 19 July 2022, where rail services were severely

disrupted [11]. Recognizing the urgency and consequence

of this issue, this section presents a case study on Great

Britain’s railway passenger transport system, which is modeled

as a flow network dependent on a single asset layer of train

tracks subjected to high-temperature related track buckling. A

set of temperature projections covering the years 2006-2100

under the Representative Concentration Pathway 8.5 (RCP8.5)

climate change scenario is used to generate plausible climate-

based failure scenarios. Those failure scenarios are then used

to initiate failures in the network, followed by the proposed

resilience assessment.
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Fig. 3: Clustering of the summer days (01 May to 30

September) from 2006 to 2100 based on the tasmax of

CORDEX output data EUR-11 CNRM-CERFACS-CNRM-

CM5 rcp85 r1i1p1 MOHC-HadREM3-GA7-05 v2. 15 clus-

ters are produced for each 5-year group through a K-means

algorithm. The height of each bar is controlled by the number

of days that fall into the cluster. The color of the bar is

controlled by the average temperature of the synthetic centroid

of the cluster.

A day-by-day resilience assessment for the 95-year period

would hardly meet practical considerations and require sub-

stantial computational power. Summer days (May to Septem-

ber) in each 5-year period are clustered together using a K-

means algorithm where the optimal number of clusters (K) is

obtained via an elbow analysis, returning results between 8 and

15 clusters. Practically, this is done using a Bisecting K-means

algorithm, coded in the Python Scikit-learn package [46],

where all other parameters are set to their default values. The

day closest to the synthetic centroid of each cluster is chosen

as the representative day. By doing so, 285 example days are

selected, representing 285 typical weather events and, thus,

285 unique distributions of climate hazards over the railway

network. This approach makes the dataset computationally

tractable with the method presented without losing significant

information, and the 5-year interval is consistent with the size

of the EURO-CORDEX data batches.

A. Model Inputs and Assumptions

In this case study, a few simplifications and assumptions

are made for the balance of generality and specificity. In

the absence of reliable information and empirical data, those

choices are the most general and possible form. We have

made our data and scripts publicly available as IEEE DataPort

dataset (DOI 10.21227/d0z6-q125).

1) The network: The railway network model developed by

Pant et al. [23] is used in this case study. It has separated flow

and asset layers (Figure 4). The asset layer is an undirected

weighted network that consists of 4024 stations, modeled as

nodes; and 4524 railway track segments, modeled as edges.

The flow layer is in the form of OD trips, representing the

services provided. There are 2,282,270 OD pairs between 2484

origin and destination nodes out of the 4524 nodes in the asst

layer. Each OD pair has an original edge path assigned, P0
od,
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(a) (b)

Fig. 4: (a) Asset layer of the network model with 4024 nodes

and 4524 edges. (b) Flow layer of the network model. This

figure only plots 22,326 out of the total 2,282,270 OD pairs,

which has more than 15 passenger trips and geographical path

length greater than 30km.

detailing which edges in the asset layer are utilized. Average

daily traffic over the year is used as both a measure of the

traffic volume on edges in the asset layer and OD demand.

The system is assumed to be in a steady state with this daily

traffic with the same amount of services demanded every day,

regardless of the state of the asset layer. Any daily, weekly,

or seasonal variations are not considered in this case study. A

time resolution of one day is used.

2) The Hazard: High-temperature-related track buckling is

used as an example hazard to demonstrate how to generate net-

work failure scenarios using weather profiles. From [47], [48],

track buckling is related to the daily maximum temperature.

To the best of found knowledge, there is no existing fragility

function that expresses the probability of track buckling as a

function of the ambient temperature. The empirical definition

of such a function is beyond the scope of this paper. A

Gaussian sigmoid is hence considered as a fragility function

with its shape controlled by the two parameters µ and σ. The

fragile function, ξi, for asset Ai, therefore expresses as

p
f
i = ξi(ωi) =

1

2
[1 + erf(

ωi − µi

σi

√
2

)], (6)

which is controlled by 2 parameters σi and µi. µi is related

to the Critical Rail Temperature (CRT), which is dependent

on other factors such as the stress-free temperature of the rail

and the degree of consolidation of the ballast [49], and σi is

related to the confidence/uncertainty of the estimated of CRT.

The critical air temperature for heat-related track buckling

varies depending on track conditions. However, track condi-

tions are not available from the network model or network-

wide from other sources. For the purpose of this case study, the

dependence of the critical air temperature on track conditions

is therefore not considered, and all edges in the network

are subjected to the same fragility function regardless of

any variations in condition. Taking the thresholds in [47],

[50] into consideration, the cumulative distribution function

of N (35, 2.5) is used. The value of µ and σ can be tuned

if more information becomes available, e.g., a collection of

historical failure events and corresponding local temperature.

Therefore, in this case study, the fragility function for all edges

is

p
f
i = ξ(ωi) =

1

2
[1 + erf(

ωi − µ

σ
√
2

)]. (7)

3) The Climate Data: As mentioned above, track buckling

is related to the daily maximum temperature. Therefore the

output variable, daily maximum near-surface air temperature

(tasmax) ), is used in this case study. EURO-CORDEX pro-

vides climate change data for the European domain, covering a

period of 95 years, from 2006 to 2100. By limiting the results

to:

• “domain” = “EUR-11” (0.11°, ∼12km spatial resolution),

• “experiment” = “RCP8.5”,

• “time frequency” = “day”,

• “variables” = “tasmax”,

64 sets of model output are left. They differ in the global

climate model used for downscaling, the climate model

ensemble, and the regional climate model used.1

4) Rerouting Algorithm: Railways usually are not deliv-

ering at their maximum capacity [51]. When the network is

partially damaged with some OD pairs losing their original

path, the spare capacity allows rerouting to utilize the remain-

ing assets to attempt to deliver those interrupted OD flows.

When the original path is interrupted due to one or more edge

failures, passengers are assumed to stay at the origin node

and no passenger is waiting at any intermediate nodes on

the original path. A modified minimum-cost maximum-flow

algorithm based on the Edmonds-Karp algorithm [52] is used

for the flow assignment here. More details about the rerouting

strategy can be found in the associated IEEE DataPort dataset

(DOI 10.21227/d0z6-q125).

5) Recovery: Asset repairing activities are assumed to take

place at every time step until the asset layer is fully recovered.

For the sake of this example and to bypass the scarcity of

information on the recovery of incidents in the railway sector,

damaged edges are subject to the same recovery probability

of 0.5 at every time step until fully recovered. Once an

asset is recovered, no secondary damage is considered in this

disruptive event.

B. Simulation

As the temporal resolution for the acquired climate variable

tasmax is daily, a single day is regarded as a weather event,

which is assumed uncorrelated to conditions of the previous

and following days. For a single day, the weather condition

across the country is seen as an instance of situations the rail-

way system might face. This case study considers continuous

hot days or heatwaves that last longer than 24h as a single

extreme event with repair work only happening after the event.

This is consistent with Network Rail’s operational standards,

1The most recently updated one, EUR-11 CNRM-CERFACS-CNRM-
CM5 rcp85 r1i1p1 MOHC-HadREM3-GA7-05 v2, is used in this case
study.
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for which track maintenance works should not be carried out

when the rail temperatures are above 32 °C (corresponding to

an air temperature of 21 °C) or are predicted to exceed 38 °C

(corresponding to an air temperature of 25 °C) within three

days of work conducted [53]. For each weather event, the local

conditions for each edge are first assigned and transferred to

the probability of failure using the fragility function. Then

250 sets of failure scenarios are generated through random

sampling.

For the j-th failure scenario, disruptions are initiated

through the removal of edges for which s
j
i = 0 i =

1, 2, ...|Vα| + |Eα| at time step zero. Interrupted OD pairs,

whose original path P
0
od includes any removed edges, are then

identified. The rerouting algorithm then calculates the amount

of OD flows rerouted. The total amount of delivery at this

time step is the sum of the rerouted and the uninterrupted

OD trips. The quality of service, Q(t), is calculated with

Equation 4. Undelivered OD flows, partially or completely,

at the current time step, plus the steady-state daily demand

(the annual average daily traffic) becomes the demand for

the next time step. Asset repair is carried out between time

steps until all edges are recovered. If the original path of an

OD pair is recovered at a time step, from the next time step,

any accumulated undelivered trips will be delivered via their

original path with the 50% spare capacity fully utilized instead

of rerouting.

To compare the climate-based failure scenarios to random

and targeted, shocks of the same intensity should be applied

to the network in two separate settings with either a random

or targeted strategy. This ’intensity’ is taken as the number

of edges removed in this work. For a given day, the expected

number of failed edges can be calculated as

Ψ = E(X ) =

|Eα|
∑

i=1

E(Xi) =

|Eα|
∑

i=1

p
f
i . (8)

This implies that if a weather event was set as a random

attack on the network assets, on average, Ψ edges would be

randomly selected and removed in each Monte Carlo run. For

the targeted strategy, edges with the most traffic are removed

first. In both cases, the same resilience assessment procedure

as in the climate-based failure scenarios is followed.

Using Python, the simulations are carried out by Intel Xeon

E5-2630 v3 CPUs. Each example day with a given failure

strategy (climate-based, random, or targeted) is submitted as

a batch job. Each batch job is allocated 16G of RAM. The

CPU time for the 285 example days with climate-based failure

scenarios is 1792 hours in total. The CPU time for random and

targeted strategies is 1904 hours and 1881 hours, respectively.

C. The 95-year trend

For any given failure scenario, with the resilience defined as

in Section III, the quality of service drops immediately upon

the removal of edges. With rerouting and repairing efforts,

the quality of service gradually bounces back to one. This

forms a system response curve. The area between the curve

and the normal performance line (Q(t) = 1) forms a triangle,

the area of which, effectively, is the cumulative loss of service

and indicates how resilient the system is (see Figure 5). For

a given day, 250 failure scenarios are sampled. Therefore,

each failure scenario corresponds to a resilience curve and

a LOS. The distribution of the 250 LOS shows the likelihood

of the outcomes (loss of service) and indicates the system’s

resilience. A high LOS value means a high degree of service

loss overall and is therefore associated with low resilience.

LOS = 3.6, High resilience level

LOS = 15.9, Low resilience level

t0

0.2

0.4

0.6

0.8

1.0

Q(t)

1 2 3 4

Fig. 5: Resilience curve with calculated LOS

A time series of annual total LOS is constructed using

the simulation results of the example days and the clustering

analyses. This is done by duplicating the simulation results

for each example day and assigning them to all days in the

same cluster. The days are then grouped by year and the

convolution of all non-zero distributions is computed to give

the estimation of the annual total LOS. From Figure 6, the

constructed time series data shows an overall upward trend

regarding the estimated annual total LOS. Moreover, the spikes

suggest that, in the climate model output used, there exist some

extremely hot years with significantly more and hotter days.

The overall upward trend suggests that the railway system’s

resilience to high-temperature-induced disruptions could be

compromised under future climate scenarios.
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Fig. 6: Time series of the estimated annual total LOS for the

2006-2100 period. The solid black line shows the expectations

of the aggregated distributions. The shaded area shows the 5%

to 95% range across the aggregated distribution. The solid

red line is obtained by smoothing the solid black line with a

Savitzky–Golay filter [54].

D. Shock-disruption relationship

In this case study, the external weather condition is regarded

as a form of external shock imposed on the railway system.
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Fig. 7: The relationship between: (a) The average of measured

cumulative loss of service, LOS and the national average

tasmax; (b) the expectation of the number of edge removed Ψ
and the national average tasmax; (c) The average of measured

cumulative loss of service, LOS and expectation of the

number of edge removal, Ψ; (d) the expectation of the number

of edge removed Ψ and the average of loss of service, LOS
at the onset of disruption; (e) the average of cumulative loss

of service, LOS and the onset loss of service. The national

average tasmax is the average of the tasmax across the asset

layer.

The direct effect of such shock is the failure and removal of

edges from the asset layer. Service disruption occurs when the

railway system fails to deliver part of its service. Infrastructure

systems are believed to be complex systems that often exhibit

non-linearity. The railway system in this case study is no

exception, as a non-linear relationship is observed between

the intensity of external shock received and the severity of

service disruption caused.

Figure 7a shows this shock-disruption relation, with the

intensity of the shock measured by the national average of

tasmax and the severity of the disruption indicated by the

simulated LOS. The plot uses the simulation results of the

84 example days, whose expected number of failure, Ψ, is

greater than 1. For each day, the national average of tasmax

is plotted against the simulated cumulative loss of service. As

the temperature increases, the increase of the consequential

loss of services presents a threshold behavior with an apparent

surge as the temperature increase above 25 °C. Following the

surge, there is a steady increase with the increasing tempera-

ture, which then shows a trend to plateau. This suggests the

possibility that changes in the climate system can lead to some

disproportional disruptions to the infrastructure systems.

This shock-disruption relationship is then further broken

down into a shock-damage-disruption relation. The shock-

disruption relationship in Figure 7a is, in fact, a combined

effect of the shock-damage relationship in Figure 7b and the

damage-disruption relationship in Figure 7c. Figure 7b shows

the relationship between the intensity of the shock and the

extent of damage caused, where a surge happens at a 25

°C national average of tasmax followed by a steady increase

with increasing temperature. Figure 7c shows the relationship

between the extent of damage caused and the severity of

service disruption. The plot has a sharp increase as few edges

are removed and then keeps on growing at a slower rate. The

damage-disruption relation in Figure 7c is then broken down

in Figure 7d and Figure 7e. Figure 7d shows the relationship

between the number of edges removed and the scale of

disruption caused at the onset of the event. Figure 7e shows

the relationship between the onset service disruption (without

any rerouting or repairing) and the cumulative loss of service.

The plots suggest that the non-linear relationship between the

number of edge removal and the onset of service disruption

is one of the main contributors to the overall observed system

non-linearity.

E. Climate-based, random and targeted failures

As mentioned in Section I, neither the random failure

scenarios, where failures happen randomly across the network,

nor the targeted attack strategy, where network component

failures are targeted to simulate the most extensive possible

disruption, may be able to capture the feature of weather-

related disruptions. Therefore, two separate sets of simulations,

one implementing the random failure scenarios and the other

implementing the targeted attack strategy, are carried out to

compare the effects of these against climate-based disruption.

For a given day, the expected number of edge failures, Ψ, is

calculated using Equation 8. Then, for the random strategy,

in each Monte Carlo run, Ψ number of edges are randomly

selected and removed from the network, followed by the same

rerouting and repairing efforts with LOS calculated using the

same approach. For the targeted strategy, the first Ψ edges

with the most traffic are removed from the network, followed

by the same assessment procedure.

Firstly, the percentages of OD flows interrupted at the

onset of component failure without any rerouting or repair

attempts are compared between the three strategies (Figure

8). When the same number of edges are removed from the

network, the strategy that results in a higher percentage of

OD disruption is believed to be more disruptive. The results

show that climate-based strategy tends to sit between random

and targeted. In particular, for the extent of the failed portion

of the network edges intermediate between a sparse and a

total number of failures, the climate-based strategy is more
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disruptive than random and less disruptive than targeted. For

an extremely high number of edges involved, the disruption

of a random strategy would exceed the one generated by

the climate-based though there is only a slight difference

between the three strategies. The Mann-Whitney U test [55]

is carried out between samples from the climatic-based and

random failure scenarios. This specific test was chosen because

more than half (45 out of 84 for the climate-based scenarios,

and 61 out of 84 for the random scenarios) of the sampled

LOS fails the normality test with a significance level of 0.01.

The null hypothesis for the Mann-Whitney U test is that

the distributions of the two samples are identical and the

alternative hypothesis is that they are not identical. With a

significance level of 0.01, the null hypothesis is rejected in 76

out of the total 84 instances. The results of the statistical tests

highlight how different climatic disruptions are from random

disruptions.
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Fig. 8: upper): Percentage of OD journey interrupted at the

onset of disruption without any rerouting or repairing effort

against the number of nodes removed. The sample size is 250.

The shaded area shows the 2.5% to 97.5% range. Markers

are the means of each sample. lower): P-value of the Mann-

Whitney U test between samples from climatic and random

failure scenarios vs. the number of nodes removed. Any p-

value smaller than 0.0001 is replaced with 0.0001. The red

horizontal line is p=0.01, the confidence level adopted.

Figure 9 shows the distribution of the measured cumulative

loss of service against the number of edges removed for the

three strategies. Though discernible differences exist between

the LOS sampled from the climate-based failure scenarios and

the random strategy, the Mann-Whitney U tests are carried out

between the samples. This specific test was chosen because

the majority (167 out of 168) of the sampled LOS failed the

normality test with a significance level of 0.01. The null hy-

pothesis for the Mann-Whitney U test is that the distributions

of the two samples are identical and the alternative hypothesis

is that they are not identical. With a significance level of

0.01, the null hypothesis is rejected in 74 out of the total 84

instances. It suggests that the LOS sampled from climate-based

failure scenarios are statistically different from those sampled

with random failure in most cases. In contrast, the targeted

strategy sits distinctly above both the random and the climate-

based for all extents of edge failure. Overall, the system suffers

a higher level of loss of service under the climate-based failure

scenarios than the random one when the same number of edges

are removed from the network. It means the system has a

higher level of resilience toward random failure scenarios than

climate-based ones.
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Fig. 9: upper)The measured LOS against the number of edges

removed. The sample size is 250. The shaded area shows the

2.5% to 97.5% range. Markers are the means of each sample.

lower) P-values of the Mann-Whitney U test between samples

from climate-based and random failure scenarios against the

number of nodes removed. Any p-value smaller than 0.0001

is replaced with 0.0001 for visualization purposes. The red

horizontal line is p=0.01, the confidence level adopted.

IV. DISCUSSION

The case study points to three key findings. 1) There

is an overall increasing trend in the estimated annual total

LOS over the 95-year period, where increased frequency and

intensity of extreme events drive the average LOS upwards.

2) The severity of the disruptions caused, measured with the

cumulative LOS, increases non-linearly with the increasing

intensity of the external shock applied. This non-linearity is a

combined effect of the threshold behavior between the national

average temperature and the number of edges removed (Figure

7b) and the nonlinear relationship between the number of

edges removed and average onset disruption (Figure 7d). The

reason behind the nonlinear relationship between the number

of edges removed and average onset disruption is down to the

nature of complex systems, where the behavior or response of

the system is distinct from the combined behavior or response

of its components [19]. The key message here is that climate

change impact assessment should not stop at the assessment

of asset-level physical damage but need to be taken to system-

level functional loss.

3) Random failure models tend to overestimate the net-

work’s resilience compared to climate-based failure scenarios.

When climate-based disruptions are considered, the network

function degradation is more severe than in the random failure

scenarios. This finding supports our working hypothesis that
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infrastructure systems may behave differently under different

failure scenarios and evidence the need to use realistic weather

profiles generated by climate models. Further exploration of

the reason behind this would require more simulations with

various failure scenarios to test any proposed hypothesis and is

beyond the scope of this work. The most remarkable difference

between the random failure scenario and the climate-based

failure scenario is that all assets are of equal probability of

failure in the random failure situation whilst, in the climate-

based failure scenario, the assets are subjected to unequal

probability of failure and assets of close geographical prox-

imity are likely to have similar probabilities of failure. Future

works could look at if such spatial correlations of weather-

induced failures are leading to clusters of assets within close

geographic proximity being affected simultaneously.

We consider these findings from the case study not specific

to the infrastructure model and climate model used. Regard-

less of the specific choices for this case study, the method

remains valid as it does not rely on specific features of the

dataset chosen. As for the climate dataset, to completely prove

the universality of the phenomenon observed, simulations of

output from all climate models would be required and is of

huge computational cost. The evidence we found about the

difference between random and climate-induced failures holds

across the vast majority of the days examined. The conditions

found in our sample could be found in any dataset where only

the distribution of the magnitude and the frequencies change.

The direct use of climate model outputs also provides the

possibility to assess the resilience of the infrastructure systems

to different climate change scenarios and provides a more

comprehensive assessment of the threat of climate change.

This is achieved through two aspects. First, the introduction

of the Monte Carlo simulation in the assessment framework

provides a density distribution of the possible extent of service

loss in the future instead of a single numerical value. It

provides a sense of how broad the outcomes would fall and

the associated likelihood of those outcomes. Second, it can

exploit the tremendous number of datasets climate change

research provides for future climate projections. One climate

model output dataset can only provide one possible view

into the future, and only a sufficient collection of outputs

from different climate model simulation runs can give a more

reliable prediction with the degree of uncertainty and error

range addressed.

The proposed approach initiates disruptive events in infras-

tructure systems using the output data from climate change

research. Such an approach offers advances compared to the

weather generation methods used in literature [36], [38], [39].

Those methods mostly involve some form of manipulation

of present-day weather statistics and presume that future

weather patterns remain the same as the current day. The pro-

posed method overcomes such presumptions and can generate

behaviorally realistic and physically viable climate hazards

under future climate change scenarios. However, the proposed

approach is limited by the spatial and temporal resolution

of the climate change data. For example, the highest spatial

resolution offered by EURO-CORDEX is ∼12km and the

majority of the outputs are with a daily temporal resolution. In

contrast, those weather simulators can offer up to half-hourly

weather profiles. Although the case study here only requires

daily weather profiles, future applications of the method may

require weather profiles of higher temporal resolution.

The proposed failure initiation approach is applicable to

any infrastructure system with most types of climate haz-

ards, provided the fragility functions become available. By

introducing multiple inter-dependent asset layers subjected

to multiple climate hazards, the proposed approach has the

potential to simulate cascading failures in an interconnected

infrastructure network and assess the resilience of the system.

Future applications of the approach should see case studies on

interdependent infrastructure systems with compound climate

hazards.

The case study also highlights challenges and limitations

in implementing the proposed approach and points to direc-

tions and improvements to consider when conducting further

case studies. The Monte Carlo simulation requires substantial

amounts of computational power. In the case study, simpli-

fications and assumptions are made to s few aspects of the

assessment framework to bring the amount of calculation

within the computational power available and to keep the

emphasis on improving the representativeness of the spatial

pattern of climate hazards.

A clustering analysis was carried out to select representative

example days (representative spatial patterns of the hazard).

Doing so brings the amount of calculation within computa-

tional power available and provides important insights into

the 95-year trend. A single day is assumed as an independent

weather event in the case study and considered as an instance

of situations the railway system might face. This assumption

holds because, in real-world practice, repair work will not

be carried out until the heatwave is passed [53]. For future

works on quantifying the impact of increasing frequency and

intensity of heatwaves, one can use more advanced machine

learning techniques to identify representative heatwaves.

Spatial patterns and temporal patterns are two major aspects

of recreating weather events and climate hazards in infras-

tructure resilience assessment frameworks. We understand that

both aspects of climate hazards are of equal importance

and interest. With limited computational memory, this work

focuses on improving the resolution of the spatial features of

climate hazards and uses detailed daily weather profiles with

realistic geographical variations. Moving forward, efforts can

be put into integrating time series analysis into the current

assessment framework.

The second challenge is the lack of empirical data and

information on industrial practice for the specification of

fragility functions and railway system dynamics. For example,

the industrial practice of rerouting, the prioritization of repair-

ing, and the estimation of spare capacity. A few assumptions

are made in the case study to the most general form to

complete the resilience assessment setup in the absence of

sufficient information. In the case study, all track segments

are assumed to have the same fragile function with the same

critical temperature. In reality, the Critical Rail Temperature

(CRT) varies from track to track and depends on many

factors including the stress-free temperature of the rail, the
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quality and degree of consolidation of the ballast, ballast

shoulders, tamping, the type and condition of the sleepers and

fastenings, and maintenance and renewal work [49]. Provided

such information becomes available, which informs asset-

specific fragility functions, more rigorous quantification of

infrastructure resilience to future climate can be addressed.

Advancements can be made to the recovery processes. The

probability of repair at the moment is kept at a 50% chance

for all damaged assets. Future works can introduce a ‘cap’

to limit the number of assets that can be repaired at a given

time step to reflect the limited resources to perform system

repair. Or express the probability of recovery as a function

of multiple factors, such as the geographical proximity to

repairing resource centers and the next day’s weather con-

ditions. If the probability of recovery is set to be associated

with network topological metrics, e.g., betweenness centrality,

different network recovery strategies can be tested with the

proposed framework.

V. CONCLUSION

This work presented a method to generate network fail-

ure scenarios and system disruptions using climate change

research data for the assessment of the infrastructure system’s

climate resilience. The case study attempts to quantify the

resilience of Great Britain’s railway passenger transport system

to high-temperature-related track buckling under the RCP8.5

climate change scenario. Findings from the case study support

the two arguments that motivate this framework’s proposal:

1) Random failure models tend to overestimate the network’s

resilience; 2) The system quality of services degrades non-

linearly with the magnitude of the disruption. Together, they

prove the need for linking climate change resilience assess-

ment to system-level functional loss as opposed to a mere

count of the failed nodes or the identification of a threshold

for network fragmentation.
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Supplementary Material

APPENDIX

THE REROUTING ALGORITHM

The modified minimum-cost maximum-flow algorithm

based on the Edmonds-Karp algorithm [1] used for the rerout-

ing in the case study is described in ALGORITHM 1.

Any edge, if undamaged, is assumed to have a spare

capacity of 50%1 of its regular traffic for the rerouting. At

each time step, the algorithm implements 5 rounds of path

searching. At each round of path searching, it searches for the

shortest path that, 1) all edges forming the path has available

spare capacity; and 2) is within twice1 the geographical length

of the original path for each disrupted OD pair. The available

capacity of the path is the smallest spare capacity across

all the edges forming the path. Any used spare capacity is

deduced before the next round of path searching. The capacity

is gradually used and in some cases, the capacities of some

popular edges are reduced to 0 in the first round of path

searching.

The code involves a large amount of path search as there

are 2,282,270 OD pairs in the system model with an asset

layer constituting 2484 nodes and 4524 edges. The search

for alternative paths is time-consuming and memory-intensive.

To meet the limitation in computational power available, the

algorithm is set to eliminate the alternative path search for any

OD pair with fewer than 15 passenger trips or geographical

path length less than 30km. Those trips can be regarded

as trips that are likely to be aborted due to their relatively

small demand figures or met by using alternative transporta-

tion services due to their short geographical distance. These

include OD pairs with potentially no passengers in the days

considered, which, together, contribute to 99% toward OD pair

count. By eliminating those OD pairs from the path search, the

1This is an arbitrary value set on the absence of relevant information.
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Fig. 1: Histogram of the percentage difference between the

amount of flow delivered at each time step between a full

rerouting effort and the reduced rerouting effort. Twelve failure

scenarios are included in the sample. The number of trips

delivered with the two rerouting efforts is compared at every

time step.

computational time can be reduced by 96%. In fact, the sum of

those OD pairs contributes 71% toward total passenger trips.

The non-rerouted demand is assumed to resume travel as the

service is re-established on the original path. Up to that time, it

counts as unsatisfied demand. A small-scale trial computation

was carried out to assess the suitability of this approach. The

difference in the absolute amount of flow delivered between

a full rerouting and the reduced rerouting strategy chosen is

less than 5% in the vast majority of the cases (Figure 1).

ALGORITHM 1 - The Rerouting Algorithm

INPUT:

• R - residual functioning network structure.

• cu,v, - edge capacity

• D
re - OD flows to be rerouted.

count = 0
WHILE count < Nr of path search:

• For all OD pairs that Dre
od > 0:

◦ If there is no path...OK

◦ If there is a path, Pod:

· if path length < 2 × the original path length, DO:

- temporarily allocated flow T
′re
od =

min(cu,v, (u, v) ∈ Pod)
- for all edges in the path: fr

u,v += T
′re
od

• For edge (u, v) in R:

◦ If fr
u,v > cu,v:

· reduction factor, ϕu,v = cu,v/f
r
u,v

· cu,v = 0

◦ Else fr
u,v ≤ cu,v:

· reduction factor, ϕu,v = 1
· cu,v −= fr

u,v

• For (o, d) in D
re:

◦ ϕod = min(ϕu,v, (u, v) ∈ Pod)
◦ T re

od += T
′re
od ∗ ϕod

◦ Dre
od −= T

′re
od ∗ ϕod

• Remove edges that cu,v = 0 from R
• count += 1

RETURN T re - Trips delivered through rerouting
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