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Adaptive Modeling of Uncertainties for Traffic

Forecasting
Ying Wu, Yongchao Ye, Adnan Zeb, James J.Q. Yu, Zheng Wang

Abstract—Deep neural networks (DNNs) have emerged as a
dominant approach for developing traffic forecasting models.
These models are typically trained to minimize error on averaged
test cases and produce a single-point prediction, such as a
scalar value for traffic speed or travel time. However, single-
point predictions fail to account for prediction uncertainty
that is critical for many transportation management scenarios,
such as determining the best- or worst-case arrival time. We
present QUANTRAFFIC, a generic framework to enhance the
capability of an arbitrary DNN model for uncertainty modeling.
QUANTRAFFIC requires little human involvement and does not
change the base DNN architecture during deployment. Instead,
it automatically learns a standard quantile function during
the DNN model training to produce a prediction interval for
the single-point prediction. The prediction interval defines a
range where the true value of the traffic prediction is likely to
fall. Furthermore, QUANTRAFFIC develops an adaptive scheme
that dynamically adjusts the prediction interval based on the
location and prediction window of the test input. We evaluated
QUANTRAFFIC by applying it to five representative DNN models
for traffic forecasting across seven public datasets. We then
compared QUANTRAFFIC against six uncertainty quantification
methods. Compared to the baseline uncertainty modeling tech-
niques, QUANTRAFFIC with base DNN architectures delivers
consistently better and more robust performance than the existing
ones on the reported datasets.

Index Terms—Traffic prediction, Uncertainty qualification,
Quantile model

I. INTRODUCTION

Accurate prediction of future traffic information, including

traffic volume, congestion levels, traffic speed, and travel time,

is crucial for a variety of transportation applications, such as

congestion control [1], travel time estimation [2], emergent

route planning [3], and taxi demand prediction [4]. It also

supports effective transportation planning and management,

enabling policymakers to optimize traffic flow and emergency

response planning while providing road users with a safer and

more efficient travel experience.

In recent years, there has been a growing interest in the

development of advanced predictive models for traffic informa-

tion using data-driven approaches such as DNNs [5]. Multiple
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studies have shown that traffic forecasting models based on

DNNs outperform classical machine learning methods by a

large margin [6], [7]. However, these models are typically

trained to minimize the averaged prediction error, resulting in

a considerable variation in performance across test samples

[8]. This variation poses significant challenges for individ-

ual use cases where precise traffic prediction is critical but

difficult to achieve. For instance, accurately predicting traffic

at crossroads with high traffic volumes during rush hours is

crucial for urban travel but can be challenging due to complex

traffic patterns [9]. As the accuracy of traffic forecasting can

fluctuate over time [10], it is crucial to model and quantify

the prediction uncertainty of the model for individual roads,

locations, and sensors for a given prediction window (e.g.,

traffic predictions for the next n minutes).

Modeling and quantifying traffic forecasting uncertainties

have real-world use cases in transportation management. For

example, knowing the upper bound of a traffic flow predic-

tion in emergency response situations can help emergency

responders avoid congested roads and take the quickest and

safest route to their destination. Similarly, knowing the earliest

and worst-case travel times enables users to make informed

decisions about their travel plans, such as selecting the most

convenient transportation method while minimizing the like-

lihood of being late to an appointment or arriving too early.

Therefore, by quantifying the forecasting uncertainty, we can

improve the reliability of traffic prediction and traffic man-

agement efficiency. Unfortunately, despite the huge benefits

of uncertainty modeling, prior research on traffic forecasting

has largely overlooked this issue. This is a massively missed

opportunity.

While uncertainty quantification has gained popularity in

several deep learning domains, such as computer vision [11],

human mobility [12], and medical applications [13], it is note-

worthy that the modeling uncertainties in traffic forecasting

has only recently started to receive attention. Recent studies,

such as those presented in [14] and [15], represent some of

the initial attempts in this direction. [14] uses a classical

statistical method to quantify the uncertainties associated with

average daily traffic volume forecasts. However, this approach

requires manual tuning and selecting a set of features for each

dataset to fit a linear model. Its requirement of intensive expert

involvement thus limits its practicability. In [15], DeepSTUQ

is employed to estimate the data and model uncertainties in

traffic forecasting, based on variational inference and deep

ensemble learning. This approach provides a more comprehen-

sive understanding of the uncertainties involved, but it requires

significant changes to the original model architectures, which
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limits its generalization ability.

In this paper, we present QUANTRAFFIC, a generic frame-

work for quantifying the prediction uncertainties of a DNN-

based traffic forecasting model. Unlike prior work [14], [15],

QUANTRAFFIC is designed to minimize engineering efforts

and expert involvement. It can work with any DNN model

without changing the underlying architecture during deploy-

ment. By producing a prediction interval (PI) that captures the

range in which the true value (such as travel time) is likely

to fall, QUANTRAFFIC enhances the capability of a standard

DNN to capture prediction uncertainties.

At the core of QUANTRAFFIC is a quantile function built

upon the recently proposed Conformalized Quantile Regres-

sion (CQR) algorithm [16]. The quantile function estimates

the PI of a given model output based on the data distribution

and validation errors observed during the standard DNN model

training process. QUANTRAFFIC is designed to simplify the

training and usage of the quantile function. The process in-

volves attaching a linear layer to the last layer of the base DNN

model and using a pinball loss function [17] during standard

DNN training. Once trained, the base DNN model and the

quantile function can be used as standalone components during

deployment. During inference, the quantile function generates

an initial PI based on the DNN model’s single-point prediction.

Then, an adjustment is made to refine it and improve its

accuracy. The goal is to increase the coverage of the PI while

simultaneously minimizing the width between its upper and

lower bounds.

Unlike standard CQR, which uses a constant global value

to adjust the initial PI, QUANTRAFFIC develops an adaptive

scheme to tailor the adjustment value applied to the initial

PI for the specific location (or sensor node) of the test

sample within a given prediction window. This allows the

uncertainty method to consider the prediction difficulty of

each test sample. For example, locations with high variability

in traffic patterns may require a larger adjustment to achieve

accurate PIs. In contrast, those with more predictable traffic

patterns may require a smaller value. We achieve this by

utilizing a calibration table that is automatically constructed

using an optimization function on a calibration dataset. This

table provides the optimal adjustment for a node-prediction-

window combination, enabling QUANTRAFFIC to account for

unique prediction challenges in each test sample. By using

differentiated residues to adjust the initial PI, we achieve

greater precision and reliability over the standard CQR.

We have implemented a working prototype of QUANTRAF-

FIC, which will be open-sourced upon acceptance of this

work. We evaluate QUANTRAFFIC by applying it to five rep-

resentative DNN architectures [18]–[22] for traffic forecasting.

We then test the QUANTRAFFIC-enhanced DNN model on

seven public datasets for traffic speed and flow prediction.

We compare QUANTRAFFIC against six state-of-the-art un-

certainty modeling methods [23]–[27] and two classical meth-

ods based on historical data. Experimental results show that

QUANTRAFFIC consistently outperforms competing baselines

across DNN models and datasets, delivering better and more

robust performance for uncertainty quantification.

This paper makes the following contributions:

travel time 

single-point 

estimator

modeling 

uncertainties

Route 1

（7.9 mile）

13 min 12-20 min

Route 2

（7.7 mile）

14 min 14-22 min

Route 3
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Route ?
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Best

Fig. 1. A representative emergency route planning example between two

points. A single-point travel time estimation does not provide the upper-bound
travel time for route selection which is important for ensuring the worst-case
arrival time.

• It presents a generic framework for modeling the un-

certainty of predictions in DNN-based traffic forecasting

models without requiring any modifications to the under-

lying DNN prediction model (Section V);

• It develops an adaptive scheme to consider the prediction

variances of individual locations, leading to more robust

results than standard uncertainty modeling methods (Sec-

tion V-D);

• It provides a large independent study to highlight the

importance of uncertainty modeling of traffic forecasting.

We hope our study can encourage further research along

this line (Section VII).

Data availability The data and code associated with this

paper are openly available at: https://github.com/wuyingvia/

QUANTRAFFIC

II. MOTIVATION

As a motivative example, consider the emergency route

planning task depicted in Figure 1. This example represents

a day-to-day scenario where traffic forecasts are employed to

plan optimal routes, like an ambulance traveling from Regional

Medical Center to Santa Clara Valley Medical Center. The ob-

jective is to identify the quickest route based on the predicted

traffic while ensuring the worst-case arrival time.

Typical traffic forecasting models can provide estimates for

travel time of different routes, as seen in Figure 1. However,

relying solely on these single-point forecasts for route planning

can lead to unreliable decisions since they lack information

about the uncertainty or confidence of the predictions. In

the example shown, a user may choose Route 1 due to its

lowest average travel time (13 minutes). Nevertheless, this

decision overlooks the potential variability in traffic dynamics

and route complexity, possibly rendering a worse real travel

time. To account for this variability and provide worst-case

scenario estimates, it is essential to have confidence intervals

associated with the travel time predictions. Incorporating such

confidence estimation can have a significant impact on time-

critical route planning tasks, a factor that is overlooked in the

current literature.
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We show how estimating the uncertainty of travel time

predictions can provide valuable information for time-critical

route planning. By providing travel time bounds besides

single-point forecasts, we can tell that selected routes have

much higher variability in their predicted travel times than

others. If the uncertainty estimation is accurate, the additional

information help users avoid routes that are more uncertain

on travel times, even if their average predicted travel time is

lower. For example, in the scenario depicted in Figure 1, one

may finally choose Route 3 despite it being the longest, in

order to ensure the worst-case arrival time.

This example demonstrates the limitations of single-point-

based traffic forecasting models for time-critical travel plan-

ning. This highlights the need for uncertainty modeling in

traffic forecasting. To address this, our work proposes a generic

framework for precise single-point and bound estimations to

better model traffic prediction uncertainties.

III. BACKGROUND AND RELATED WORK

Our work builds upon the following past foundations, but

our focus differs from each.

A. Spatio-Temporal Traffic Forecasting

Traffic forecasting is a well-established research topic with a

wide range of proposed solutions. Classical statistical methods,

such as historical average, regression, and integrated moving

average models, have been explored in the past [28]. How-

ever, more recent research has leveraged DNNs to model

the spatio-temporal correlations in traffic data. Compared to

classical statistical methods, DNNs can better capture complex

relationships in historical data while avoiding the need for

hand-engineered features. Researchers have explored several

approaches to represent traffic data, including temporal se-

quence modeling with recurrent neural networks [29], multi-

dimensional matrix representations with convolutional neural

networks [30], and graph neural networks (GNN) [7]. DNN-

based methods have been shown to deliver state-of-the-art

results in various traffic-related tasks, such as ride-sharing

[31], and travel planning [32]. Due to the better performance

over alternative methods, DNNs have emerged as the dominant

approach for building traffic forecasting models.

The majority of existing DNN-based traffic forecasting

models only provide a single-point prediction such as the

travel time. However, a single-point estimation only reflects

the average traffic scenario but not the best or worse cases. As

highlighted in Section II, the upper and lower bounds of the

travel time can be critical for choosing the best route in time-

critical route planning tasks. This requires one to consider the

uncertainty of the predicted travel time and to produce metrics

similar to statistical confidence intervals. This work aims to

address this issue by developing a generic approach that can

provide such information from any DNN model, making it

applicable to a wide range of traffic forecasting architectures.

B. Modeling Prediction Uncertainty

Although uncertainty modeling has been largely overlooked

in prior traffic forecasting approaches, it has drawn much

attention in other DNN-based modeling tasks. Various tech-

niques have been proposed to quantify prediction errors,

confidences, or uncertainties. These methods can be broadly

categorized as Bayesian and Frequentist ones, which have been

extensively studied in the literature [33], [34].

Bayesian models provide a robust probabilistic framework

for modeling uncertainty with Bayesian statistics [35]. In this

approach, the model incorporates prior knowledge or beliefs

for parameter initialization and infers the posterior distribution

using the likelihood function between the data and a predefined

initial distribution. Techniques for quantifying uncertainty in

DNNs using Bayesian models include Monte Carlo (MC)

dropout [25] and Variational Inference [24]. However, there

are emerging challenges, such as relatively low computation

efficiency and strong prior distribution assumptions. These

challenges can be particularly acute in high-dimensional mod-

els or large datasets.

Frequentist methods provide predictions based on a sin-

gle forward pass with a deterministic network and quantify

uncertainty by using additional qualification schemes. These

methods use post-hoc calibrations, such as conformal pre-

diction and differentiable modeling structures, and their loss

objectives, such as quantile prediction [36], to capture uncer-

tainties. Ensemble methods, such as those that use random

initialization or a mixture of experts [37], retrain models on

partial datasets, or adopt data augmentation techniques (e.g.,

cross-validation [38], and bootstrap aggregating [39]), are also

considered frequentist methods. However, ensemble methods

require trial-and-error adjustments to parameters without a

solid mathematical foundation, leading to poor coverage guar-

antees. Moreover, frequentist methods are often overconfident

[36], [40], which can result in inaccurate uncertainty estimates.

Despite these limitations, frequentist methods are attractive

because they are computationally efficient and do not require

prior assumptions on the model or data distribution.

C. Summary

In summary, existing methods for quantifying uncertainty

suffer from several issues, including inaccurate coverage guar-

antees, strong distributional assumptions, and insufficiently

calibrated prediction intervals. These challenges are further

compounded when dealing with heteroscedastic data1.

To address these issues, we propose an adaptive confor-

malized quantile model that provides a unified and reliable

framework for quantifying uncertainty in traffic forecasting.

Our approach is one of the first attempts to use frequentist

methods for estimating uncertainty in traffic forecasting. We

provide a comprehensive and structured comparison of exist-

ing approaches to real traffic data using various state-of-the-art

DNN-based traffic forecasting models. We hope our work can

promote more research in this important area of uncertainty

quantification for traffic forecasting.

1Heteroscedastic data refers to data with varying levels of variability
or scatter across its range, as opposed to homoscedastic data, which has
consistent levels of variability or scatter. An example of heteroscedastic data
in traffic forecasting is rush hour traffic, which typically has more variability
than traffic during off-peak times.
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IV. PRELIMINARIES

A. Problem Definition

A single-point traffic forecasting model attempts to pre-

dict future traffic information based on the past. Exam-

ples of traffic information include flow, speed, and den-

sity. Given a D-dimensional multivariate time series X =
{

xt−(m−1), . . . , xt−1, xt

}

∈ R
N×D collected at t time with

past m steps from N data sources (roads or sensors), a point

forecasting model f(·) attempts to estimate the multivariate

time series Y =
{

yt, . . . , yt+h−1, yt+h

}

∈ R
N×D in the next

prediciton window (e.g., h steps), : X
f(·)
→ Y .

Probabilistic traffic forecasting involves predicting the like-

lihood of various potential outcomes rather than estimating the

most likely outcome. Given historical data X , a probability

predictor F (·) can estimate the uncertainty of future traffic

conditions by producing a set of PIs, which contain the real

data with a certain level of confidence.

Specifically, a probabilistic forecasting model attempts to

estimate PIs for a set of future values denoted as Ŷ =
{ŷt, . . . , ŷt+h−1, ŷt+h} ∈ R

2×N×D, where t is the current

time, h is the prediction window. The PI for ŷt+h is defined

as ŷlt+h ≤ ŷt+h ≤ ŷut+h, where ŷlt+h and ŷut+h are the lower

and upper bounds of the PI, respectively. By specifying a

confidence level α, we can say that there is a probability

of (1 − α) that the true value Yt+h falls within the PI of

Ŷt+h. The probabilistic forecasting process can be described

as X
F (·)
→ Ŷ , where F (·) is the probability predictor that maps

historical data X to the predicted PIs for Ŷ .

This paper aims to develop a generic framework to extend

a single-point predictor f to model the uncertainties in traffic

modeling tasks. We target DNN-based traffic forecasting mod-

els as they are the core of state-of-the-art traffic forecasting

methods [7]. It is worth noting that our approach does not

change the underlying DNN model structure and can be

integrated with other classical supervised learning methods,

including support vector machines [41], linear [42] and non-

linear regressors [43].

B. Optimization Goals

Our goal is to generate PIs that are narrow and accurate,

meaning that they are just wide enough to cover the true values

(e.g., the actual traffic speed) with high probability. To achieve

this, we need the PI to be discriminative so that it is narrow for

single-point predictions with high confidence but wide enough

to ensure good coverage overall [44].

We also require the uncertainty method to perform well

across test samples and have good coverage, so we need the

results to be valid [44]. Specifically, for a given probability

or coverage rate of x (defined as 1− α), we expect the PI to

encompass the true value at least x of the time.

C. Quantified Metrics

We adopt the established practices of prior uncertainty

modeling methods in related domains [34], [44] and use two

metrics to evaluate the efficacy of the PI: validity and discrim-

ination [44]. Specifically, we use mean prediction interval

width (MPIW) and prediction interval coverage probability

(PICP) to measure these requirements. We aim is to obtain

a small MPIW with adequate coverage across test samples.

While a large MPIW can ensure good coverage, it may fre-

quently underestimate or overestimate traffic information, even

when the model is relatively confident with the prediction. On

the other hand, a small MPIW can miss the true value, leading

to incorrect decision such as selecting a slower route due to

incorrect prediction.

Mean prediction interval width. We compute the MPIW

across n test samples as:

MPIW =
1

n

n
∑

i=1

∣

∣yui − yli
∣

∣ . (1)

The MPIW is a smaller-is-better metric as we anticipate the

prediction width as narrow as possible.

Prediction interval coverage probability. In addition to

MPIW, we also consider the frequency PI that covers the real

value over the complete n test samples. The observed coverage

Ĉα is computed as:

Ĉα = 1
n

∑n

i=1 ci, ci =

{

1, yi ∈ [yli, y
u
i ]

0, yi /∈ [yli, y
u
i ]
. (2)

where ci is a binary value counting if the true value yi is

within the PI {yli, y
u
i } for the test sample i.

Given a target probability level 1−α, the expected coverage

is 1 − α for n test samples. α is defined as a mis-coverage

rate. For this case, an ideal uncertainty predictor produces n
PIs for all test samples to cover the real value of at least 1−α
time, rendering the observed coverage Ĉα, to be 1−α as well.

If Ĉα is less than 1− α, the PI is likely undercovered.

Undercoverage is generally non-intuitive since it limits the

PI to meet the requirement of retaining the true values of

important test samples.

D. Conformalized Quantile Regression

Our approach is inspired by the recently proposed CQR

algorithm [16]. CQR combines conformal prediction [23] and

classical quantile regression [26] for uncertainty qualification.

It uses quantile regression to generate an initial PI and then

uses conformal prediction to adjust the PI if required.

1) Working mechanism of CQR: In layperson’s terms, a

quantile regressor is a tool for quantifying the chance of

having a specific point in a range of possible outcomes. For

instance, if we want to predict the 90th percentile or quantile

for traffic speed, there is a 5% chance that the actual speed

will be lower than our prediction and a 5% chance it will

be higher. By fitting two quantile functions - one at the 5th

percentile and another at the 95th percentile - we can create a

PI with a 90% coverage. This is where CQR comes in handy

for modeling traffic uncertainty, allowing us to estimate these

quantiles. However, no previous work has used CQR for traffic

uncertainty modeling, making our work the first attempt to fill

this research gap.

In CQR, the training data is divided into two distinct sets:

a training set and a calibration set. The training set is used to
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Calibration tableCalibration table

Test input Single-point estimation Initial PI

Quantile functionQuantile functionQuantile function

Final PI

Trained DNNTrained DNNTrained DNN

Fig. 2. Modeling forecasting uncertainties during deployment. QUANTRAFFIC extends the standard DNN-based traffic forecasting model to quantify
prediction uncertainties. For a given test input, a trained DNN generates a single-point prediction akin to traditional DNN models. This single-point prediction
is subsequently processed by a quantile function, which produces an initial PI for the input. The initial PI, along with the test input, is then passed through
the calibration component to produce a final PI.

Training 

dataset

DNN training data

Calibration data

(a) Pre-processing (b) Quantile DNN model training

DNN training 

data

initial PI

Pinball loss function

Trained DNN

(c) Calibration table construction

Calib-

ration 

data

computing 

residual distribution

Quantile function

Calibration tableCalibration table

data 1

data 2       decision-making

Ground truth

trained quantile model

Fig. 3. Training workflow of our approach. We first partition the DNN model training datasets into disjoint parts (a). We use the first part to train the
DNN forecasting model and a quantile function that can produce an initial PI during deployment (b). We then apply the trained DNN model and quantile
function to the set-aside calibration dataset to build the calibration component (c).

develop the traffic forecasting model using standard supervised

learning techniques. Then, two quantile regressors are trained

on the training set to generate initial estimates of the upper

and lower bounds of the PI. One quantile regressor is used for

estimating the upper bound quantile and the other for the lower

bound. After obtaining the initial estimates, a conformal step

is performed on the calibration to learn a single adjustment

(e.g., increasing or decreasing the PI by x%) to be used to

adjust the PI for all test samples.

2) Limitations of CQR: A drawback of using CQR for

traffic forecasting is that it only produces a single, global

quantile adjustment for all test samples. However, a global

quantile adjustment is unlikely to be effective, as prediction

difficulties can vary significantly across domains or roads.

To illustrate this point, consider once again Routes 1 and 2

given in our motivation example (Section II). Suppose the

traffic conditions on Route 1 are more complex than those

on Route 2. Applying a global adjustment, such as increasing

or decreasing the model prediction by a certain percentage,

to both Routes 1 and 2 is unlikely to be effective. It could

result in a PI that is too narrow for the complex Route 1 or

too wide for the smooth Route 2. A better approach, which

is adopted in this paper, is to generate different adjustment

ranges for each route, resulting in more accurate and reliable

PIs. Doing so enhances the robustness of traffic uncertainty

modeling by considering the specific prediction difficulties of

each location.

V. OUR APPROACH

QUANTRAFFIC is a generic framework for quantifying

the prediction uncertainties of DNN-based traffic forecasting

models. Given a certain confidence level, the QUANTRAFFIC

framework computes a PI that defines a range of possible

values where the real data (e.g., traffic time, flow or speed) is

likely to fall within.

QUANTRAFFIC extends the existing CQR framework but

offers a significant advantage by incorporating a dedicated

calibration component. This component dynamically adjusts

the width of the PI based on locations and prediction windows

(e.g., traffic conditions in the next n minutes, also known

as the prediction horizon), resulting in improved accuracy.

Another important feature of QUANTRAFFIC is its ability to

integrate without requiring modifications to the underlying

DNN model structure, making it easy to implement. Instead,

QUANTRAFFIC uses a dedicated loss function to train the

DNN model and a quantile function to predict an initial PI.

This seamless integration allows QUANTRAFFIC to efficiently

and effectively enhance traffic forecasting in any DNN-based

traffic predictor.

This section begins by providing an overview of

QUANTRAFFIC and illustrating its design principle. It then

discusses how to train and construct the key components that

drive the DNN model to achieve better coverage and more

accurate PIs. It also elaborates on how uncertainty qualification

is achieved with test samples during deployment.

A. Overview of QUANTRAFFIC

Figure 2 demonstrates how QUANTRAFFIC enhances a

standard DNN-based traffic forecasting model to quantify

uncertainties for traffic forecasting during deployment. For

a given test sample (e.g. traffic speed or flow), the trained

DNN generates a single-point prediction that is then passed

to the quantile function to create the initial PI. This PI is a

2-dimensional numerical vector with lower and upper bound

values. Using the node id of the test sample and the prediction

window, we search the calibration table for the corresponding

residual value, which is used to amend the initial PI. Through

this process, the PI can be more accurately adjusted to reflect

the specific context of the prediction, leading to enhanced

accuracy and better coverage.
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In Figure 3, our approach adapts the standard DNN model

training workflow for uncertainty modeling. Our training pro-

cess starts by partitioning the training data into two disjoint,

namely training and calibration sets, respectively, to train

the DNN model and build the calibration table separately.

This process is described in Section V-B. Specifically, the

first training set is used to train both the DNN-based traffic

forecasting model and a quantile function, using a pinball

function to compute the loss during training (Section V-C).

Once the DNN model and quantile function have been trained,

we then use the calibration set to construct the calibration table

(Section V-D).

B. Pre-processing of Training Data

As shown in Figure 3(a), as a one-off preprocessing step,

the training data is split into a standard model training dataset

and a calibration dataset. Specifically, in this paper, we split

the time series data of each node in chronological order. For

calibration purposes, we allocate 40% of the training data, and

this ratio can be adjusted by the user. During the preprocessing

stage, the quantile function (e.g., a linear function) is also

added to the last layer of the DNN model.

C. Training DNN Model and Quantile Function

As depicted in Figure 3(b), the underlying DNN model

and the attached quantile function are trained as a single

network using the DNN training data. Then, during the back-

propagation, the pinball loss is used to figure out the loss

of the network. Specifically, the native DNN model makes a

single-point estimate for each input, which is then passed to

the quantile layer to determine the upper and lower boundaries

of the PI. Then the loss of the network is computed as follows:

Lα =

{

αtra(y − ŷ) y − ŷ > 0
(1− αtra)(ŷ − y) otherwise

, (3)

where αtra is a pre-defined mis-coverage rate (see Section

IV-C) used at the training phase, y is the ground truth, and ŷ
is the single-point prediction given by the base DNN model.

Essentially, the pinball loss function applies different

weights to positive and negative residuals based on a known

confidence level (1 − α) [17]. A smaller value of α results

in a greater penalty for samples with values smaller than

the predicted value, and vice versa [45]. When αtra is set to

0.5, Eq. (3) degenerates to the yielding median value of the

corresponding dataset. Practically, setting αtra to 0.1 expects

that 90% of ground truths would fall within the generated PI.

D. Building Calibration Table

In Figure 3 (c), we outline constructing the calibration table

using the left-over calibration dataset.

1) Calibration table: The proposed calibration table is a

matrix designed to record the residual errors of a sensor node

(or location) for a given prediction window. Each row of the

table stores the residuals of a specific sensor node for various

prediction windows, while each column records the residuals

of a particular prediction window for different sensor nodes.

2) Data preprocessing: Similar to the standard DNN train-

ing procedure, where the training data is partitioned into

training and validation sets, we split the calibration data into

two sets: χ1 for constructing the potential adjustments set for

the initial PI and χ2 for decision-making to determine the

best adjustment. In the first set χ1, the trained quantile DNN

predicts the traffic information for each test node in a given

prediction window. Then, the prediction errors or residuals are

calculated by measuring how far the PI boundaries deviate

from the ground truth. In the second validation set χ2, the

residual candidates obtained in χ1 are used to determine

the optimal values. These optimal values are stored in the

corresponding cells of the calibration table for a given pair of

node id and prediction window. We gain these optimal values

by minimizing a carefully designed objective function. In this

paper, we leave 50% of the calibration data as the χ2.

3) Compute residual percentiles: To compute the residuals

for populating the calibration table, we apply the trained

quantile DNN to each test sample (from the first calibration

dataset χ1) of a given node i and prediction window to produce

a PI, denoted as {ŷli,j , ŷ
u
i,j}, where ŷli,j and ŷui,j are the lower

and the upper bound of the PI of node i in the prediction

window j, respectively. We then compute the residuals of the

PI as Ri,j =
∣

∣ŷui,j − yi,j
∣

∣ ∩
∣

∣ŷli,j − yi,j
∣

∣, where yi,j is the

true value of node i in the given prediction window j. Note

that there may be multiple test samples for a given node-

prediction window pair, resulting in n residuals denoted as

R1
i,j , R

2
i,j , . . . , R

n
i,j .

Next, the percentiles of n residuals for each node-

prediction-window combination could be constructed. Specif-

ically, the residual candidates R1
i,j , R

2
i,j , . . . , R

n
i,j are first

sorted by value and subsequently partitioned into m equal-

size groups, commonly referred to as percentiles, based on

their relative position within the distribution. It is worth noting

that the number of quantiles m is a user-defined parameter that

balances calibration accuracy and computational complexity.

For our study, we set m = 100. The 0th percentile corresponds

to the lowest value of residuals, while the 100th percentile

corresponds to the maximum value in the residual dataset.

Compared to histogram-based approaches, residual quantiles

demonstrate more robustness to outliers (as demonstrated in

Section VII-F). Finally the residual percentiles are denoted as

Q1
i,j , Q

2
i,j , . . . , Q

m
i,j .

4) Choosing the best quantile: After calculating the resid-

ual percentiles, the next step is to choose a specific quantile

from the distribution to be saved in the matching cell of a

node-prediction-window pair. To this end, we apply the trained

quantile DNN to test samples from the second validation set χ2

to produce an initial PI for each test sample. Next, the residual

quantiles, Q1
i,j , Q

2
i,j , . . . , Q

m
i,j , are applied to the initial PI to

obtain an adjusted PI one by one. We determine which residual

provides the best performance by comparing the coverage and

effective width of each resulting PI for each node-prediction-

window combination against the true value of the validation

set. The optimal residual for the node-prediction-window

combination is then recorded in the corresponding cell of the

calibration table.

Specifically, our objective in selecting the residual recorded
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in the calibration table is to minimize the following:

L = argmin
Qm

i
∑

0

j
∑

0

−λCcov(Qm
i,j , χ2)+(1−λ)PI(Qm

i,j , χ2),

(4)

where λ ∈ [0, 1] is a weight to control the balance of the

coverage Ccov and PI for a given node-prediction-window

combination. Finally, the calibration table records the residual

value where the index is the calibration quantile that gives the

minimum L.

E. Using the Trained DNN and Calibration Component

Once we have trained the DNN model as well as the quantile

function and constructed the calibration table as described

above, we can then apply them to unseen test samples. This

process is illustrated in Figure 2.

In contrast to standard CQR that applies a global adjustment

to the initial PI, our approach utilizes the test input’s sensor

node id and prediction window to locate a residual value,

δi, from a calibration table. Specifically, the trained DNN

generates a single-point prediction for a given test sample that

is then passed to the quantile function to create the initial PI,

{l, u}. Using the node id of the test sample and the prediction

window, we search the calibration table for the corresponding

residual value δi. This value is used to amend the initial PI

to the final PI as {l − δi, u + δi}, resulting in a wider PI

for a positive δi and a narrower PI for a negative δi. No

residual value may be presented in the calibration for a given

combination of node id and prediction window, in which case

the initial PI remains unchanged. Through this process, the PI

can be more accurately adjusted to reflect the specific context

of the prediction, leading to enhanced accuracy and better

coverage.

Residual errors of missing combinations of node ids and

prediction windows can be later inserted into the calibration

table. This can be done by using the true value measured after

the prediction window to compute the residual errors of the

node-prediction-window pair. Similarly, during deployment or

every time the DNN model is re-trained, the calibration table

can be updated with the recorded predictions and true values.

This way, the calibration table and quantile function can evolve

to adapt to changes in the deployment environment.

VI. EVALUATION SETUP

We evaluate QUANTRAFFIC on seven real-world datasets.

In particular, we apply QUANTRAFFIC to representative DNN

architectures for traffic forecasting and compare it with a

wide range of baseline methods for uncertainty modeling.

This section provides a detailed description of the datasets

used in our evaluation, the baseline quantile methods that

we compare QUANTRAFFIC against, and the hardware and

software platforms used for the experiments.

A. Datasets

In our evaluation, we used seven public traffic datasets that

are widely adopted in the literature. Table I provides the basics

TABLE I
DESCRIPTION OF THE DATASETS USED.

Type Dataset No. sensors Time period Mean / Std

S
p
ee

d METR-LA 207 03/01/2012 - 06/30/2012 53.71 / 20.26

PeMS-BAY 325 01/01/2017 - 05/31/2017 62.61 / 9.59

PeMSD7(M) 228 05/01/2012 - 06/30/2012 58.89 / 13.48

F
lo

w

PEMS03 358 09/01/2018 - 11/30/2018 179.3 / 143.7

PEMS04 307 01/01/2018 - 02/28/2018 211.7 / 158.1

PEMS07 883 05/01/2017 - 08/31/2017 308.5 / 188.2

PEMS08 170 07/01/2016 - 08/31/2016 230.7 / 146.2

of each dataset, including the type of traffic data collected

(e.g., speed or flow), the number of sensors used to collect

the data, and the time covered by each dataset. The raw data

from these datasets are aggregated into 5-minute intervals, in

alignment with previous literature, e.g., [46].

B. Base Traffic Forecasting Models

To demonstrate the applicability of QUANTRAFFIC over

a variety of DNN-based traffic predictors, we adopt five

representative models, namely, Spatio-Temporal Graph Con-

volutional Network (STGCN) [18], Graph Wavenet (GWNet)

[19], Graph Multi-Attention Network (GMAN) [20], Long-and

Short-term Time-series Network (LSTNet) [21], and Multi-

variate Graph Neural Network (MTGNN) [22]. These models

cover different variants of GNN and the long short-term

memory (LSTM) architecture. They have been widely used in

the literature and represent different classes of deep learning-

based methods for traffic forecasting. Note that our goal

is to demonstrate the generalization ability of QUANTRAF-

FIC to different models rather than to compare the relative

performance of the base DNN architectures. Therefore, our

evaluation is designed to compare the performance of various

quantile methods in uncertainty modeling, all within the same

base DNN architecture.

C. Competing Baselines

We compare QUANTRAFFIC against five representative un-

certainty quantification methods and two classical methods

based on historical data:

Historical data-based methods assume that traffic data, such

as speeds or flow distribution, exhibit strong repeating patterns

during the same period (e.g., the same day across weeks or

the same hour across days). These methods predict current

travel speed and flow distribution by utilizing the distribution

of the same period from prior data, such as the distribution

of the same day from the previous weeks. In our experiments,

we consider two baseline methods that rely on historical data:

Hist-D, which uses data from the previous days in the training

dataset for predictions, and Hist-W, which uses the distribution

of the same period from the previous weeks for prediction. For

example, if we were to predict the PI for node i at 8 a.m. on

Monday, Hist-W would calculate the mean µt
i and variance σt

i

across all previously seen samples of node i at 8 a.m. of all

Mondays. Once the mean and variance for each time slot and

node of interest are calculated, these two values can be used
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to construct the prediction interval for that slot and node with

{µt
i-σ

t
i , µ

t
i+σ

t
i}.

Bayesian uncertainty quantification models the uncertainty

in the model parameters using a likelihood function con-

structed by Bayesian modeling [24]. It also computes the data

uncertainty by approximating the probability distribution over

the model outputs through sampling and averaging over the

resulting models. Our work uses a Gaussian prior distribution

with zero mean and unit variance [24] and the MC sampling

number of 50.

Monte Carlo dropout [25] models predictive distributions

by randomly switching off neurons in DNNs during testing.

This generates different model outputs that can be interpreted

as samples from a probabilistic distribution, allowing MC

dropout to estimate the prediction probability. Our work added

a dropout layer with a rate of 0.3 after the last hidden layer

of the base traffic forecasting model and used a sample of 50.

Deep quantile regression (DQR) generates PIs by using

quantile function [26], [36]. Unlike conventional methods

that minimize the averaged residual errors, DQR calculates

the prediction errors at a specific distribution quantile. This

method requires differential models or tailored loss objectives

such as NLL-based or pinball losses to generate the boundaries

of the PI. We use the 5th and 95th percentile estimates,

following the configuration outlined in [16].

Conformal prediction [27] is a post-processing method for

quantifying prediction uncertainties. The main idea behind

conformal prediction is to use a nonconformity measure

to evaluate the similarity between new input and training

data. Given a certain confidence level, conformal prediction

constructs prediction regions containing a certain fraction of

predictions with the same nonconformity measure. In this

study, we use inductive conformal prediction [47] due to its

simplicity, which requires splitting the training data into two

subsets. We use the same training dataset splitting ratio for

conformal prediction and our approach.

D. Experimental Setting

1) Hardware and software: We implemented QUANTRAF-

FIC as a Python package using PyTorch version 1.8.0. We

conduct our model training and evaluation on a multi-core

machine equipped with a dual-socket 20-core, 2.50 GHz

Xeon(R) Silver 4210 CPU, 256GB of DDR4 RAM, and 2x

NVIDIA GeForce RTX 2080 Ti GPUs. Our system is running

Ubuntu 18.04.5 with Linux kernel 4.15.0, and we execute the

GPU code using CUDA version 11.1.

2) Training setup: For consistency with prior work [7], we

split the data into training, validation, and test sets at a ratio

of 7:1:2. To model uncertainty, we further reserve 40% of the

training data for calibration (see Section V-B). We use the

Kullback–Leibler divergence loss function to train Bayesian

models [24], pinball loss for DQR, CQR, and the proposed

QUANTRAFFIC. We use mean absolute error (MAE) as the

loss function for all other models. We train all models using

the Adam optimizer [48] with a learning rate of 0.001 and a

batch size of 64 (except for GMAN, where we use a batch size

of 16 due to GPU memory constraints). The training process

stops after 200 training epochs or when the validation loss

remains unchanged for ten consistent epochs, following the

standard practice in prior work [7].

To ensure a fair comparison, the hyperparameters of

quantile-based methods are identical to those of CQR methods.

For the additional hyperparameters in CQR, i.e., calibration

mis-coverage rate αcal controlling the movement and direction

of the upper and lower marginal bounds, we use the calibration

set to pick the best value.

E. Evaluation Methodology

We vary the observation step from 1 to 12, corresponding to

historical data in the last 5 to 60 minutes, as each step contains

sensor data over 5 minutes. We also set the prediction windows

to 1, 2, . . . , 12 steps by requiring the based DNN model to

predict traffic information in the next 5, 10, . . . , 60 minutes.

In other words, the base model takes as input sensor data of

the last n minutes to predict information in the next n minutes.

We evaluate the coverage and discrimination guarantees

when applying an uncertainty method to each tested DNN

model. As explained in Section IV-C, we use MPIW (where

smaller values are better) to evaluate the discriminative perfor-

mance and PICP (where larger values are better) to quantify

the coverage of the generated PIs for each test sample. We

compute PICP and MPIW by averaging the results across

nodes in the prediction window settings.

VII. EXPERIMENTAL RESULTS

We evaluate the effectiveness of QUANTRAFFIC on seven

datasets, comparing it to six state-of-the-art uncertainty mod-

eling methods, two classical methods based on historical data.

Highlights of our evaluation are:

• QUANTRAFFIC consistently delivers the best overall per-

formance than the baseline uncertainty methods across

base DNN architectures and datasets (Section VII-A);

• The adaptive calibration scheme enhanced QUANTRAF-

FIC by giving a better trade-off between the coverage and

PI width for individual locations and sensor nodes over

CQR (Section VII-B and Section VII-F);

• QUANTRAFFIC gives more robust performance over

CQR and DQR at different desired coverage rates (Sec-

tion VII-C and Section VII-D);

• We showcase how QUANTRAFFIC can be used to en-

hance the evaluation of traffic forecasting models (Sec-

tion VII-G).

• We discuss how the data impact QUANTRAFFIC’s per-

formance in terms of training-calibration split ratio (Sec-

tion VII-E) and pre-processing data splitting methods

(Section VII-H).

• We present a real-world case study to demonstrate the

practical application and effectiveness of QUANTRAFFIC

(Section VII-I)

A. Overall Results

In this experiment, we set an expectation of a 90% coverage

rate, and we evaluate if the quantification method can reach or



9

TABLE II
PERFORMANCE EVALUATION FOR TRAFFIC METHODS WITH DIFFERENT UNCERTAINTY QUANTIFICATION METHODS ON TRAFFIC SPEED DATASETS.

(PICP (%) ↑ / MPIW ↓ ).

(a) METR-LA

Model Name MC dropout Bayesian Conformal DQR CQR QUANTRAFFIC

STGCN −62.4% / 3.0 −44.9% / 7.1 −5.2% / 13.7 +0.5% / 30.1 +0.6% / 20.6 +1.1% / 20.5
GWNet −47.9% / 3.5 −38.9% / 11.7 −4.5% / 11.9 −0.3% / 19.7 +1.2% / 15.6 +1.8% / 15.1
MTGNN −61.6% / 2.4 −63.0% / 2.7 −4.3% / 11.8 −0.1% / 19.3 −0.4% / 14.7 +0.1% / 14.6
GMAN −68.4% / 1.7 −11.9% / 16.1 −1.2% / 18.1 +0.9% / 27.4 +1.3% / 20.4 +1.6% / 20.1
LSTNet −54.7% / 3.6 −66.0% / 3.0 −2.7% / 24.1 −0.1% / 29.0 +0.3% / 24.7 +0.4% / 24.0
AVERAGE −59.00% / 2.84 −44.94% / 8.12 −3.58% / 15.92 +0.18 % / 25.10 +0.60% / 19.20 +1.00% / 18.86
Other baselines Hist-D: +3.6% / 34.2 Hist-W: −9.2% / 28.2 DeepSTUQ: −0.4% / 19.3

(b) PEMS-BAY

Model Name MC dropout Bayesian Conformal DQR CQR QUANTRAFFIC

STGCN −58.8% / 1.6 −38.1% / 3.7 −3.3% / 6.8 −2.4% / 9.8 −0.1% / 8.2 +0.0% / 8.1
GWNet −47.3% / 2.9 −32.9% / 3.9 −1.8% / 5.9 −0.9% / 7.8 +0.1% / 6.3 +0.6% / 6.2
MTGNN −66.4% / 1.2 −67.5% / 1.2 −1.6% / 5.8 −0.6% / 7.8 −0.2% / 6.2 +0.2% / 6.1
GMAN −64.8% / 1.4 −3.3% / 7.3 −5.5% / 5.7 +0.5% / 9.7 −0.2% / 7.6 +0.5% / 7.6
LSTNet −31.9% / 29.2 −84.0% / 0.3 −0.6% / 12.3 −5.1% / 10.5 −1.5% / 10.3 −0.9% / 9.9
AVERAGE −53.84% / 7.26 −45.16% / 3.28 −2.56% / 7.30 −1.70% / 9.12 −0.38% / 7.72 +0.08% / 7.58
Other baselines Hist-D: −13.8% / 9.5 Hist-W: −32.7% / 6.2 DeepSTUQ: +0.6% / 6.6

(c) PEMSD7M

Model Name MC dropout Bayesian Conformal DQR CQR QUANTRAFFIC

STGCN −56.0% / 2.8 −36.7% / 5.8 −7.1% / 12.2 −2.4% / 17.0 +0.4% / 17.0 +1.1% / 16.9
GWNet −40.1% / 3.6 −37.2% / 6.6 −4.6% / 9.6 −0.5% / 14.4 −0.2% / 13.0 +0.1% / 12.9
MTGNN −37.8% / 4.6 −53.2% / 2.8 −2.2% / 11.6 −1.0% / 13.0 −0.2% / 13.0 +0.2% / 12.9
GMAN −51.8% / 2.7 −2.1% / 14.4 −3.7% / 12.2 −0.7% / 17.0 +0.7% / 15.4 +0.8% / 15.1
LSTNet −33.0% / 5.9 −16.2% / 9.6 −3.1% / 17.7 −4.8% / 16.7 −0.4% / 17.6 +0.0% / 17.6
AVERAGE −43.74% / 3.92 −29.08% / 7.84 −4.14% / 12.66 +1.88% / 15.62 +0.06% / 15.20 +0.44% / 15.08
Other baselines Hist-D: −15.3% / 10.7 Hist-W: −35.0% / 7.9 DeepSTUQ: +1.0% / 11.3

even exceed the 90% coverage rate across test samples using

PICP. Later in Section VII-D, we compare the performance

under different coverage rate expectations.

Tables II and III present the results obtained when applying

each evaluated uncertainty method to different DNN models

and datasets. The best-performing results are highlighted in

bold for each base DNN model. In the corresponding column

of each uncertainty method, we first show the improvement

of PICP (as a percentage concerning a 90% coverage rate),

followed by the MPIW that measures the width of the PI

(lower-is-better). In this context, a positive PICP improvement

means that the coverage of PI exceeds the expectation of a 90%

coverage rate. In contrast, a negative PCIP improvement (−)

means that the coverage of PI falls below the expectation. For

example, in Table II(a), applying QUANTRAFFIC to STGCN

yields +1.1% / 20.5. This should read as that QUANTRAFFIC

achieves a 91.1% coverage rate (above the coverage expec-

tation) with 20.5 in MPIW (i.e., the difference between the

upper and the lower bound of the PI is 20.5). We report the

average PCIP and MPIW for each dataset across test samples.

Other comparative baselines, including Hist-W, Hist-D, and

DeepSTUQ, are shown at the bottom of each dataset table.

As expected, the MPIW given by all methods depends on

the base DNN model’s capability because a larger MPIW (or

a wider PI) is needed to ensure the coverage for a less accu-

rate DNN model. However, we observe that QUANTRAFFIC

achieves or exceeds the desired 90% coverage rate for most

test cases. For a handful of cases where the QUANTRAFFIC

PICP falls below 90%, the resulting coverage rate remains

close to the target of 90%, with a coverage rate of at least

88% (i.e., ⩾ −1.8% in the tables). In addition to achieving

a good coverage rate, QUANTRAFFIC produces small MPIW,

thus providing a meaningful uncertainty measure for decision-

making.

Compared to QUANTRAFFIC, non-frequentist baselines

such as MC dropout, Bayesian, and Conformal methods pro-

vide a narrow PI, resulting in a small MPIW. However, they

struggle to meet the coverage expectation, where the true value

of the test sample often falls outside the PI. This suggests that

the PI given by non-frequentist baselines can mislead decision-

making by being too optimistic or over-conservative for traffic

forecasting. The performance of non-frequentist baselines is

also not consistent, showing significant variance depending

on the test datasets and DNN models. For instance, while

Bayesian gives a coverage rate of 86.7% (−3.3% in Table

II) on PEMS-BAY when using GMAN as the base DNN, its
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TABLE III
PERFORMANCE EVALUATION FOR TRAFFIC METHODS WITH DIFFERENT UNCERTAINTY QUANTIFICATION METHODS ON TRAFFIC FLOW DATASETS

(PICP (%) ↑ / MPIW ↓).

(a) PEMS03

Model Name MC dropout Bayesian Conformal DQR CQR QUANTRAFFIC

STGCN −54.9% / 18.0 −18.1% / 57.9 −3.8% / 75.8 −10.8% / 61.8 −2.1% / 81.6 −0.5% / 78.7
GWNet −36.0% / 30.4 −8.2% / 79.6 −1.5% / 64.3 −4.5% / 55.3 +1.5% / 66.2 +1.2% / 66.1
MTGNN −27.3% / 40.9 −49.9% / 18.8 −0.8% / 65.7 −2.0% / 58.6 −0.5% / 60.6 −0.4% / 61.6
GMAN −41.8% / 29.8 +5.7% / 127.1 −1.5% / 64.3 −8.5% / 67.8 −1.2% / 85.5 −1.3% / 85.9
LSTNet −31.9% / 29.2 −57.8% / 40.4 −2.3% / 73.2 −4.0% / 63.3 +0.4% / 70.8 +0.4% / 69.1
AVERAGE −38.38% / 29.66 −25.66% / 64.76 −1.98% / 68.66 −5.96% / 61.36 −0.38% / 72.94 −0.12% / 72.28
Other baselines Hist-D: −27.4% / 67.6 Hist-W: −56.9% / 37.2 DeepSTUQ: −0.4% / 61.7

(b) PEMS04

Model Name MC dropout Bayesian Conformal DQR CQR QUANTRAFFIC

STGCN −51.5% / 22.6 −19.4% / 64.1 +0.9% / 108.7 −4.1% / 86.7 −0.3% / 93.5 +0.2% / 94.7
GWNet −39.0% / 37.5 −3.1% / 115.6 +0.5% / 92.5 −1.3% / 84.4 +0.9% / 85.5 +1.1% / 85.3
MTGNN −28.1% / 55.0 −46.8% / 25.6 +0.5% / 91.3 −1.4% / 81.2 +0.5% / 81.2 +0.8% / 82.4
GMAN −48.6% / 32.0 −0.2% / 116.4 +2.0% / 117.3 +5.6% / 132.7 +0.2% / 97.9 +0.9% / 100.9
LSTNet −29.9% / 39.4 −52.6% / 25.4 +0.8% / 102.8 −0.3% / 92.8 +1.3% / 93.1 +1.4% / 92.3
AVERAGE −39.42% / 37.30 −24.42% / 69.42 +0.94% / 102.52 −0.30% / 95.56 +0.52% / 90.24 +0.88% / 91.12
Other baselines Hist-D: −21.8% / 92.2 Hist-W: −58.2% / 52.1 DeepSTUQ: +0.8% / 83.2

(c) PEMS07

Model Name MC dropout Bayesian Conformal DQR CQR QUANTRAFFIC

STGCN −51.9% / 23.9 −18.4% / 88.4 −1.3% / 116.3 −8.4% / 94.9 −0.5% / 112.2 +0.0% / 108.7
GWNet −80.6% / 5.9 −6.8% / 117.9 −1.3% / 93.5 −1.1% / 92.9 +0.4% / 94.9 +0.4% / 92.5
MTGNN −52.6% / 24.8 −51.8% / 23.2 −2.6% / 88.3 −1.7% / 88.1 −0.3% / 90.7 −0.1% / 89.1
GMAN −45.2% / 35.9 +0.7% / 145.6 −6.5% / 137.1 +4.5% / 154.7 −1.8% / 117.4 −1.8% / 116.8
LSTNet −52.6% / 24.8 −53.1% / 30.3 −2.2% / 107.8 −1.4% / 107.9 −0.3% / 109.2 +0.0% / 107.1
AVERAGE −56.58% / 23.06 −25.88% / 81.08 −2.78% / 108.60 −1.62% / 107.70 −0.50% / 104.88 −0.30% / 102.84
Other baselines Hist-D: −20.7% / 110.2 Hist-W: −21.2% / 59.6 DeepSTUQ: +1.0% / 87.9

(d) PEMS08

Model Name MC dropout Bayesian Conformal DQR CQR QUANTRAFFIC

STGCN −50.8% / 18.8 −15.8% / 65.4 −0.4% / 90.6 −5.9% / 74.4 −0.2% / 89.0 +0.1% / 83.4
GWNet −37.1% / 36.3 −1.3% / 99.8 −0.7% / 70.6 +0.6% / 74.8 +0.1% / 75.1 +0.1% / 72.0
MTGNN −26.9 % / 47.4 −35.3% / 27.8 −1.3% / 69.1 −1.2% / 68.5 +1.4% / 73.1 +1.2% / 71.1
GMAN −39.3 % / 31.0 +0.9% / 104.7 −2.1% / 118.7 +1.2% / 92.6 +3.0% / 93.0 +3.4% / 92.6
LSTNet −36.1 % / 28.2 +1.0% / 145.0 +0.5% / 85.1 −2.0% / 77.3 +0.7% / 80.3 +0.8% / 78.3
AVERAGE −38.04% / 32.34 −10.10% / 88.54 −0.80% / 86.82 −1.46% / 77.52 +1.00% / 82.10 +1.12% / 79.48
Other baselines Hist-D: −36.4% / 80.2 Hist-W: −29.8% / 41.9 DeepSTUQ: +1.0% / 71.2

coverage rate is only 22.5% (−67.5% in Table II)) on the same

dataset when using MTGNN as the base model.

By utilizing previously collected data, Hist-D gives good

coverage but with a large MPIW, leading to over-conservative

forecasts. In contrast, quantile-based methods such as DQR

and CQR significantly outperform others by providing a better

coverage guarantee. By incorporating an adaptive scheme to

adjust the initial PI based on the test node and prediction

window, QUANTRAFFIC improves upon CQR and DQR with

higher PCIP and smaller MPIW for all test cases. QUANTRAF-

FIC also delivers consistent good performance across datasets

and base DNN models, demonstrating the robustness of our

approach. This further highlights the advantage of quantile-

based methods over non-frequentist baselines, which exhibit

inconsistent and varying performance depending on the test

datasets and base DNN models.

QUANTRAFFIC also improves over DeepSTUQ, a state-of-

the-art uncertainty modeling method, for the majority of the

test cases. For example, for the PEMS04 dataset, under a

PICP of 90.8%, QUANTRAFFIC gives a lower MPIW value

than DeepSTUQ (82.4 verse 83.2). We emphasis that Deep-

STUQ uses a particular DNN model architecture built upon

Graph Convolutional Networks and Gated Recurrent Networks

and are based on variational inference and deep ensembles,
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Fig. 4. Violin diagrams show PICP and MPIW by applying CQR and
QUANTRAFFIC to GWNet model tested on the PEMS04. The thick black
line shows where 50% of the data locates.

hence incompatible with the underlying DNN models (e.g.,

STGCN, GWNet, etc.) evaluated in this work. In contrast,

QUANTRAFFIC is a generic framework that can work with

any underlying DNN models. Therefore, QUANTRAFFIC has

a better generalization ability than DeepSTUQ.

B. Adaptive PI Adjustments

QUANTRAFFIC advances CQR by adaptively adjusting the

initial PI through a dedicated calibration table that uses dif-

ferent adjustments rather than a constant global value adopted

by standard CQR. To demonstrate the benefit of QUANTRAF-

FIC over CQR, we closely examine the test samples of the

PEMS04 dataset when using GWNet as the base DNN for

traffic forecasting. The results are given in the violin diagram

of Figure 4. In the diagram, the width of the violin indicates

the density of test data points with a given PICP, and the center

of the plot is a box plot with the median and quartiles the test

samples fall into a specific PICP (or coverage rate).

For this test scenario, the averaged PICP given by CQR

and QUANTRAFFIC is comparable at 90.9% and 91.1%,

respectively. However, the effectiveness of the PI can vary

significantly for individual nodes, highlighting the impor-

tance of having an adaptive scheme. Upon closer inspection

of Figure 4, we see that the coverage rates provided by

QUANTRAFFIC are more uniformly located around the desired

coverage rate of 90% across nodes. In contrast, the coverage

rate provided by CQR is highly diverse, ranging from 45%

to 100%. In other words, the performance of CQR is less

consistent and less robust than QUANTRAFFIC, as CQR can

lead to a poor coverage guarantee for individual nodes under

a given prediction window.

C. Case Study of Selected Test Samples

In Figure 5, we closely examine the PI generated by differ-

ent uncertainty methods for traffic flow prediction performed

on PEMS04 on the date from 2012-02-18 18:00 to 2012-02-

19 18:00. In the diagram, the PI is represented as a grey area,

while the ground truth of a test sample is represented by a

point. If a point falls within the grey belt, the generated PI

covers the true value, otherwise, it fails to cover the true value.

The grey area of a good strategy should cover as many points

as possible while being as narrow as possible.

Methods like MC drop and Hist-W result in a small grey

area with a small MPIW, but their PIs fail to cover the

ground truth for a large number of test samples, leading to

TABLE IV
PERFORMANCE COMPARISON OF QUANTILE METHODS UNDER

DIFFERENT COVERAGE LEVELS FOR PICP (%) ↑ / MPIW ↓.

Expected
Coverage

DQR CQR QUANTRAFFIC

0.6 −41.1% / 1.0 −0.1% / 4.1 +0.1% / 4.1

0.7 −33.0% / 2.0 −1.5% / 5.3 −1.1% / 5.2

0.8 −21.2% / 4.3 −1.7% / 7.8 −1.4% / 7.6

0.95 −5.2% / 21.5 −8.5% / 20.9 −2.5% / 20.2

Avg. −30.09% / 5.76 −2.50% / 8.15 −1.11% / 7.97

a poor PICP and insufficient coverage. Quantile methods like

DQR and CQR perform significantly better than MC dropout

and Bayesian. Compared to DQR and CQR, QUANTRAFFIC

produces PIs that cover the ground truth of more test samples

(i.e., a higher PICP) with a smaller MPIW (i.e., a narrower

grey area in the diagram). This example demonstrates the

effectiveness of our adaptive scheme.

D. Impact of Desired Coverage Rates

So far, our evaluation set 90% as the targeting coverage rate.

In this section, we investigate the impact of the desired cover-

age rate on the performance of uncertainty methods. Previous

evaluations have shown that DQR, CQR and QUANTRAFFIC

are the best-performing methods. Therefore, we focus on

quantile-based methods in this experiment. We apply the

quantile methods to the METR-LA dataset using GWNet as

the base DNN model. We vary the expected coverage level,

1 − α, from 0.6 to 0.95, corresponding to a target coverage

rate of 60% to 95%, respectively, to evaluate the usefulness

of traffic uncertainty models in different practical scenarios.

Table IV compares the PCIP/MPIW given by each quantile

method averaged across the test samples for a target coverage

level. As expected, when we increase the coverage level to

ensure a coverage rate, a larger MPIW (and a wider PI) is

required. Once again, QUANTRAFFIC outperforms the other

methods, providing the best coverage rate across settings.

While DQR has the smallest MPIW in most cases, it gives

a poor coverage rate, which can be up to 41% below the

expected value. This suggests that the PI provided by DQR

is too narrow (and hence has a small MPIW) to cover the true

value of the prediction. CQR addresses the issues of DQR by

using a constant adjustment value. However, it can still provide

poor coverage or a PI that is too wide for some individual

nodes. By dynamically adjusting the PI based on individual

nodes, QUANTRAFFIC provides the best overall performance.

This further demonstrates the effectiveness and flexibility of

our approach in adapting to different sensor nodes or locations.

E. Impact of Training-Calibration Split Ratio

To build the calibration component, QUANTRAFFIC and

CQR require setting aside some data from the training dataset

as the calibration data. Our experiments described so far leave

40% of the original training data as the calibration dataset.

In this experiment, we evaluate how the training-calibration

dataset ratio affects the performance on QUANTRAFFIC and
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Fig. 5. Coverage and prediction intervals for different uncertainty quanlification models of PEMS04 from 2012-02-18 18:00 to 2012-02-19 18:00.

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT TRAINING-CALIBRATION

RATIO β ON TRAFFIC FLOW DATASET PEMS08 (PICP (%) ↑ / MPIW ↓).

β CQR QUANTRAFFIC

1:6 +2.4% / 88.7 +3.0% / 88.9
2:5 +0.5% / 76.2 +0.8% / 76.1

3:4 +0.1% / 72.5 +0.1% / 72.3

1:1 +0.3% / 74.6 +0.5% / 73.6

4:3 +2.6% / 73.9 +2.6% / 71.7

5:2 +1.4% / 73.6 +1.6% / 73.4

6:1 +2.1% / 74.3 +2.4% / 75.1
Avg. +1.35% / 76.25 +1.56% / 75.88

CQR. Specifically, We vary the ratio (β) between the DNN

model training data and the calibration data to examine the im-

pact on performance. Specifically, we evaluate the ratios of 6:1,

5:2, 4:3, 1:1, 3:4, 2:5, and 1:6. We then apply QUANTRAFFIC

and CQR to the PEMS08 dataset, using GWNet as the base

DNN model, with a target coverage rate of 90%.

The result is given in Table V. Leaving too few samples to

train the base DNN model may lead to decreased accuracy,

resulting in a wider PI (and larger MPIW) required to ensure

sufficient coverage. For instance, when the training-calibration

data ratio β is set to 1:6 or 2:5, CQR and QUANTRAFFIC

produce a wide PI. However, insufficient calibration data can

also impact the accuracy of the uncertainty model, given that

QUANTRAFFIC relies on partitioning the calibration dataset to

construct the calibration table. As a result, a smaller calibration

dataset (e.g., when β is 6:1) can affect the performance

of the model. Nevertheless, for most experimental settings,

QUANTRAFFIC outperforms CQR in terms of both the PICP

and MPIW metrics.

TABLE VI
PERFORMANCE COMPARISON OF GRID SEARCH AND QUANTILE SEARCH

(PICP (%) ↑ / MPIW ↓).

Frequency Grid search Quantile search

10 −49.1% / 31.5 +0.9% / 73.1

20 −23.8% / 44.7 +0.7% / 72.0

40 −9.9% / 56.3 +0.5% / 71.4

60 −5.6% / 61.9 +0.4% / 71.1

80 −3.7% / 64.5 +0.4% / 70.9

100 −2.7% / 66.3 +0.4% / 70.9

F. Quantile Search for Calibration Table Construction

As described in Section V-D, in order to construct the

calibration table, we first apply the trained DNN and quantile

function to the calibration dataset to obtain the prediction

residuals. We then partition the residuals into continuous

intervals with equal percentiles rather than predefined equal-

sized intervals. This experiment compares our quantile-based

approach against a grid method for projecting the residuals

onto intervals. The results were obtained on the PEMS08

dataset using GWNet as the base DNN model and a target

coverage rate of 90%. The results are given in Table VI,

demonstrating the effectiveness of quantile search over the grid

search method.

Using quantiles over a specific range can be advantageous in

situations where traffic data is partially missing and the range

of possible values for residuals is not well-defined. Quantile

search reduces the need for dense interval steps by focusing

the search on the most promising regions in the parameter

space, thereby increasing the efficiency of the search process.

It can also help to avoid overfitting and increase robustness to

outliers. On the other hand, in grid search, missing traffic data

can cause a narrow range of possible values, requiring more
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TABLE VII
PERFORMANCE EVALUATION BASED ON POINT AND UNCERTAINTY

METRICS.

Data Method
Point estimation Uncertainty estimation

MAPE ↓ RMSE ↓ MAE ↓ PICP ↑ MPIW ↓

M
E

T
R

-L
A STGCN 13.09% 11.81 5.08 90.13% 19.52

GWNet 11.93% 11.49 4.85 90.14% 15.22

MTGNN 12.17% 11.62 4.87 90.24% 14.79

GMAN 14.10% 11.91 5.48 89.36% 17.27

LSTNet 15.38% 11.89 6.34 89.83% 23.28

P
E

M
S

0
8

STGCN 11.15% 18.01 28.11 90.06% 83.44

GWNet 9.59% 15.05 23.81 90.05% 72.01

MTGNN 9.69% 15.15 23.98 91.16% 71.13

GMAN 12.99% 18.29 28.06 90.20% 80.77

LSTNet 10.86% 17.07 26.83 90.78% 78.31

interval steps to capture better adjustments.

G. Performance Evaluation of Traffic Forecasting Models

The ability to model prediction uncertainty can also be

useful in evaluating the creditability of a traffic forecasting

mode. In this experiment, we extend our evaluation to explore

the trade-off between accuracy and confidence in traffic fore-

casting tasks. There is increasing research effort in discovering

the best-scoring traffic predictor in specific or ideal scenarios

[49]. Meanwhile, the reliability of the experimental evaluation

is often neglected. For example, a traffic forecasting model

could have a good performance on average in point estimation

matrices but be less accurate during peak hours than at night.

In this evaluation, we apply QUANTRAFFIC to METR-LA and

PEMS08 and compare the prediction accuracy measured by

commonly used loss functions, Mean Absolute Error (MAE),

Root Mean Square Error (RMSE), Mean Absolute Percentage

Error (MAPE) and the corresponding coverage and discrimi-

nation on test data measured in PICP and MPIW.

As can be seen from the Table VII, GWNet would be

regarded as the most accurate model using traditional point-

based evaluation metrics, but it is less reliable in coverage and

discrimination metrics. While evaluating model credibility is

not the focus of this work, our approach can provide a new

measure for the performance evaluation of traffic forecasting

models.

H. Impact of Pre-processing Data Splitting Methods

So far, our evaluation is based on cross-validation on the

timeline. In this section, we aim to explore the influence

of varying timeline window lengths on the performance of

uncertainty methods. To achieve this, we employed a rolling

cross-validation technique comprising ten folds. The model

was trained on consecutive folds and subsequently tested on

the subsequent fold in an iterative manner. The final results

were derived by averaging the outcomes obtained from all

folds.

Table VIII presents the cross-validation performance of

GWNet utilizing various uncertainty qualification methods on

the PEMS08 traffic flow dataset. The analysis results align

closely with those discussed in Section VII-A, where time

series were split chronologically. Specifically, QUANTRAFFIC

TABLE VIII
CROSS-VALIDATION PERFORMANCE EVALUATION FOR GWNET WITH

DIFFERENT UNCERTAINTY QUANTIFICATION METHODS ON TRAFFIC

FLOW DATASET PEMS08 (MEAN±VARIANCE).

PICP(%) ↑ MPIW ↓

MC dropout −33.1±3.8 38.7±5.2
Bayesian +0.4±2.3 114.1±20.7
Conformal −0.4±1.5 75.7±6.2
DQR −1.9±1.5 70.8±6.6
CQR +0.6±2.0 76.0±4.2
QUANTRAFFIC +1.2±1.1 76.0±2.2

exhibits a high coverage rate of approximately 90% while

maintaining a small MPIW. Moreover, QUANTRAFFIC demon-

strates improved robustness, indicated by a smaller variance

in both PICP and MPIW.

I. Case Study

We now consider a practical use case of QUANTRAFFIC, as

defined in Figure 6. In this experiment, we use GWNet as the

baseline single-point prediction model.

Figure 6(a) gives the sensor locations from the PEMS08

dataset, where each dot represents a sensor location. Figure

6(b) shows the differences in route selection given by a single-

point prediction and QUANTRAFFIC on the journey from

sensor IDs 717492 to ID 716956 on Monday, August 8, 2016.

In Figure 6(b), the horizontal axis represents time slots, while

the vertical axis represents the selected paths, R1, R2, and R3.

The paths are arranged from the inner ring to the outer ring

in decreasing order of distance: R1 (15.2 miles), R2 (14.1

miles), and R3 (13.9 miles). During peak hours, the actual

congestion situation follows the order of R1 > R2 > R3. Each

dot in Figure 6(b) represents a path selection strategy during

different time slots, enabling a comparison between the single-

point prediction method and the QUANTRAFFIC approach.

During peak hours (9 a.m. - 9:30 a.m., 6 p.m. - 8 p.m.),

QUANTRAFFIC selects a longer but faster route (R3) as this

route has less traffic and the fastest travel time. In contrast,

a single-point prediction tends to select a shorter route (R1)

despite the possibility of encountering congestion. In the early

morning hours (1 a.m. - 5 a.m.), both methods prefer the

shorter route (R1), and during other periods (5 a.m. - 9:30

a.m., 1 p.m. - 5 p.m., 9 p.m. - 12 a.m.), both methods show

a preference for the middle-distance route (R2) to balance the

excessive congestion and travel distance.

VIII. DISCUSSION

Naturally, there is room for future work and improvement.

We discuss a few points here.

Alternative quantile functions. In the quantile DNN model

training (see Section V-C), we attach a linear layer to the last

layer of the DNN and use the linear layer as the quantile

function. An alternate solution could be using a dedicated

network to generate two separate predictions. In this way,

for each input, the DNN model would produce two separate

outputs from the modified last layer, one for the lower bound
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Fig. 6. Comparative analysis of route selection between single-point model
and QUANTRAFFIC.

and the other for the upper bound. The pinball loss assigns

orthogonal weights to both predictions and uses them to

calculate the loss. We leave this as our future work.

Calibration component. In this paper, we use a dedicated

calibration table to provide customized PI adjustments for

individual nodes. Another way to do this is to train a calibra-

tion function using, e.g. linear regression or a neural network.

Doing so would require having sufficient training data to learn

an accurate calibration function.

Coverage goal. QUANTRAFFIC aims to produce a PI that

meets the user-defined coverage level. In general, a higher

coverage level guarantees stronger prediction accuracy. In

practise, a high coverage level can be employed to ensure,

for instance, the worst-case arrival time. In contrast, a lower

coverage level may suffice if the user is willing to tolerate a

certain level of prediction error in traffic information, for ex-

ample, if the consequence of missing an event is insignificant.

As such, techniques for learning and modeling user needs [50]

are complementary to QUANTRAFFIC.

Other calibration techniques. QUANTRAFFIC employs a

straightforward yet efficient method of utilizing a calibration

table to adjust the PI. Additionally, other post-processing

techniques can be used to enhance initial predictions. For

instance, ensemble methods [37] can leverage multiple pre-

diction models, and data augmentation techniques [9] involve

applying various data augmentation methods to the test input

to obtain multiple predictions to form the PI. Our future work

will investigate the use of these techniques.

Data distribution drifts. Although differences in data char-

acteristics between the training and calibration sets may lead

to decreased accuracy in model prediction, the calibration

component of QUANTRAFFIC is used to adjust the prediction

interval during calibration to address this drop in accuracy.

However, in many real-world applications, particularly in

traffic forecasting, the data distribution may be shifted due

to various factors such as changes in road infrastructure (e.g.,

temporary road closures), weather patterns, and traffic patterns

(e.g., traffic accidents), leading to a shift in the test data distri-

bution with respect to the training data. In case the accuracy of

QUANTRAFFIC decreases, a user can re-train the base model

to predict new intervals, update the uncertainty component,

or integrate continuous learning methods [51] to periodically

update the base model and the QUANTRAFFIC component. Our

future work will investigate how online adaptation techniques

can be employed to detect data drift.

Calibration data size. QUANTRAFFIC and CQR require

setting aside some data from the model training dataset as

calibration data. If the calibration set is not representative of

the test set, the performance of CQR and QUANTRAFFIC may

suffer, as shown in Section VII-D. As such, techniques for data

augmentation [52] like basic data augmentation methods (e.g.

window cropping [53]), Deep Generative Models [54] and data

selection [55] like active learning and scoring functions [56]

are orthogonal to our approach.

IX. CONCLUSIONS

We have presented QUANTRAFFIC, a framework that en-

hances the capability of DNN-based traffic forecasting models

to quantify the uncertainty of their predictions. Specifically,

QUANTRAFFIC generates the upper and lower bounds of the

prediction, which is useful in tasks like emergency route

planning to ensure the worst-case arrival time. Our framework

is generic, applicable to any DNN model, and does not alter

the DNN model’s underlying architecture during deployment.

QUANTRAFFIC builds on CQR and utilizes a dedicated loss

function to train a quantile function that generates a prediction

confidence interval for the single-point output of the DNN

model. It advances standard CQR by dynamically adjusting

the prediction interval based on individual locations or sensor

nodes of the test samples, leading to a more accurate PI with

valid coverage.

We evaluate QUANTRAFFIC by applying it to six represen-

tative DNN architectures for traffic forecasting and comparing

it against five uncertainty quantification methods and two

classical historical-data-based methods. Experimental results

show that QUANTRAFFIC has good generalization ability,

delivering better performance than the competing methods

across the evaluated DNN models. This outcome underscores

the significance of QUANTRAFFIC as one of the first attempts

to develop a generic framework for modeling uncertainties in

traffic forecasting.

We hope that the open-source release of QUANTRAFFIC

will enable more research into robust traffic forecasting by

providing a means to quantify uncertainty in DNN-based

models.
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