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The field of space communications is the realm of communication technologies where diffraction and

atmospheric effects, both of which contribute to loss and noise, become overriding. The pertinent questions here

are how and at which rate information (secret keys) can be securely transferred (shared) among users under such

supposedly severe circumstances. In the present work we study continuous-variable quantum key distribution in

a measurement-device-independent configuration over free-space optical links. We assess the turbulence regime

and provide a composable finite-size key rate analysis of the protocol for such links. We study both short-range,

horizontal communication links as well as slant paths to, e.g., high-altitude platform station systems.

DOI: 10.1103/PhysRevA.108.042621

I. INTRODUCTION

Quantum cryptography [1], one of the oldest quantum tech-

nologies, has become a prominent candidate to counteract the

challenge from quantum computers [2]. In particular, quantum

key distribution (QKD) has been developing at a rapid pace,

with the end goal of making distant users able to share a

key that must be inscrutable for an eavesdropper to learn

about and that therefore can provide highly secure encryption.

Key challenges for QKD systems include channel loss and

noise levels in the communication systems. These are the two

main impediments that affect the performance of QKD and its

realization, especially over long distances [3]. Until recently,

optical fibers have been the main platform to study and ex-

periment most QKD protocols. But their secure distance over

long distances is limited, mostly due to the exponential decay

of transmissivity in fiber links. In general, two solutions are

introduced to conquer this limitation: using quantum repeaters

[4–10] or using free-space and satellite links [11–17].

The reach of current terrestrial fiber-based quantum com-

munications systems is limited to only a few hundreds of

kilometers [18], whereas we seem to stand on the verge of

building global quantum communication networks, i.e., quan-

tum internet [19,20]. As a result, recent work has seen a

substantial interest in space-borne QKD and space quantum

communications [17] aimed at understanding in what way

free-space, high-altitude platform station (HAPS) systems and

satellite links may help with current distance limitations while

guaranteeing that quantum safety will be achieved. Important

steps have been taken, particularly on the limits and security

of one-way space quantum communications [21–25], where
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it is shown that secret bits can securely be distributed over a

turbulent atmosphere, whether weak or strong [26].

At another distinct branch of the QKD science,

measurement-device-independent (MDI) QKD [27,28] (see

also Refs. [29–33] for related experiments), stands as one of

the most interesting and well-studied schemes to relax trust

assumptions in typical, point-to-point QKD protocols. More

precisely, in MDI QKD one does not need to assume that the

detection equipment of the legitimate parties, who are going

to distribute a secret key between themselves, are trusted.

This is owing to the fact that a third, allegedly untrusted party

performs the crucial deed of measuring such that the protocol

is immune to all attacks against the measurement modules.

Recently, an experiment implemented discrete-variable

MDI, using single photons, over a 19.2-km urban free-space

optical (FSO) link [34]. Feasibility studies [35,36] as well as

parameter optimization [37] of space-based discrete-variable

MDI QKD with photons were further appeared afterwards.

Nevertheless, full security analysis of a continuous-

variable (CV) MDI protocol that includes parameter estima-

tion and finite-size effects has not yet been presented for

the free-space scenario, even though this protocol has been

known since 2013 [38,39]. What’s more, studying MDI pro-

tocols over free-space optical links is possibly the first step

toward investigating space-based quantum repeaters and/or

networks. Thus, here we develop the composable security of

CV MDI QKD over short FSO links, which are generally

affected by diffraction, atmospheric extinction, turbulence,

and point errors. Further, we investigate slant paths to mobile

devices by studying HAPS systems. For all cases we consider

an asymmetric configuration, where one party is sufficiently

close to the measurement station, and then compute the com-

posable key rate in the finite-size regime.

II. SYSTEM DESCRIPTION

Take Alice and Bob to be two terrestrial parties who want

to share a quantum-secure key between themselves over an

2469-9926/2023/108(4)/042621(10) 042621-1 Published by the American Physical Society
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FSO link. In an MDI QKD configuration [39], they would use

two transmitter (Tx) stations and an intermediate receiver sta-

tion (Charlie, Rx), which is assumed untrusted; see Fig. 1(a).

They would send their modulated (coherent-state) signals to-

wards the relay Rx, which performs a joint measurement on

the received signals and broadcasts the outcome, γ , through

a public (classical) telecommunication channel to Alice and

Bob. In an asymmetric MDI QKD setup, the relay is located

at an unequal distance from Alice and Bob stations, say it is

closer to Alice. We assume a Gaussian-modulated protocol,

where Alice and Bob choose their quadrature values based

on two bivariate Gaussian distributions. We also make cer-

tain assumptions about the physical FSO channel between

the users’ and relay’s stations. Such assumptions are mainly

concerned with the amount of diffraction, pointing error, and

atmospheric turbulence.

In the entanglement-based (EB) scheme of the protocol, as

schematically shown in Fig. 1(b), Alice and Bob use two two-

mode squeezed vacuum (TMSV) sources that feed Charlie’s

relay over the corresponding FSO links. Charlie is supposed

to perform a CV Bell measurement as before and reports

the measurement outcome. Although the altitude of the three

stations from sea level can be different, for now we assume

that they all are located on top of communication towers

with the same height, such that they share a constant-pressure

atmospheric turbulence layer. Accordingly, Eve’s attack on

the FSO links can be modeled by two TMSV states (e1e′
1 and

e2e′
2), one mode of each overlapping with Alice and Bob’s

signals on beam splitters ηA and ηB, respectively.

In practice, various effects, including beam-spreading and

fading [40], result in high signal loss, which kills the key rate

of air-QKD. A crucial step in our work is then channel mod-

eling. Here we account for diffraction and beam spreading

(short and long term, depending on the detectors being fast or

slow), background thermal photons, pointing errors, and beam

wandering. These contribute to have a realistic estimation of

the channel loss as well as channel noise. We shall do this for

single-layer free-space (ground-to-ground) atmospheric paths

where we use specific existing models, such as log-normal.

We also examine both techniques of measuring CV states, i.e.,

transmitted local oscillator (TLO) and local local oscillator

(LLO).

A. Path loss

The overall optical loss that can occur in a turbulent atmo-

spheric channel can be defined in terms of the multiplication

of several types of optical transmissivity,

η(z) = ηeffηatm(z)ηTB(z), (1)

where ηeff is the receiver’s efficiency and ηatm describes the

atmospheric loss, which is modeled by the Beer-Lambert

equation

ηatm(z) = exp[−α(λ, h)z], α(λ, h) = α0(λ)e−h/6600, (2)

where h is the altitude, in meters, and α0(λ) is the extinction

factor at sea level [41,42]. The term ηTB is the turbulence-

induced transmissivity which, depending on the strength of

turbulence, can be computed by several means, as we shall

discuss in this section.

FIG. 1. Schematic of CV MDI QKD in free space. (a) Two

parties, Alice and Bob, transmit encoded signals to an untrusted,

intermediate party, Charlie, who jointly measures the signals. (Note

that the whole setup, including the relay measurement, is assumed to

be performed in free space.) (b) The entanglement-based schematic

of a CV protocol with details of the sources and the middle node.

Alice and Bob heterodyne one mode of their two-mode squeezed

vacuum (TMSV) states, denoted by yellow circles, while subse-

quently sending the conjugate modes A and B (this is equivalent to

the P&M scheme, where they send a Gaussian-modulated coherent

states, e.g., |α〉 and |β〉). Eve implements an attack by utilizing two

TMSV states, denoted by orange circles, and interacting with carrier

modes A and B. This is modeled via beam splitters of transmissivities

ηA and ηB.

Let us introduce the dimensionless Rytov variance, which

is defined for a plane wave as [43,44]

σ 2
R

(z) = 1.23C2
n k7/6z11/6, (3)

where k = 2π/λ is the wave number, and C2
n is known as the

index-of-refraction structure constant (for a spherical wave

the Rytov variance is 0.4σ 2
R

). For a multiple-layer path, e.g.,

a slant path from ground to space, the Rytov variance has a

more complex expression. For now we restrict our links to be

short and within a constant-pressure atmospheric layer, where

Eq. (3) would suffice. It is well accepted that the regime of

weak turbulence can be defined by the condition

σ 2
R

(z) < 1. (4)

In terms of free-space length z, a more lenient condition,

z � zmax := k min
{
4a2

rec, ρ
2
0 (z)

}
, (5)

where arec is the receiver’s aperture radius, can be used to

describe the strength of the turbulence. Here

ρ0(z) =
[

0.423k2

∫ z

0

dz′C2
n (z′)

]−3/5

(6)

is the Fried’s coherence length, which for a constant-pressure

atmospheric layer, where C2
n is constant, reduces to ρ0(z) =

(0.423k2C2
n z)

−3/5
[44, Chap. 6].

We assume a Gaussian beam with initial field spot size

w0 = w(0), carrier wavelength λ, and radius of curvature F0.

At distance z of propagation, where a receiver is supposedly

placed, free-space diffraction increases the beam’s spot size to

w(z) = w0

√(
1 −

z

F0

)2

+
(

z

zR

)2

, (7)
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with zR = πw
2
0/λ being the beam’s Rayleigh length [44,

Chap. 4]. Practically, only a fraction of the light can be col-

lected by the receiver, such that the pure diffraction-induced

transmissivity is defined as follows:

ηDIF(z) = 1 − exp

[
−

2a2
rec

w
2(z)

]
. (8)

However, the presence of turbulence affects the amount of

loss. For the range of distances that we consider in the present

paper we do not expect strong turbulence, but wandering of

the beam centroid as well as pointing errors can affect the

performance. On a fast timescale the smaller turbulent eddies

deflect the beam. This widens the beam size in Eq. (7) to

the short-term spot size, wST. This also causes the random

Gaussian wandering of the beam centroid with variance σ 2
TB

.

In addition, pointing errors from jitter and imprecise tracking

could cause centroid wandering, such that the centroid quivers

with total variance,

σ 2(z) = σ 2
TB

(z) + σ 2
PE

(z). (9)

In other words, the position of the centroid can be taken as a

stochastic variable with a Gaussian distribution with variance

σ 2 [45]. We find that the geometric variance of the pointing

error at the receiver can be approximated by

σ 2
PE

(z) = π tan2(δ/2)z2, (10)

where δ, in rad, is the error at the transmitter. For small

amounts of δ one can write σ 2
PE

(z) ≃ (δz)2. We remark that in

practice one would collectively estimate the effects of point-

ing and turbulence on beam wandering [46].

Figure 2 reveals that the atmospheric turbulence regime we

are considering in the present study is indeed weak. Such an

atmospheric regime is verified by the help of both conditions

given in Eqs. (4) and (5). While at all distances considered we

have σR < 1, we see that z < zmax is also verified. This allows

us to use Yura’s set of equations.

From Yura’s theory [47], under weak turbulence conditions

we have that

w
2
ST

(z) = w
2(z) + �2

TB
(z), (11)

where

�2
TB

(z) = 2(1 − φ)2

(
λz

πρ0(z)

)2

(12)

accounts for the contribution of turbulence to beam widening.

We note that Yura’s formulation of weak turbulence regimes

requires that φ(z) := 0.33(ρ0(z)/w0)1/3 ≪ 1. In the present

work we consider a weak satisfaction of this condition (φ <

0.4, assuming distances z < 250 m) so that Yura’s expansion

has to be considered approximate. Also, the amount of beam

wandering due to turbulence is given by

σ 2
TB

(z) =
0.1337λ2z2

w
1/3
0 ρ0(z)5/3

. (13)

From the above description, one infers that atmospheric turbu-

lence affects the beam in two ways: the first is by worsening

the beam wandering, as described by Eq. (9); the second is

a diffraction-type effect, as Eq. (11) suggests, that results in

increasing the beam waist.

FIG. 2. Identifying the regime of turbulence. Rytov variance (σ 2
R

,

solid curve) and maximum free-space length (zmax, dashed curve) vs

free-space distance z. For these plots we have assumed night-time

conditions, with C2
n = 1.28 × 10−14 m−2/3, wavelength λ = 800 nm,

and aperture size arec = 20 cm.

By replacing Eq. (11) in the expression for diffraction-

induced transmissivity of Eq. (8), we derive

ηST(z) = 1 − exp

[
−

2a2
rec

w
2
ST(z)

]
. (14)

However, further modifications are required, e.g., the effect

of deflection, which defines wandering of the beam centroid

on the receiver’s plane following a Gaussian distribution with

variance σ 2. Deflection, with the value r := |xC − xR|, where

xC is the location of beam’s centroid on the receiver plane

and xR is the aperture center of the receiver, results in an

instantaneous transmissivity [48]

ηST(z, r) = ηST(z) exp

[
−

(
r

r0

)γ ]
. (15)

Here we have that

γ =
4ηff

ST
1(ηff

ST
)

1 − 0(ηff
ST)

[
ln

2ηST

1 − 0(ηff
ST)

]−1

, (16)

r0 = arec

[
ln

2ηST

1 − 0(ηff
ST)

]−1/γ

, (17)

with ηff
ST

:= 2a2
rec/w

2
ST

(z) being the transmissivity at far field

and n(x) = e−2xIn(2x) (where In denotes a modified Bessel

function of the first kind with order n [49, Chap. 14]). As a

result, total transmissivity η becomes a function of r:

η(z, r) = ηeffηatm(z)ηST(z, r). (18)

Consequently, for any physical quantity that is a function of

the total transmissivity, such as the key generation rate K (η),

we have to compute their average [21],

K (z) =
∫ arec

0

drPWB(z, r)K (η(z, r)), (19)

where the expression

PWB(z, r) =
r

σ 2(z)
exp

(
−

r2

2σ 2(z)

)
(20)

is a Weibull distribution for the deflection r and σ 2.
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B. Path noise

In general, a receiver sees a total mean number of thermal

photons [21],

n = ηeffnbg + nex, (21)

where nbg and nex are the number of background thermal

photons per mode and extra photons generated within the

receiver box, respectively. The number nbg depends on several

factors related to both the sky and the receiver and is given by

[50,51]

nbg =
πŴrecB

sky

λ

h̄ω
, (22)

where h̄ is the reduced Planck constant, ω is the angular

frequency of light, and B
sky

λ is the brightness of the sky in the

range of 10−6–10−1 Wm−2 nm−1 sr−1 from night to day. All

traces of the receiver are given in

Ŵrec = �λ�t�fova2
rec, (23)

where �fov, �λ, and �t are the angular field of view, spec-

tral filter, and time window of the detector, respectively. The

nominal values that we use in the present study are �fov =
10−10 sr, �λ = 0.1 pm, and �t = 10 ns.

We note that the natural interferometric effect of coherent

detection, where the signal and local oscillator (LO) pulse

overlap, imposes an effective filter of �λ = λ2�ν/c, such that

assuming λ = 800 nm, a LO of �t = 10 ns, and a bandwidth

�ν = 50 � 0.44/�t MHz applies an effective filter of �λ =
0.1 pm. This would suppress the background noise nbg to the

order of 10−12 (10−7) at night (day) time. In the asymmetric

configuration that we assume in the present study we assume

that nA = nex and nB = n, given by Eq. (21). This is because

the distance from Bob to the relay covers almost all the total

distance.

Continuous-variable signals, i.e., their quadratures, are

measured by means of a homodyne or heterodyne detection,

both of which require a reference light, the so-called local

oscillator, to perform the detection. The LO can be transmitted

along with the signal, hence called transmitted LO (TLO),

or locally created at the receiver side, hence called local LO

(LLO). The TLO and LLO schemes add different amounts of

noise photons within the receiver. Those generated by LLO,

nLLO, are a linear function of the link transmissivity, while that

generated by TLO, nTLO, is an inverse function of transmissiv-

ity. Strictly speaking, we have [21, Eq. (62)]

nLLO = N +
π lwVAη(z)

C
and nTLO =

N

η(z)
, (24)

where

N =
νdet(NEP)2W �tLO

2h̄ωPLO

,

with VA being the modulation variance, PLO the LO power, C

the clock, lw the linewidth, W the detector bandwidth, NEP

the noise equivalent power, �tLO the LO pulse duration, and

νdet the detection noise variance (νdet = 1 and νdet = 2 for a

homodyne and heterodyne detection, respectively).

Figure 3 shows the number of extra photons generated at a

homodyne receiver. Although at long distances one expects

FIG. 3. Noise photons generated by a homodyne receiver. TLO

noise (solid curve) and LLO noise (dashed curve) vs free-space

distance z. We consider night time, with C2
n = 1.28 × 10−14 m−2/3,

when a TLO and LLO scheme is used. We have λ = 800 nm, NEP =
6 pW/

√
Hz, W = 100 MHz, �tLO = 10 ns, PLO = 100 mW, VA = 44,

lw = 1.6 kHz, C = 5 MHz, HA = HB = 20 m, α0 = 5 × 10−6, w0 =
10 cm, arec = 20 cm, ηeff = 0.98, and h̄ = 1.054 × 10−34 J s.

that LLO results in less noise than the TLO [26], at short

distances TLO introduces about two orders of magnitudes

less noise. For the regime of operation we will use in this

study, we assume the maximum amount of extra noise photons

generated at the receiver, that is, we assume nLLO = 0.04 SNU.

III. SECURITY ANALYSIS

By using the outcomes of our modeling in the previous

sections, we can now convey a security analysis by comput-

ing achievable key rates for an asymmetric CV MDI QKD

protocol over FSO links. In the EB representation we assume

that Alice and Bob hold two TMSV states with the following

covariance matrices (CMs):

VaA =

⎛
⎝ μAI

√
μ2

A − 1Z√
μ2

A − 1Z μAI

⎞
⎠ (25)

and

VbB =

⎛
⎝ μBI

√
μ2

B − 1Z√
μ2

B − 1Z μBI

⎞
⎠, (26)

where μA(B) defines Alice’s (Bob’s) TMSV variance. By ap-

plying heterodyne detection modules to their local modes a

and b, they project the carrier modes A and B to known

Gaussian-modulated coherent states |α〉 and |β〉, respectively.

In other words, Alice and Bob encode the variables α =
(qA, pA) and β = (qB, pB) with Gaussian distributions

G(α) =
1

2πσ 2
A

exp

[
−

q2
A + p2

A

2σ 2
A

]
(27)
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and

G(β ) =
1

2πσ 2
B

exp

[
−

q2
B + p2

B

2σ 2
B

]
(28)

on the modes A and B, such that σ 2
A = μA − 1 and σ 2

B = μB −
1. In the present work we assume equal variances for Alice

and Bob, i.e., μA = μB = μ.

On their way through free space, these states experience

Eve’s attack, which is modeled by means of two beam splitters

with transmissivities ηA and ηB. She applies a two-mode attack

for each channel by interacting Alice and Bob modes with

those of hers that are described by the following CM [see

Fig. 1(b)] [39]:

Vee′ =
(

ωAI gmaxZ

gmaxZ ωBI

)
, (29)

where ωA and ωB quantify Eve’s injected thermal noise, while

gmax = max{
√

(ωA + 1)(ωB − 1),
√

(ωA − 1)(ωB + 1)}. The

parameters ωA = 2nA + νdet and ωB = 2nB + νdet are total

thermal noise variance at Alice-relay and Bob-relay links, re-

spectively, with νdet being the detection noise variance (νdet =
1 SNU for homodyne and νdet = 2 SNU for heterodyne detec-

tion).

The execution of Charlie’s Bell measurement (elaborated

in Ref. [52]) gives the outcome γ = qC + ipC , where qC and

pC are dependent on the variables α and β:

qC = − τAqA + τBqB + xN , (30)

pC = + τA pA + τB pB + pN , (31)

where τA(B) =
√

ηeffηA(B)/2. The variables xN and pN are

noise variables with variance

�2
N = � + νel + 1, (32)

which includes 1 SNU vacuum noise, electronic noise νel, and

excess noise

� =
ηeff

2
[(1 − ηA)(ωA − 1) + (1 − ηB)(ωB − 1)]

+ ηeffgmax

√
(1 − ηA)(1 − ηB). (33)

It can be shown that the conditional CM for Alice and Bob

is given by

Vab|γ =
(

ζaI ζcZ

ζcZ ζbI

)
, (34)

where
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζa = μA − ηA(μ2
A−1)

ηA(μA−1)+ηB (μB−1)+2�2
N /ηeff

,

ζb = μB − ηB (μ2
B−1)

ηA(μA−1)+ηB (μB−1)+2�2
N /ηeff

,

ζc =
√

ηA(μ2
A−1)ηB (μ2

B−1)

ηA(μA−1)+ηB (μB−1)+2�2
N /ηeff

.

(35)

In addition, a heterodyne detection at Bob’s side, with the

outcome β̃, gives the conditional CM at Alice’s side:

Va|γ β̃ =
(

ζa −
ζ 2

c

ζb + 1

)
I. (36)

The secret key rate at the asymptotic limit is then given by

[39]

K∞(ηA, ηB, �) = βIAB(ηA, ηB, �) − χE (ηA, ηB, �), (37)

where β is the reconciliation efficiency,

IAB(ηA, ηB, �) =
1

2
log2

1 + det Va|γ + trVa|γ

1 + det Va|γ β̃ + trVa|γ β̃

(38)

is mutual information, and

χE (ηA, ηB, �) = g(ν+) + g(ν−) − g(νc) (39)

is Holevo information, with ν± being eigenvalues of the CM

Vab|γ and νc being the eigenvalue of the conditional CM Vb|γ α̃ ,

and we define

g(x) =
x + 1

2
log2

x + 1

2
−

x − 1

2
log2

x − 1

2
. (40)

The stochastic nature of free-space channels causes

fluctuations that result in free-space fading. Hence, the trans-

missivities, as well as the level of noise, become unstable and

vary with time over certain timescales such that the probability

distribution for the deflected transmissivity is [21]

P0(τ ) =
r2

0

γ σ 2τ

(
ln

η

τ

)2/γ−1

exp

[
−

r2
0

2σ 2

(
ln

η

τ

)2/γ ]
,

(41)

where γ and r0 are given in Eqs. (16) and (17), respectively,

and the mean value of deflection is assumed to be zero. Thus

estimated parameters and the key rate would take different

values than that given in Eq. (37). The details of such an

issue were introduced in Refs. [21,23] for one-way CV QKD

protocols. Also, as a possible solution, the pilot pulses were

introduced. In the following we explain how one can use

the pilot solution, presented in Refs. [21,23], in the case of

free-space CV MDI QKD protocols.

Pilot pulses are relatively intense pulses that help to track

and measure or estimate the instantaneous transmissivity.

The pilots are weak enough to be measured via LO signals

but much brighter than quantum signals to provide a good

estimate of the transmissivity. In fact, they help to collect

signals within a lattice of suitable time bins with almost

equal transmissivity. Therefore, in a free-space scenario, apart

from mPE samples that are sacrificed for parameter estimation

(PE), mPL of the signals are energetic pilot signals that are

used to estimate the instantaneous transmissivity, such that

N = n + (mPE + mPL), where n will be consumed for building

the raw key.

For our MDI QKD setup, let us assume that both Alice

and Bob send coherent-state pilots |nPL〉 towards the relay,

which treats pilots as normal quantum signals, i.e., it outcomes

γPL. This would allow Alice and Bob to build the estimators

for the instantaneous transmissivities τA(B) =
√

ηeffηA(B)/2. In

a fading interval [τ, τ + δτ ], a fraction of the pilots pδmPL,

where

pδ :=
∫ τ+δτ

τ

P0(τ )dτ, (42)
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can be used for estimating τA and τB. From the pilots the

number of pδmPLνdet outcome pairs (qC,i, pC,i ) of the relay,

i.e.,

qC,i = − τAqA,i + τBqB,i + xN,i, (43)

pC,i = + τA pA,i + τB pB,i + pN,i, (44)

where qA,i = pA,i = qB,i = pB,i =
√

2nPL, can be derived. Al-

ice and Bob can then build the estimators

T̂A,PL :=
1

pδmPLνdet

∑

i

−qC,i + pC,i

2
√

2nPL

, (45)

T̂B,PL :=
1

pδmPLνdet

∑

i

qC,i + pC,i

2
√

2nPL

, (46)

with mean τA and τB, respectively, and variance

σ 2
N/(8pδmPLνdetnPL). It can be argued that real-time tracking

of the transmissivities is possible with negligible error for a

sufficiently large nPL, even if mPL is small.

While it is possible to introduce postselection intervals

[τA,min, τA,max] and [τB,min, τB,max], the parties can choose the

minimum achievable values τA,min and τB,min to wipe out

the fading and build a stable link. Following Refs. [21,23],

we take τB,min = fthηB, where fth is a fixed postselection

threshold. At the same time, for a very asymmetric MDI

protocol, one can assume that τA,min = ηA. These values can

also modify associated noise values given in Eq. (24), as well

as the excess noise given in Eq. (33). Therefore the secret

key rate at the asymptotic limit in Eq. (37) will be given by

K∞(ηA,min, ηB,min, �max).

To deliver a more rigorous account of the key rate analy-

sis, in the following we compute the composable finite-size

key rate analysis by also presenting the PE step. We assume

that Alice and Bob use mPE samples for PE. Accepting an

error ǫPE, which is the error probability associated with each

estimator, one can provide the following worst-case scenario

values for the transmissivities and the excess noise (here, for

convenience, we drop the “min” and “max” subscripts from

the transmissivities and the noise) [52]:

η̃A = ηA − w

√
σ 2

ηA
, (47)

η̃B = ηB − w

√
σ 2

ηB
, (48)

�̃ = � + w

√
σ 2

N , (49)

where w =
√

2erf−1(1 − ǫPE), � = �2
N − νel − 1, and

σ 2
ηA

≃
16ηA

mPE

[
ηA +

ηBσ 2
B

2σ 2
A

]{
1 +

�2
N/ηeff

ηAσ 2
A + ηBσ 2

B/2

}
, (50)

σ 2
ηB

≃
16ηB

mPE

[
ηB +

ηAσ 2
A

2σ 2
B

]{
1 +

�2
N/ηeff

ηBσ 2
B + ηAσ 2

A/2

}
, (51)

σ 2
N ≃

2(�2
N )2

mPE

. (52)

Thus the worst-case, minimum secret key rate based on the

PE scheme is given by

KPE (̃ηA, η̃B, �̃) = βIAB (̃ηA, η̃B, �̃) − χE (̃ηA, η̃B, �̃). (53)

What’s more, the key rate must be composably secure [1],

including imperfections in the data processing [53]. Assuming

that the free-space link is used N times, the composable finite

size is given by [21]

K (z, r) =
npEC

N

(
KPE (̃ηA, η̃B, �̃) −

�AEP√
n

+
�

n

)
, (54)

where [21,23]

�AEP := 4 log2(
√

d + 2)

√
log2

(
18p−2

EC ǫ−4
S

)
, (55)

� := log2

[
pEC

(
1 −

ǫ2
S

3

)]
+ 2 log2(

√
2ǫH). (56)

Equation (54) gives the rate for a protocol with overall secu-

rity parameter ǫ = ǫC + ǫS + ǫH + 3pECǫPE. Assuming reverse

reconciliation, the hash comparison step of the finite-key anal-

ysis requires Bob to send ⌈[⌉]log2(1 − ǫC) bits to Alice for

proper values of ǫC (called ǫC correctness) and bounds the

probability that Alice’s and Bob’s sequences differ even if

their hashes match. Also, ǫH and ǫS describe errors that occur

during the hashing and the smoothing stages, respectively. It is

also convenient to define the frame error rate FER = 1 − pEC.

Further, it is assumed that by using an analog-to-digital con-

version each continuous-variable symbol is encoded with d

bits of precision. We remark that since the transmissivities are

dependent on the deflection parameter r, such that the rate in

Eq. (54) is a function of r, one needs to use the integral in

Eq. (19) to compute an average rate.

Figure 4 partly reveals the performance of CV MDI QKD

in a free-space setup. Here, we assume a horizontal path

between Alice and Bob, both located at HA = HB = 20 m. We

refer to the caption for the nominal (reasonably realistic) pa-

rameters that we have used. As we discussed under Fig. 2, here

we can use Yura’s weak turbulence theory. However, let us

emphasis that Yura’s condition (φ ≪ 1) has to be considered

approximate as we consider a weak satisfaction of it, i.e., at

all distances considered in Fig. 4 we have that φ < 0.4.

In Fig. 4(a) we plot the average rate versus distance at

fixed block size N = 5 × 108 by assuming the postselection

threshold fth = 0.9 to build a stable channel. It is interesting

to see that, similar to the one-way CV QKD protocol stud-

ied in, e.g., Ref. [21], one can extract a secure key string

with relatively high generation rate. Indeed, one could obtain

higher rates with a higher value of postselection threshold.

This is shown in Fig. 4(b), where in order to see the effect of

block size, too, we plot the average rate versus block size at a

fixed distance z = 100 m. It is observed that smaller values of

postselection threshold would result in very poor performance

of the system, or it requires a very high, impractical block

size. For instance, with the same set of parameters given in

Fig. 4, the protocol is incapable of delivering a positive rate

at fth = 0.85. Nevertheless, as one can imagine, there are

several parameters involved in this problem that, considering

the realization of the protocol, can be opted and/or tuned to

result in a positive rate, even higher than presented here. In

particular, as one would expect, we have observed that both

the transmitter and receiver telescopes’ size effect the final

rate greatly.
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FIG. 4. Free-space CV MDI QKD performance. (a) Secret key

rate vs total distance at N = 5 × 108 and fth = 0.9. (b) Secret key

rate vs block size at z = 100 m. Set of parameters used: w0 =
10 cm, arec = 20 cm, β = 0.98, μA = μB = 45, ηA = 0.98, ηeff =
0.98, νel = 0.01, νdet = 1, α0 = 5 × 10−6, C2

n = 1.28 × 10−14, nbg =
4.8 × 10−12, δ = 10 μm, and nex = 0.04. Other parameters related to

pilots and parameter estimation are mPL = 0.1N , mPE = 0.1N , d =
26, FER = 0.1, εs = εh = εpe = 10−10, w = 6.34, and ε = 4.5 ×
10−10. Note that realistic block sizes are up to 108 with current data

processing facilities.

For the above numerical analysis, we assumed a highly

asymmetric configuration CV MDI QKD setup where we have

considered the relay literally placed at Alice’s laboratory to let

the Bob relay link, covering the total distance. The reason is

that, whether in the fiber-based or free-space case, CV MDI

protocols offer a reasonable key rate mostly in such regimes.

IV. SLANT PATHS

It is conceivable that either of the stations of Alice and Bob

is located at a higher altitude than the other, e.g., on top of

a mountain. Furthermore, they can be moving objects such

as HAPSs. In either case we face a slanted atmospheric path

between Alice and Bob. Supposedly, in such scenarios, the

beam light propagates through different atmospheric layers;

hence, a more elaborate consideration may be required. For

instance, we note that the index-of-refraction structure C2
n is

no longer constant and changes with the altitude.

To begin with, let us assume a slant path between a HAPS,

say Bob’s station at altitude HB and Alice’s platform on the

ground, located at HA < HB above sea level. The length of the

path is given by

z =
√

(RE + HB)2 + (RE + HA)2(cos2 θ − 1)

− (RE + HA) cos θ, (57)

where RE ≃ 6371 km is the earth’s radius and θ the zenith

angle. As the first consideration, in the following we try to

identify the regime of turbulence that is determinant of the

choice of equations to be used.

A more general, altitude-dependent expression for the scin-

tillation index, to be used instead of the Rytov variance, is

[44,54]

σ 2
SI

(θ, HB) = − 1 + exp

[
0.49β2

R
(θ, HB)

(
1 + 1.11β

12/5
R (θ, HB)

)7/6

+
0.51β2

R
(θ, HB)

(
1 + 0.69β

12/5
R (θ, HB)

)5/6

]
, (58)

where

β2
R
(θ, HB) = 2.25k7/6 sec11/6(θ )

∫ HB

HA

dh (h − HA)5/6C2
n (h),

and a downlink path is (from Bob to Alice) assumed. Ac-

cording to the Hufnagel-Valley (H-V) atmospheric model [44,

Sec. 12.2], the index-of-refraction structure is a function of the

altitude h and the wind speed v,

C2
n (h) = 5.94 × 10−53(v/27)2h10e−h/1000

+ 2.7 × 10−16e−h/1500 + Ae−h/100, (59)

where A is the nominal value of C2
n (0) at the ground.

From Fig. 5 it is seen that the regime of turbulence can

be assumed weak. Here we have considered low wind, v =
21 ms−1, and night time with A = 1.7 × 10−14 m−2/3 [22,44].

Consequently, in such slant-path regimes, we can still make

use of the Yura’s recipe for a weak turbulent atmosphere. Let

us now get back to our CV MDI QKD protocol and apply the

above considerations to the analysis.

The performance of CV MDI QKD with slant paths can

be seen in Fig. 6, where for several values of zenith angle we

have plotted a composable finite-size key rate at night-time

operation. Here we have set the same parameters as given in

Fig. 4, including initial beam size w0 = 10 cm, receiver size

arec = 20 cm, block size N = 5 × 108, and pilot postselec-

tion threshold fth = 0.9. Our simulation illustrates that with a

reasonable block size and receiver size, quantum communica-

tions through CV MDI protocols is feasible for altitudes up to

HB = 200 m (note that Alice’s altitude is fixed at HA = 20 m).
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FIG. 5. High-altitude platform systems. (a) Scintillation index vs

the zenith angle at different altitudes of Bob’s station. (b) Scintilla-

tion index vs Bob’s altitude at different zenith angles. We assume a

fixed of HA = 20 m for Alice’s station.

V. SUMMARY

In the present work we have developed a composable secu-

rity analysis of CV MDI QKD over FSO links that can include

FIG. 6. Free-space CV MDI QKD performance with high-

altitude platform systems. Secret key rate vs Bob’s altitude at

different zenith angles with HA = 20 m at all cases. The curves

represent the rate at fth = 0.9, and the set of parameters used here

are the same as reported in Fig. 4, except for the index-of-refraction

structure C2
n , which varies.

several types of noise and experimental inefficiencies. We

have demonstrated that asymmetric CV MDI QKD protocols

can be used to extract a composably-secure key over FSO

links. This can be achieved in the powerful collective eaves-

dropping scenario with the protocol offering substantially

high rates. We have considered physical space-related phe-

nomena such as light-beam diffraction, deflection, turbulence,

and beam widening, all of which degrade transmissivity. We

have also accounted for several types of noise, including back-

ground noise, excess noise, and receiver noise, that free-space

CV QKD suffers from. Furthermore, we have studied the

usefulness of the protocol for a slant path through an atmo-

spheric turbulent space. In all cases we show that high-rate

CV MDI QKD is possible over short FSO links of the order

of hundreds of meters, where the regime of turbulence is

weak.
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