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When space and time matter in environmental injustice:  A Bayesian 43 
analysis of the association between socio-economic disadvantage and air 44 
pollution in Greater Mexico City.  45 
 46 
Abstract   47 
Environmental injustice refers to the unequal burden of pollutants on groups with lower 48 
socioeconomic status. An increasing number of studies have identified associations between 49 
high levels of pollution and socioeconomic disadvantage. However, few studies have 50 
controlled adequately for spatio-temporal variations in pollution. This study uses a Bayesian 51 
approach to explore the association between socioeconomic disadvantage and pollution in 52 
Mexico City Metropolitan Area. We quantify the association of socioeconomic disadvantage 53 
with PM10 and ozone and evaluate the impact of accounting for spatio-temporal structure of 54 
the pollution data. We find a significant positive association between socio-economic 55 
disadvantage and pollution for levels of PM10, but not ozone. The inclusion of the spatio-56 
temporal element in the modelling results in improved weaker estimates of this association 57 
but this does not alter results substantially. These findings confirm the robustness of previous 58 
studies that found signs of environmental injustice where spatio-temporal variations have not 59 
been explicitly considered, confirming that targeted policies to reduce pollution in socio-60 
economically disadvantaged areas are required.  61 
  62 
Keywords: space-time patterns, vulnerability, inequities, random effects, Mexico.  63 
JEL codes: O13, Q53, I32, C11, and C23  64 
 65 
 66 
  67 
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1. Introduction 68 
 69 
Environmental injustice refers to the disproportionate exposure of people in socially 70 
disadvantaged groups, such as those with lower socioeconomic status or those experiencing 71 
discrimination based on their race/ethnicity to environmental hazards. These include air, soil, 72 
and water pollution (Landrigan et al., 2018; Moreno-Jimenez et al., 2016), which are often 73 
associated with proximity to power stations and hazardous waste sites (Funderburg and 74 
Laurian, 2015). These disadvantaged communities also have limited access to green spaces 75 
(Wolch et al., 2014) and public infrastructure (Carvalho and Carvalho, 2021), and face a 76 
higher risk of morbidity and mortality due to COVID-19 (Aschner et al., 2021). All these 77 
factors make them more vulnerable to the adverse health impacts of air pollution.  78 
 79 
In this paper we focus on air pollution as a severe threat to public health. Air pollution causes 80 
respiratory and cardiovascular disease, and mental ill-health, and has been established as a 81 
major modern mortality risk. Air pollution caused over 4.2 million premature deaths 82 
worldwide in 2016 and it is also estimated that fine particulate matter in polluted air causes 83 
7 million deaths every year (World Health Organization, n.d.).  The World Bank estimated a 84 
loss of US$225 billion, in terms of labour income, due to deaths caused by air pollution 85 
(Bank, 2016). The health impacts are not evenly distributed across the population; 86 
communities with low socioeconomic status are at greater risk of chronic disease due to their 87 
disproportional exposure to air pollution (Schweitzer and Valenzuela, 2004;  Niessen et al., 88 
2018). 89 
 90 
There is extensive work that illustrates social inequalities in the exposure to air pollution, and 91 
that greater exposure is experienced by people with low socioeconomic status or non-white 92 
background. Su et al. (2010) showed the inverse association between NO2 concentration and 93 
socioeconomic status indicators (income) by census tracts in Vancouver and Seattle. Padilla 94 
et al. (2014) showed that deprived census blocks in two French metropolitan areas, Lille and 95 
Marseille, were the most exposed to NO2. In middle-income countries with developing 96 
economics, evidence of environmental injustice is growing (Hajat et al., 2015). Kopas et al. 97 
(2020) showed that poor, low-caste communities in India were more exposed to emissions 98 
from coal power plants than their wealthier, high-caste counterparts. Lome-Hurtado et al. 99 
(2020) demonstrated unequal exposure of the elderly and children to air pollution in Mexico 100 
City. Chakraborti and Voorheis (2021) showed that low-income areas in Mexico experience 101 
a disproportional burden of air pollution, with a decline in socioeconomic status within the 102 
investigated municipalities being associated to an 1% annual increase in air pollution levels. 103 
 104 
The challenge of addressing the causes and consequences of air pollution is receiving 105 
increasing attention. Air pollution can be caused by different sources such as industrial 106 
activity, urbanization, traffic pollution, and institutional and natural sources that lead to 107 
pollution concentrations that are often clustered temporally and spatially (Kampa and 108 
Castanas, 2008; Diarra and Marchand, 2011; Landrigan et al., 2018; Manisalidis et al., 2020). 109 
The problem of air pollution can be exacerbated by institutional drivers, such as an inefficient 110 
judicial system (inefficiency of law enforcement) that may not be applied correctly in relation 111 
to environmental quality policies (Lomborg and Pope, 2003; Diarra and Marchand, 2011) in 112 
certain areas. Some policy instruments, such as low emissions zones, target traffic emissions 113 
reductions in certain locations within a city. Alternatively,  there may be restrictions on 114 
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vehicle movements, such as the program “Hoy no circula” in Mexico City, where vehicles 115 
do not circulate in certain geographical areas on specific days (Ambiente, n.d.). Factors 116 
associated with urbanization, such as the improvement or deterioration of road infrastructure, 117 
may cause fewer or higher traffic jams in specific municipalities, or there may be 118 
manifestations or demonstrations which change the travel patterns across the city (Carrier et 119 
al., 2014; Arceo et al., 2016). Some environmental contributory factors to air pollution, such 120 
as wildfires, also exhibit a spatio-temporal pattern, being more common in specific areas and 121 
at certain times of the year (Cobelo et al., 2023).  122 
 123 
These spatio-temporal characteristics of air pollution concentrations have important 124 
implications when understanding the relationship between air pollution and socioeconomic 125 
status. Ignoring the spatial dependence of factors that contribute to pollution clusters (i.e., 126 
locations close to each other exhibit more similar pollution levels than those further apart) 127 
may generate spatial autocorrelation problems in models of of air pollution. In particular, if 128 
residuals display spatial autocorrelation, the independence and identically distributed 129 
assumption of many models is violated, and this causes standard errors to be artificially low, 130 
leading to coefficients that may appear significant when they are not (i.e., inflates type I 131 
errors) (Anselin, 2002; Dormann et al., 2007).  There have been different efforts to capture 132 
this inherently spatial nature of air pollution when isolating the effect of socioeconomic 133 
background on the exposure to this health risk. For instance, Sun et al. (2010) and Padilla et 134 
al. (2014) used generalized additive models (GAMs) to remove spatial autocorrelation. More 135 
recently, Verbeek and Hinck (2022) used a geographically weighted regression that allows 136 
for spatial variation in parameter estimates revealing thus localized patterns on the 137 
relationship between air pollution and socio-economic indicators, and therefore reveal where 138 
such association is more pronounced within urban areas. This technique is exemplified when 139 
evaluating the effect of low emissions zones in London and Brussels. Other authors, such as 140 
Chakraborti and Voorheis (2021) focus on temporal patterns using a fixed-effects panel data 141 
model that controls for time-invariant factors across locations.  Here, we propose the use of 142 
a Bayesian approach, to account for the spatio-temporal structure in the pollution data in an 143 
attempt to avoid modelling errors caused by spatial and serial autocorrelation. Lome-Hurtado 144 
et al. (2021) used this approach to capture the health determinants of child mortality risk with 145 
a space-time structure such as physical activity and diet; and Li et al. (2014) used it to control 146 
for the space-time patterns associated with household burglary.  147 
 148 
This paper applies a Bayesian approach to examine the associations of low socioeconomic 149 
status and air pollution (PM10 and ozone) exposure in Mexico City Metropolitan Area 150 
(MCMA). It investigates the importance of controlling for potential factors with 151 
simultaneous space-time patterns. Following Lome-Hurtado et al. (2021) and Li et al. (2014), 152 
our model estimates pollution exposure at temporal (monthly) and spatial (municipality) 153 
scales. Moreover, we acknowledge that the direction of causality between the economic and 154 
social disadvantage and the exposure to the pollutants could be in either direction 155 
(Chakraborti and Voorheis 2021).  The level of air pollution is likely to affect where people 156 
with low socioeconomic status live, in cheaper and often in more polluted areas.  However, 157 
income may affect pollution through greater production levels in areas of low socioeconomic 158 
status.  159 
 160 
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The high levels of income inequality, population density, and air pollution in the MCMA, 161 
the largest urban agglomeration  in Mexico (Paquette, 2015; México, 2020) makes it a 162 
suitable case study area. The MCMA is classified as the third-largest metropolis in the world  163 
and has the lowest per capita GDP in the Organization for Economic Cooperation and 164 
Development (OECD) forum of countries (Paquette, 2015). This area consists of 16 165 
municipalities within Mexico City and 59 in the State of Mexico1. In Mexico City, PM10 and 166 
ozone concentrations have reached levels above the threshold  established by the World 167 

Health Organization (15 μg/m3 annual mean and 45 μg/m3 24-hour mean for PM10; and 100 168 

μg/m3 8-hour daily maximum and 60 μg/m3 8-hour mean peak season for ozone) 169 

(Organization, 2006).  In 2010 there were 20,500 deaths due to the air pollution, with 170 
particulate matter being in the top ten of the riskiest health factors of mortality in Mexico 171 
(IHME, 2014). Arceo et al. (2016) estimated that 1 μg/m3 increase of in 24-h PM10 in Mexico 172 
City results in an additional 0.24 deaths per 100,000 births. 173 
 174 
 175 
2. Data and Methods  176 
2.1 Data 177 
All variables were developed for each municipality in the study region. Monthly pollution 178 
data allow for the control of temporal variation within a year.  PM10 and ozone data were 179 
obtained from the Automatic Air Quality Monitoring Network of Mexico City (RAMA, n.d.) 180 
in a period spanning from 2012 to 2019. Following previous studies, the 24hr means for PM10 181 
and ozone (from 10am to 6pm) were each averaged into monthly mean concentrations, based 182 
on the measuring stations which had at least 75% of the information in each year (Romieu et 183 
al., 2012; Lome-Hurtado et al., 2019). In total the data for 331 stations were used (120 and 184 
211 stations for PM10 and ozone, respectively). A universal kriging algorithm was applied to 185 
assign an interpolated pollutant value, from the measuring stations, to each municipality. 186 
Kriging has previous been used for similar interpolations (Su et al., 2011; Lome-Hurtado et 187 
al., 2019; Gao et al., 2021). Note that the pixel size of the raster was of 1.20 x1.20 meters 188 
(cell size), and when the municipality boundary intersected several raster pixels we took the 189 
mean. An advantage of kriging is the production of standard errors which quantify the degree 190 
of uncertainty of the spatial prediction. Larger standard errors typically exist in areas with 191 
fewer measuring stations. Municipalities with boundaries beyond 16 km of a measuring 192 
station (from the centroid of the municipality) were removed from the analysis, following 193 
similar criteria as in previous studies (Arceo et al., 2016; Lopez-Feldman et al., 2021). Note 194 
that beyond this distance, we identified larger standard errors (due to fewer measuring 195 
stations), this problem is often acknowledged in the literature (Künzli et al., 2005, Lome-196 
Hurtado et al., 2019). This resulted in the inclusion of 48 municipalities out of the 75 total 197 
which comprise the MCMA (Greater Mexico City). This includes all 16 municipalities within 198 
central Mexico City and 32 of the municipalities beyond its boundaries in the MCMA. These 199 
municipalities account for just over 92% of the population living in the MCMA. 200 
  201 
A set of socioeconomic, climatic and  demographic covariates were assembled. Economic 202 
and social disadvantage indices for 2010 and 2015 were obtained from the Mexican National 203 
Council for the Evaluation of Social Development Policy (CONEVAL, n.d.).These social 204 

 
1 An additional municipality was excluded from this analysis, belonging to the State of Hidalgo. 
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gap indices measure four components of socioeconomic disadvantage: education, health, 205 
basic services, and quality and space in housing. municipalities with higher values are more 206 
socioeconomically disadvantaged compared with those with lower values. For 2010 index 207 
values vary from -1.83 to -0.10. For 2015 index values vary  from -1.6 to -0.32; as an 208 
additional robustness test, we also use the alternative CONAPO index in the analysis 209 
(CONAPO, n. d.). The CONAPO index also measures the level of marginalization (related 210 
to socioeconomic and demographic conditions) or level of poverty as the CONEVAL index.  211 
 212 
Population density also may be related to socioeconomic conditions and is also a contributing 213 
factor to air pollution production (Hajat et al., 2013). Population density data for the analysis 214 
were developed  based on the Population and Housing Census for 2010 and 2015 (INEGI, 215 
n.d. d., n.d. c). 216 
 217 
Previous studies on exposure to air pollution have also identified automobile traffic and 218 
industry processes as its principal sources (Querol et al., 2008; Carrier et al., 2014). A 219 
variable to capture the number of roads was obtained from official infrastructure maps 220 
(INEGI, n. d. b) for the 2011 year. This represents the number of major and large roads, 221 
including avenues, extensions, circuits, peripherals, road axles, passages, and viaducts. An 222 
industry variable was developed from the 2009 and 2014 Economic Census (INEGI, n. d. a). 223 
This variable contains the amount of machinery and equipment of the manufacturing 224 
industries.  225 
 226 
Temperature and relative humidity are often associated with air pollution in previous studies 227 
(Arceo et al., 2016). Monthly average temperature and relative humidity interpolated values 228 
were used in our analysis after obtained the data from the 331 sites of the Automatic Air 229 
Quality Monitoring Network of Mexico City (RAMA, n.d.) from 2012 to 2019 and using the 230 
same kriging technique used for the pollution values. Correlation between variables was 231 
assessed in order to avoid problems associated with collinearity, ad all correlations were 232 
below 0.55. Note that all the mentioned variables are at the municipality level. 233 
 234 
2.2 Statistical Analysis 235 
 236 
Following these studies, the pollution data are modelled as:  237 
 238 
	𝑦!"# = 𝛼 + 𝛽$ × 𝑑𝑖𝑠𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒	𝑖𝑛𝑑𝑒𝑥!,#& + 𝛽' × 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒!"# + 𝛽( ×239 
ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦!"# + 𝛽) × 𝑝𝑜𝑝	𝑑𝑒𝑛𝑠𝑖𝑡𝑦! + 𝛽* × 𝑟𝑜𝑎𝑑𝑠! +	𝛽+ × 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠!# + (𝑠! + 𝑢!) +240 
𝑣# + 𝑠𝑡! 	t

∗ + 	𝜀!#					(1) 241 
 242 
Where 		𝑦!"# represents either PM10 or ozone in the municipality 𝑖, in a specific month 𝑚 243 
over the year 𝑡. Thus, we model PM10 and ozone separately. This study assumes a normal 244 
distribution, for both pollutants 𝑦!"#	~𝑁𝑜𝑟𝑚𝑎𝑙	(𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠, 𝜀!#). Following Chakraborti 245 
and Voorheis (2021), to consider the relationship between pollution and low socioeconomic 246 
conditions, we assigned the 2010 disadvantage index values to the 2012-2015 pollution data 247 
and the 2015 disadvantage index values to the 2016-2019 pollution data. The 248 
𝑑𝑖𝑠𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒	𝑖𝑛𝑑𝑒𝑥!,#’ represents the disadvantage of the municipality 𝑖  for the previous 249 
census year, represented as 𝑡’. The 2010 socio-economic disadvantage index was assumed to 250 
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relate to pollution released in the  2012 to 2015 period, while  the 2015 socio-economic 251 
disadvantage index was used to explain the pollutants released from 2016 to 2019.  A positive 252 
sign on this variable would imply that an increase in the disadvantage index relates to an 253 
increase in air pollution exposure on average for the study period. The 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and 254 
ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 variables are the average levels of these variables in each municipality 𝑖 in month 255 
𝑚 over the year 𝑡. The 𝑝𝑜𝑝	𝑑𝑒𝑛𝑠𝑖𝑡𝑦	variable is the population density in the municipality 𝑖 256 
for either the year, 𝑡, 2010 or 2015 using similar reasoning to our disadvantage index; 𝑟𝑜𝑎𝑑𝑠 257 
represents the number of roads in the municipality 𝑖; and 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑒𝑠 is the number of 258 
industries (machinery and equipment) in  the municipality 𝑖.  259 
 260 
The term, (𝑠! + 𝑢!), denotes the spatial component for each municipality, i, that controls the 261 
overall spatial structure of the data. This spatial component uses the Besag, York, and Mollié 262 
(BYM) model (Besag, York, and Mollié, 1991).The  𝑠! term captures the spatial structure 263 
and 𝑢! the spatial unstructured of the data over time. An intrinsic conditional autoregressive 264 
Gaussian distribution (ICAR) to the priors for the spatial structure (𝑠!)  was used following 265 
Li et al. (2014). The spatial structure component may capture the level of clustering and 266 
demonstrate that nearby municipalities may have similar levels of air pollution.  Therefore, 267 
a spatial adjacency matrix W of size N x N (where N is the number of municipalities) was 268 
used in the spatial structure of 𝑠! to model the level of the neighborhood of the municipalities 269 
in the ICAR model. The matrix off-diagonal values may have two values: either wij=1 (when 270 
the municipality i and municipality j share a common boundary) or wij=0 (if municipality i 271 
and municipality j do not share a common boundary), giving that (𝑖 ≠ 𝑗). Therefore, two 272 
municipalities are neighbors when their random effects are correlated; otherwise, such 273 
municipalities are conditionally independent. The spatial unstructured term, 𝑢!, captures the 274 
remaining potential spatial variability that does not present a spatial pattern. This 275 
unstructured term captures the part of the overall spatial variability that does not display a 276 
spatial pattern (a clustering structure). The term, 𝑢!, follows a normal distribution 𝑢𝑖	~	𝑁(0,	277 
𝜎2u), where 𝑢! was allocated a prior distribution of Gamma, a highly non-informative 278 
distribution (Kelsall and Wakefield, 1999), on the precisions of 𝑠!, 𝑢!, and 𝑣#.  279 
 280 
The term 𝑣# captures the potential serial correlation in the data (the overall time trend). The 281 
term 𝑠𝑡! 	t

∗ captures the potential local spatio-temporal variations (space-time factors) of the 282 
contaminant in specific municipalities in a given year which may be caused by certain 283 
changes in its institutional, urban, and natural risk drivers (outlined in the introduction). 284 
Therefore, this space-time term, 𝑠𝑡! 	t

∗, assesses a linear departure of a municipality’s time 285 
trend from the overall time trend. In this sense, a local trend (in terms of pollution) of each 286 
municipality is captured by the new term. This term is also modelled using the BYM prior 287 
model. Nearby municipalities may have more similar pollution trends than other 288 
municipalities which are farther apart. A prior distribution of Gamma was allocated to these 289 
new terms. Noninformative priors N (0, 0.001) were assigned to the six regression 290 
coefficients, 𝛽´s, and the intercept in each model; the normal distribution has a mean of zero 291 
and a large variance due to the absence of genuine prior expectations. Finally, the error 292 
term	(𝜀!#) captures the variability that is not explained by the other terms in equation 1, which 293 
follows a normal distribution: 𝜀𝑖𝑡	~	(0,	𝜎2𝜀).	   294 
 295 
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Three models were executed for each pollutant: model 1 includes the covariates and the time 296 
term,  𝑣#;  model 2 includes the terms of model 1 plus the spatial component, (𝑠! + 𝑢!); and 297 
model 3 includes the previous model terms plus the spatial-time term 𝑠𝑡! 	t

∗	to assess the 298 
importance of controlling for the space-time structure of the air pollution data to isolate the 299 
effect of marginalization on PM10. the analysis of the panel using fixed effects is also 300 
performed to provide a comparison to the Bayesian approach.   Parameter estimation was 301 
implemented in R and WinBUGS (a software for fitting Bayesian models, Spielgelhalter et 302 
al., 1999; R Core Team , 2020). The models all reached convergence when between 40,000 303 
to 10000 MCMC chains were used, with different initial values for each model (see 304 
supporting material for model run details)2. To choose the best Bayesian model, the deviance 305 
information criterion (DIC criterion) was used (Spiegelhalter et al., 2002). The DIC criterion 306 
is a statistical tool that assesses the balance of the model complexity with the fit to the data. 307 
Models with smaller DIC values are preferred.  308 
 309 
 310 
3. Results   311 
3.1 Descriptive analysis 312 
The descriptive statistics of the data used in the analysis are shown in Table 1a and 1b, at the 313 
municipality level in the MCMA from 2012 to 2019. The period saw a slight reduction for 314 
PM10 while there was a slight increase of  ozone (see Figure 1). Note that PM10 and ozone 315 
concentrations have reached levels above the threshold. In the period of study, 2012-2019, 316 
the annual average concentration of PM10 was 45.92 ug/m3. Meanwhile, for ozone such 317 
average was 29.6 ppm. These values are so higher than the threshold established by the World 318 
Health Organization (20 ug/m3 annual average and 100 ug/m3 8-hour mean for PM10 and 319 
ozone, respectively). 320 
 321 
Figure 1. PM10 and ozone concentration values from 2012 to 2019. 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
 330 
 331 
 332 
 333 
 334 
The values for temperature and relative humidity were relatively stable from 15.7°C to 335 
17.3°C and from 53.1% to 53.6%, respectively during the period. The economic and social 336 
disadvantage index presented mean values of -1.14 and -1.13 for 2010 and 2015 years, 337 

 
2
 After having burned in the first 3,000 iterations, 37,000 were left for making inferences for model 1. Similarly, models 2 and 3 were run 

for 90,000 and 100,000 MCMC chains, and were left 70,000 and 85,000 for making inferences, respectively. To measure the convergence 

of the MCMC chains in each model, the history plots and the Gelman-Rubin diagnostic (Gelman and Rubin, 1992) were used. The first 

one was examined by visual inspection of the history plots, which is a common practice in Bayesian models. The values from the Gelman-

Rubin diagnostic were obtained and they remained lower than 1.025 for every single model parameter, showing that the chains achieved 

convergence after the burn-in period..  
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respectively. Even though Mexico is the world’s 11th largest economy in terms of GDP 338 
measured at purchasing power parity (OCDE, 2017), such index illustrates that the income 339 
and social inequality remains high compared with other OECD countries.  The population 340 
density had means of 4,005 people/km2 and 4,169 people/km2 in 2010 and 2015, respectively. 341 
Note that for other populated Latin cities such numbers were 3,026/km² (2023) and 7,528/km² 342 
(2022) for Santiago, Chile and Sao Paulo, Brazil (City Population, n.d.).  The industrial 343 
variable (machinery and equipment) presented means of 2,646 and 3,423 in 2009 and 2014, 344 
respectively. The MCMA is in the top of the most industrialized areas in Mexico. In 2019, 345 
there were in total 8,629 economic units (Commercial and Industrial machinery and 346 
equipment, except automotive and electronic, repair, and maintenance), the State of Mexico 347 
occupied the first place with 1,780; followed for Jalisco (1,505), and Mexico City (1,207) 348 
(Data Mexico, n.d.). Lastly, the variable of number of roads (include big roads with high 349 
density of cars such as avenue, peripheral, viaduct, circuit, and road axis) had a mean of 764 350 
in the 2011 year. It is important to mention the standard deviations of the industrial and road 351 
variables were much higher than their mean. This illustrates the high concentration of the 352 
industries and roads in certain municipalities.  353 
 354 
Table 1a. Descriptive statistics of PM10, ozone pollutants1, temperature, and relative 355 
humidity variables in the MCMA (short).  356 

Variable 

description 
and name 

2012 

mean (sd) 

2013 

mean (sd) 

2014 

mean 
(sd) 

2015 

mean 
(sd) 

2016 

mean 
(sd) 

2017 

mean 
(sd) 

2018 

mean 
(sd) 

2019 

mean 
(sd) 

Overall 

average 
2012-

2019 

Particulate 

matter 10 

(ug/m3) 

 

47.18 49.25 44.23 43.09 43.82 46.88 47.77 44.61 45.92 

(13.32) (15.61) (12.72) (9.83) (14.13) (15.46) (12.94) (15.74) 

------ 

Ozone 

(ppm)  

28 29.75 27.51 29.08 30.13 31.21 29.42 31.68 29.60 

(2.42) (2.58) (5.83) (3.78) (8.05) (7.43) (6.03) (7.59) ------ 

Temperatur

e (°C) 

 

15.76 16.38 16.61 16.52 16.16 16.11 16.62 17.35 16.44 

(1.71) (1.7) (1.87) (1.48) (2.27) (2.31) (2.01) (1.99) ------ 

Relative 

humidity 

(%) 

 

53.12 53.58 56.91 61.92 58.81 55.45 57.69 53.60 56.39 

(9.36) (13.32) (10.61) (8.11) (10.65) (11.03) (9.24) (10.51) 

------ 

1Monthly average in each year 357 
 358 
Table 1b. Descriptive statistics of social, economic, and  359 
demographic variables in the MCMA (short) 360 

Variable name 2010 mean (sd) 2015 mean (sd) 

Economic and 

social 

disadvantage 

index 

-1.14 (0.4) -1.13 (0.3) 

Population 

density (people 

per km2) 

4005 (6402) 

 

4169 (6526) 

 2009 mean  

(sd) 

2014 mean (sd) 
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 361 
 362 
 363 
 364 
 365 
 366 

 367 
Spatial patterns exist in the datasets that might lead to problems of spatially autocorrelated 368 
errors. The Global Moran Index of the pollution data for each year, from 2012 to 2019, 369 
showed positive spatial autocorrelation, with mean values of 0.32 and 0.3 (p- < 0.0001) ,. 370 
These results mean that there were some municipality clusters with similar PM10 and ozone 371 
records. Likewise, the Global Moran Index of the economic and social disadvantage index 372 
had a mean of 0.31 and 0.35 for 2010 and 2015 years, respectively; there was also a certain 373 
level of clustering. Lastly, the Autocorrelation Function (ACF) was used to measure the 374 
presence of potential serial correlation; their mean values were 0.37 and 0.3 (lagged 1 year 375 
for each municipality) across all the municipalities. This showed evidence of serial 376 
correlation; that is, a certain level of association of the pollutants’ records over time.  377 
 378 
3.2 Socio-economic disadvantage index and pollution burden 379 
The posterior means results of the disadvantage index and other risk factors associated with 380 
PM10 and ozone for each model are presented in Table 2a and 2b. The three models illustrate 381 
that the disadvantage index coefficient was significantly and positively associated with PM10 382 
(with 95% CI). The disadvantage index coefficient from model 2, which controls for spatial 383 
structure, is lower, showing a weaker association, when compared with model 1. Model 3 384 
accounts for spatial and temporal factors; its coefficient size for the disadvantage index falls 385 
slightly, relative to the previous model 2. This may mean that the disadvantage index 386 
coefficient was partially reflecting the effect of these spatio-temporal factors more generally 387 
on air pollution. The coefficient of this index in model 3 indicates that a one-unit increase in 388 
the disadvantage conditions is associated with an increase in the concentrations of PM10 by 389 
1.1 ug/m3. Meaning that the increase in presence in a municipality of socio-economic 390 
disadvantaged people, is associated with an increment in the level of air pollution (PM10) 391 
exposure. The coefficient of the index using fixed effects was similar to model 1, but larger 392 
than the value of this coefficient in model 3.  393 
  394 
Temperature has a significant positive relationship with PM10, and relative humidity becomes 395 
no significant when the model accounts for spatio-temporal structure. In general, population 396 
density, roads, and industry variables had no association with PM10 in the models.  397 
 
 
 

Table 2a. Posterior means relating to different potential risk factors affecting  

PM10, with 95% credible intervals displayed in the brackets. 

Number of 

machinery and 

equipment 

2646 (5409) 

 

3423 (5409) 

 

 2011 

mean (sd) 

 

Number of roads 764.5 (1269)  

Variable  Panel data 

model with 

fixed approach1 

Model 1 (simple) 

Posterior estimates 

(credible intervals) 

 

Model 2 (space) 

Posterior estimates 

(credible intervals) 

 

Model 3 (space + 

space-time 

interactions) 

Posterior estimates 

(credible intervals) 
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Note: The spatial and spatio-temporal terms are not included since each municipality has a value, but most of them were 398 
significant (94% and 91% of the total of values for model 2 and model 3, respectively) at 95% CI. 399 
1 Adj. R-Squared: 0.66 and F-statistic with p-value: < 2.22e-16. The model includes the municipality fixed effects and yearly 400 
controls. 401 
* p<0.05; ** p<0.01 402 
 403 
 
In the case of ozone, the three Bayesian models illustrate that the disadvantage index 
estimate was not significantly related. Temperature is once again significantly related.  
 

Table 2b. Posterior means relating to different potential risk factors affecting  

ozone, with 95% credible intervals displayed in the brackets. 

Intercept  ------- 47.01 (46.5, 47.5) 47.01 (46.5, 47.5) 47.01 (46.52, 47.68) 

Socioeconomic  
disadvantage index 

2.42** 

(1.06)) 

1.98 (1.45, 2.05) 1.2 (0.35, 1.9) 1.1 (0.37, 1.9) 

Temperature -2.05** 

(0.062) 

3.04 (2.53, 3.64) 1.98 (1.63, 2.74) 1.89 (1.75, 2.69) 

Relative humidity -1.05** 

(0.013) 

0.23 (0.05, 0.42) 0.07 (-0.09, 0.24) -0.008 (-0.2, 0.15) 

Population density 0.0005 

(0.0005) 

0.05 (-0.02, 0.11) 0.04 (-0.03, 0.11) 0.02 (-0.02, 0.1) 

Number of roads ------ 0.08 (-0.2, 0.32) 0.13 (-0.16, 0.38) 0.05 (-0.29, 0.23) 

Number of 

machinery 
 and equipment 

-0.0005** 

( 0.0001) 

0.021 (-0.09, 0.11) -0.01 (-0.13, 0.11) 0.01 (-0.12, 0.1) 

DIC value See note 1 2180   2160.7   2088 

Variable  Panel data model with 

fixed approach1 

Model 1 (simple) 

Posterior estimates 
(credible intervals) 

 

Model 2 (space) 

Posterior estimates 
(credible intervals) 

 

Model 3 (space+space-

time interactions) 
Posterior estimates 

(credible intervals) 

 

Intercept  ------- 47.01 (46.5, 47.5) 47.01 (46.5, 47.5) 47.01 (46.52, 47.68) 

Socioeconomic  
disadvantage 
index 

0.4 

(0.51) 

0.32 (-0.2, 0.85) 0.3 (-0.23, 0.86) 0.28 (-0.3, 0.89) 

Temperature 1.17** 

(0.029) 

2.05 (1.96, 3.51) 1.04 (0.73, 1.94) 1.01 (0.75, 2.0) 

Relative 

humidity 

-0.13** 

(0.0063) 

0.17 (0.09, 0.35) 0.05 (-0.06, 0.2) -0.004 (-0.1, 0.91) 

Population 

density 

-0.0003 

(0.00023) 

-0.07 (-0.05, 0.98) -0.06 (-0.04, 0.91) -0.01 (-0.03, 0.1) 

Number of 

roads 

------ 0.007 (-0.01, 0.042) 0.017 (-0.06, 0.04) 0.003 (-0.02, 0.02) 

Number of 

machinery and 

equipment 

-0.0001 

(0.0000705) 

0.001 (-0.08, 0.01) -0.002 (-0.013, 0.021) 0.001 (-0.01, 0.01) 

DIC value See note 1. 2190   2170.3   2098 
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Note: The spatial and spatial-temporal terms are not included due to that each municipality has a value, but most of them 404 
were significant (90% and 85% of the total of values for model 2 and model 3, respectively) at 95% CI. 405 
1 Adj. R-Squared: 0.61 and F-statistic with p-value: < 2.22e-16. The model includes the municipality fixed effects and yearly 406 
controls. 407 
* p<0.05; ** p<0.01 408 
 409 
 410 
Model 3, controlling for space and space-time patterns, was the best fit according to the DIC 411 
criterion (for both pollutants); the DIC values were lower when compared with model 2 and 412 
model 1. Hence, the outcomes of model 3 were consistent in producing the best robust 413 
estimates in the association between the disadvantage index and air pollution. As an 414 
additional robustness test, we executed the models with the CONAPO index; see Tables 1Aa 415 
and 1Ab in the Appendix section. For the case of PM10, the coefficients of the socio-416 
disadvantage index were significant and similar to the previous results with 1.49 and 1.02 417 
values for the panel data with fixed effects and for model 3 (with space and time interactions), 418 
respectively. Such values were lower but consistent compared with the CONEVAL index. 419 
For the case of ozone, the values of the coefficients for the index were 0.15 and 0.33 for the 420 
panel data with fixed effects and for model 3, respectively. These coefficients were also 421 
similar to the CONEVAL index results and not significant. For the rest of the covariates, 422 
results were also similar to those obtained with the CONEVAL index. Finally, we have 423 
provided the annual outcomes of the models in the Appendix (Tables 2a and 2b), which also 424 
are consistent with the main results shown here. 425 
 426 
 427 
4. Discussion  428 
The analysis provides evidence of environmental injustice in the distribution of PM10 across 429 
the MCMA, controlling for the space-time drivers using a Bayesian approach. To the best of 430 
our knowledge, this is the first work in environmental injustice in Mexico that analyses the 431 
space-time potential factors of air pollution. We found a positive association between low 432 
socioeconomic status and air pollution (PM10). This relationship was not significant for 433 
ozone. Note that much PM10 pollution is emitted directly from specific sources, and tends to 434 
be found relatively close to these sources, travelling up to 50 km (Nel A., 2005). These 435 
sources include industrial plants, construction sites, wildfires, urban areas with high levels of 436 
wood burning for domestic fuel, and heavily-used roads with tire and brake wear from road 437 
traffic. While ozone is not emitted directly, it is produced in the troposphere from precursor 438 
gases which come from both anthropogenic sources (manufacturing, energy transformation, 439 
road transport) as well as natural ones (vegetation especially forests). Formation is thus often 440 
a more regional process, and more directly linked to weather conditions, sunlight, and wind 441 
speeds and directions at larger scales (Duarte, et al., 2022). Therefore, spatio-temporal 442 
differences operating over small spatial scale (neighbourhoods etc.) are likely to be more 443 
important for PM10 than ozone. Unsurprisingly, ozone was positively related to temperature, 444 
which is likely to be dependent on sunlight. 445 

The findings of this study in relation to PM10 illustrate the importance of accounting for 446 
spatial and time drivers of PM10 to better understand the association between this pollutant 447 
and socio-economic disadvantage. When a spatial-time term was introduced in the regression 448 
model, the coefficient size for the disadvantage index fell slightly, indicating a weaker effect, 449 
relative to the previous models (without such a space-time term). This seems to indicate that 450 
the coefficient for this disadvantage index could partially reflect the effect of such spatial-451 
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temporal drivers of air pollution, omitted in traditional regression analysis. Despite the 452 
inclusion of a range of climatic, demographic, and social control variables, one may still be 453 
concerned that there are other factors driving pollution concentration variability in the study 454 
period affecting the model coefficient of the disadvantage index. Such sources may vary 455 
across space and time (as noted in the introduction). Our results show that with a one-unit 456 
increase in the index, there may an increase of PM10 concentrations by 1.1 ug/m3. It is also 457 
notable that relative humidity ceases to show significant association as spatio-temporal 458 
pattern is considered in the modelling. 459 
 460 
These findings confirm the robustness of previous studies that found signs of environmental 461 
injustice where spatio-temporal variations have not been explicitly considered, confirming 462 
that targeted policies to reduce pollution in socio-economically disadvantaged areas are 463 
required. Overall, the inclusion of a spatio-temporal element in the modelling results in 464 
improved estimates of effect sizes, but does not substantially alter the findings, when spatio-465 
temporal variations have not been explicitly considered. Our results therefore show the 466 
importance of decreasing the level of PM10 in socio-economically disadvantaged areas. Our 467 
findings are also consistent with previous spatial econometric environmental injustice studies 468 
(Havard et al., 2009; Li et al., 2018; Verbeek, 2019), which also show  that  accounting for 469 
the spatial structure of the data resulted in a lower coefficient relating to socio-economic 470 
disadvantaged status. We complement this literature by showing that controlling for air 471 
pollution drivers that vary over time and space simultaneously further reduces the value of 472 
this coefficient. Nevertheless, the overall findings of the present study (positive and 473 
significant association of disadvantage status and PM10) are in line with the recent study of 474 
Chakraborti and Voorheis (2021), who demonstrated there is as a clear case of environmental 475 
justice in Mexico.    476 
 477 
The relevance of the space-time drivers of PM10 show in this study can be related to factors 478 
such as wildfires, structural fires, construction of new road infrastructure (paved and unpaved 479 
roads), and burning waste in the open air, which are common in the MCMA according to the 480 
Ministry of Environment in Mexico City (México, 2016). In 2016, the Ministry reported 481 
2,162 ug/m3 of PM10 emissions by open burning of urban waste, which represented 5.7% of 482 
the total emissions. The construction sector (edification and demolition) was responsible for 483 
2,305 ug/m3 and 978 ug/m3 of PM10 (2.5% of the total) emissions in 2014 and 2016, 484 
respectively. The forest fires generated 43.5 ug/m3 and 109.4 ug/m3 of PM10 (2.8% of the 485 
total) emissions in 2014 and 2016, respectively. The paved and unpaved roads were 486 
responsible for 14,427.8 ug/m3 and 14,092.91 ug/m3 of PM10 (3.7% of the total) emissions in 487 
2014 and 2016, respectively. Other risk factors which show spatial and time patterns are 488 
environmental regulations, judicial inefficiency, and demonstrations. The Mexican 489 
government, through its air quality management program (PROAIRE), aims to apply 490 
environmental regulations to reduce air pollution, specifically PM10. This program has been 491 
implemented since early 1989 and 1995, respectively (Metropolitana, 1994; SEMARNAT, 492 
2017). The government has developed air pollution management strategies, but their 493 
implementation has given different results depending on the areas and only a few 494 
municipalities have managed to reach the air pollution targets (de San, 2019). Therefore, 495 
spatially-targeted policies need to be implemented to reduce space-time drivers such as 496 
wildfires, structural fires, and burning waste in the open air. Some of them were caused by 497 
the hand of man e.g. 95% of the main scenarios being bonfires and poorly extinguished 498 
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cigarette butts, the abandonment of land, and the preparation of grazing areas with fire 499 
(Semarnat, 2017). Similarly, such implement targeted emission programmes are needed to 500 
mitigate air pollution specially in poorer areas-municipalities through new regulations 501 
(Nguyen and Marshall, 2018) and health benefits. For instance, the spatial distribution of air 502 
pollution is associated with the industrial distribution, which is concentrated in the north and 503 
east Mexico City. Industrial emissions mainly affect the most economic and social 504 
disadvantaged groups, who live near the production plants due to low rents and land prices 505 
in those areas. Therefore, policies which tackle industry re-allocation or/and re-allocation of 506 
such vulnerable groups are necessarily to reduce environmental injustice; especially in the 507 
north of our study area where according our economic and social index, there are more 508 
economic and social disadvantage conditions. In addition, some health programmes should 509 
be created for poor people with high exposure to air pollution. 510 
 511 
On another note, our findings should be interpreted with some caution due to several 512 
methodological and data limitations. Mexico City, as the capital of Mexico, is considered the 513 
most important city in terms of political and economic aspects; some drivers of pollution, as 514 
those mentioned above, could take place in certain municipalities and in specific days, and 515 
our controlling for these events, or other daily drivers variation of air pollution would have 516 
required daily analysis with more fine spatial and temporal resolution, not available for this 517 
study. The use of data at the municipality level may also potentially mask important 518 
variations within municipalities, and may result in less accurate estimation of the coefficients. 519 
To obtain more reliable results, a smaller scale of the geographical area may be required. In 520 
addition, the area of study was limited to 48 municipalities (of a total of 75). The practice of 521 
removing municipalities has been used in previous studies (Arceo et al., 2016; Lopez-522 
Feldman et al., 2021) due to the availability of having few and concentrated monitoring 523 
pollution stations in certain areas; this study follows the same criterion. Note that the means 524 
and standard deviations of the disadvantage indices, over the period studied, were similar in 525 
the included and not included areas, meaning that both areas are similar in terms of 526 
disadvantage.  527 
 528 
 529 
5. Conclusion 530 
This study has provided further evidence of the existence of environmental injustice in the 531 
MCMA, highlighting the importance of controlling for the space-time drivers in order to 532 
obtain more accurate estimates of the association between socio-economic disadvantage and 533 
exposure to PM10. These results can inform public and social programmes which aim to 534 
reduce inequalities in exposure to air pollution, by directing efforts to reduce the spatial and 535 
temporal drivers of PM10, shown to be significant in this study. This may be better achieved 536 
by strategies that are spatially and temporally heterogeneous and target areas with lower SES, 537 
which experience the highest level of air pollution. The effectiveness of these efforts will be 538 
enhanced through better collaboration and coordination between decision-makers addressing 539 
air pollution inequalities and injustice in  Mexico City (de San, 2019).   540 
 541 
 542 
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 780 
APPENDIX 

 
Table A1a. Posterior means relating to different potential risk factors affecting  

PM10, with 95% credible intervals displayed in the brackets, using CONAPO index.  

Note: The spatial and spatial-temporal terms are not included due to that each municipality has a value, but most of them 781 
were significant (94% and 91% of the total of values for model 2 and model 3, respectively) at 95% CI. 782 
1 Adj. R-Squared: 0.66 and F-statistic with p-value: < 2.22e-16. The model includes the municipality fixed effects and yearly 783 
controls. 784 
* p<0.05; ** p<0.01, *** p<0.001 785 
 786 
 787 
 
Table A1b. Posterior means relating to different potential risk factors affecting  

ozone, with 95% credible intervals displayed in the brackets, using CONAPO index.  

Variable  Panel data model with 

fixed approach1 

Model 1 (simple) 

Posterior estimates 

(credible intervals) 

 

Model 2(space) 

Posterior estimates 

(credible intervals) 

 

Model 3 (space+space-

time interactions) 

Posterior estimates 

(credible intervals) 

 

Intercept  ------- 47.01 (46.5, 47.5) 47.01 (46.5, 47.5) 49.78 

(45.75,53.84) 

Dep_Ind 

(Marginalization 

index) 1.49 (22.8)  

1.98 (1.45, 2.05) 1.2 (0.35, 1.9) 

1.02 (0.07,1.98) 

Temp 

(Temperature) -0.41 (0.35)  
3.04 (2.53, 3.64) 1.98 (1.63, 2.74) 

2.18 (1.47,2.89) 

Re_hum 

(Relative 

humidity) -0.29 (0.07) *** 

0.23 (0.05, 0.42) 0.07 (-0.09, 0.24) 

-0.03 (-0.29,0.24) 

Pop density 

(Population 

density) 0.001 (0.001)  

0.05 (-0.02, 0.11) 0.04 (-0.03, 0.11) 

0.04 (-0.08,0.16) 

Roads 

(Number of 

roads) 

------ 0.08 (-0.2, 0.32) 0.13 (-0.16, 0.38) 

0.002 (-0.5,0.49) 

Industries 

(Number of 

machinery and 

equipment) 

-0.0002 (0.0003)  
 

0.021 (-0.09, 0.11) -0.01 (-0.13, 0.11) 

0.02 (-0.14,0.16) 

DIC value See note 1. 2180   2160.7   2088 

Variable  Panel data model with 

fixed approach1 

Model 1 (simple) 

Posterior estimates 

(credible intervals) 
 

Model 2(space) 

Posterior estimates 

(credible intervals) 
 

Model 3 (space+space-

time interactions) 

Posterior estimates 
(credible intervals) 

 

Intercept  ------- 47.01 (46.5, 47.5) 47.01 (46.5, 47.5) 

30.78(28.83,32.75)  

Dep_Ind 

(Marginalization 

index) 0.15(0.92)  

0.32 (-0.2, 0.85) 0.3 (-0.23, 0.86) 

0.33(-0.13,0.8)  
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Note: The spatial and spatial-temporal terms are not included due to that each municipality has a value, but most of them 788 
were significant (90% and 85% of the total of values for model 2 and model 3, respectively) at 95% CI. 789 
1 Adj. R-Squared: 0.61 and F-statistic with p-value: < 2.22e-16. The model includes the municipality fixed effects and yearly 790 
controls. 791 
* p<0.05; ** p<0.01, *** p<0.001 792 
 793 
 

Table A2a. Yearly posterior means relating to different potential risk factors 

affecting PM10, with 95% credible intervals displayed in the brackets.  

Note: The spatial and spatial-temporal terms are not included due to that each municipality has a value, but most of them 794 
were significant (94% and 91% of the total of values for model 2 and model 3, respectively) at 95% CI. 795 

Temp 

(Temperature) -0.23(0.16)  
2.05 (1.96, 3.51) 1.04 (0.73, 1.94) 

-0.83(-1.15,-0.51)  

Re_hum 

(Relative 

humidity) 0.004(0.031)  

0.17 (0.09, 0.35) 0.05 (-0.06, 0.2) 

0.25(0.13,0.38)  

Pop density 

(Population 

density) 0.001(0.00043) ** 

-0.07 (-0.05, 0.98) -0.06 (-0.04, 0.91) 

-0.01(-0.07,0.05)  

Roads 

(Number of 

roads) 

------ 0.007 (-0.01, 0.042) 0.017 (-0.06, 0.04) 

0.01(-0.23,0.24)  

Industries 

(Number of 

machinery and 

equipment) 

0.0004(0.00013) 
*** 

0.001 (-0.08, 0.01) -0.002 (-0.013, 0.021) 

-0.05(-0.12,0.03)  

DIC value See note 1. 2190   2170.3   2098 

Variable  Panel data 

model with 

fixed 

approach1 

Model 1 (simple) 

Posterior estimates 

(credible intervals) 

 

Model 2(space) 

Posterior estimates 

(credible intervals) 

 

Model 3 (space+space-time 

interactions) 

Posterior estimates 

(credible intervals) 

 

Intercept   46.11 (45.7, 46.5) 46.11 (45.5, 46.7) 46.11 (45.52, 46.68) 

Dep_Ind 

(Marginalizati
on index) 1.84(2.05)  

1.85 (1.35, 1.85) 1.1 (0.29, 1.88) 1.08 (0.27, 1.87) 

Temp 

(Temperature) -0.41(0.35)  
3.84 (3.13, 3.84) 2.44 (1.73, 3.14) 2.17 (1.45, 2.89) 

Re_hum 

(Relative 
humidity) 

-0.29(0.07) 

*** 

0.34 (0.06, 0.62) 0.09 (-0.17, 0.36) -0.009 (-0.27, 0.25) 

Pop density 

(Population 

density) 

0.001(0.00

1)  

0.06 (-0.02, 0.16) 0.05 (-0.05, 0.17) 0.03 (-0.07, 0.15) 

Roads 

(Number of 

roads)  

0.09 (-0.32, 0.52) 0.11 (-0.36, 0.58) 0.07 (-0.39, 0.53) 

Industries 

(Number of 

machinery and 

equipment) 

-

0.0002(0.0

003) 

0.02 (-0.08, 0.14) -0.01 (-0-15, 0.12) 0.01 (-0.12, 0.16) 

DIC value  2179.9   2164.7   2089.3 
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 796 
 797 
 

Table A2b. Yearly posterior means relating to different potential risk factors 

affecting  

ozone, with 95% credible intervals displayed in the brackets.  

 798 
Table A3. Monthly log posterior means relating to different potential risk factors 799 
affecting PM10 and ozone, with 95% credible intervals displayed in the brackets, for 800 
Model 3 (space+space-time interactions). 801 
 802 

Variable  Panel data 

model with 

fixed approach1 

Model 1 

(simple) 

Posterior 

estimates 

(credible 

intervals) 

 

Model 2(space) 

Posterior estimates 

(credible intervals) 

 

Model 3 (space+space-time interactions) 

Posterior estimates 

(credible intervals) 

 

Intercept   46.11 (45.7, 

46.5) 

46.11 (45.5, 46.7) 

30.44(29.31,31.56) 

Dep_Ind 

(Marginalizati

on index) -0.91(0.824)  

1.85 (1.35, 

1.85) 

1.1 (0.29, 1.88) 

0.25(0,0.5) 
Temp 

(Temperature) 
-0.26(0.07) 

*** 

3.84 (3.13, 

3.84) 

2.44 (1.73, 3.14) 

-0.27(-0.42,-0.13) 

Re_hum 

(Relative 

humidity) 0.004(0.02)  

0.34 (0.06, 

0.62) 

0.09 (-0.17, 0.36) 

0.19(0.11,0.27) 

Pop density 

(Population 
density) 

0.0006(0.000

4)  

0.06 (-0.02, 

0.16) 

0.05 (-0.05, 0.17) 

-0.02(-0.05,0.02) 

Roads 

(Number of 

roads) 

 0.09 (-0.32, 

0.52) 

0.11 (-0.36, 0.58) 

0.02(-0.19,0.23) 

Industries 

(Number of 

machinery and 

equipment) 

0.0007(0.000

1) *** 
 

0.02 (-0.08, 

0.14) 

-0.01 (-0-15, 0.12) 

-0.08(-0.15,-0.01) 

DIC value  2179.9   2164.7   2089.3 

Variable  PM10 OZONE 

Dep_Ind 

(Marginalization index) 0.040 ( 0.03, 0.10) 

0.005 ( -0.025,0.035) 

Temp 

(Temperature) 0.042 ( 0.024,0.061) 

0.006 ( 0.0032, 0.0088) 

 

Re_hum 

(Relative humidity) -0.002 ( -0.009,0.003) 

-0.0061 ( -0.011, -0.0010) 

Pop density 

(Population density) 0.039 ( -0.031, 0.118) 

-0.026 ( -0.055, 0.005) 

Roads 

(Number of roads) 

0.015 ( -0.49, 0.56) 0.379 (  0.27, 0.98) 
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 803 
 804 
 805 

 806 
Figure A1.a. PM10 monitoring stations across Greater Mexico City (short) from 2012 (first row and left 807 
figure) to 2019 (second row and right figure). 808 

 
 

 

 809 
Figure A1.b. Ozone monitoring stations across Greater Mexico City (short) from 2012 (first row and 810 
left figure) to 2019 (second row and right figure). 811 
 812 

 813 

Industries 

(Number of machinery and 

equipment) 

0.015 ( -0.006, 0.032) 0.245 ( -0.013, 0.57) 
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Fig. A2a. Spatial distribution of PM10 concentrations from 2012 to 2019 in mg/m3, in 814 
Greater Mexico City (short). 815 
 816 

 
 

 817 

  

 818 

  

 819 
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 820 
Fig. A2b. Spatial distribution of Ozone concentrations from 2012 to 2019 in mg/m3, in 821 
Greater Mexico City (short). 822 
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 823 
 824 
 825 
 826 
 827 
 828 
 829 
 830 
Figure A3. Mexico, Greater Mexico City, and MCMA.  831 
 832 

Municipalities of Greater Mexico City: 1) Azcapotzalco, 2) Coyoacán, 3) Cuajimalpa de Morelos, 4) Gustavo 833 
A. Madero, 5) Iztacalco, 6) Iztapalapa, 7) La Magdalena Contreras, 8) Milpa Alta, 9) Acolmán, 10) Amecameca, 834 
11) Alvaro Obregón, 12) Tláhuac, 13) Tlalpan, 14) Xochimilco, 15) Benito Juárez, 16) Cuauhtémoc, 17) Miguel 835 
Hidalgo, 18) Venustiano Carranza, 19) Apaxco, 20) Atenco, 21) Atizapán de Zaragoza, 22) Atlautla, 23) 836 
Axapusco, 24) Ayapango, 25) Coacalco de Berriozábal, 26) Cocotitlán, 27) Coyotepec, 28) Cuautitlán, 29) 837 
Chalco, 30) Chiautla, 31) Chicoloapan, 32)Chiconcuac,33) Chimalhuacán,34) Ecatepec de Morelos, 35) 838 
Ecatzingo, 36) Huehuetoca, 37) Hueypoxtla, 38) Huixquilucan, 39) Isidro Fabela, 40) Ixtapaluca, 41) Jaltenco, 839 
42) Jilotzingo, 43) Juchitepec, 44) Melchor Ocampo, 45) Naucalpan de Juárez, 46) Nezahualcóyotl, 47) 840 
Nextlalpan, 48) Nicolas Romero, 49) Nopaltepec, 50) Otumba, 51) Ozumba, 52) Papalotla, 53) La Paz, 54) San 841 
Martín de las Pirámides, 55) Tecámac, 56) Temamatla, 57) Temascalapa, 58) Tenango del valle, 59) 842 
Teoloyucan, 60) Teotihuacan, 61) Tepetlaoxtoc, 62) Tepetlixpa, 63) Tepotzotlán,  64) Tequixquiac, 65) 843 
Texcoco, 66) Tezoyuca, 67) Tlalmanalco, 68) Tlalnepantla de Baz, 69) Tultepec, 70) Tultitlan, 71) Villa del 844 
Carbón, 72) Zumpango, 73) Cuautitlán Izcalli, 74) Valle de Chalco Solidaridad and 75) Tonanitla. Note: the 48 845 
municipalities (MCMA) of this study are Mexico City and the following municipalities numbers: 846 
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9,20,21,24,25,26,28,29,30,31,32,33,34,38,40,43,44,45,46,52,53,55,56,58,65,66,68,69,70,73,74,75. Source: 847 
own elaboration with INEGI data and Lome-Hurtado et al., 2021. 848 
 849 
 850 
 851 


