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a b s t r a c t 

This paper introduces a dynamic multi-period vehicle routing problem with touting as demand man- 
agement technique, where customers that have not yet placed an order can be actively encouraged to 
order a service sooner. Touting the right customers, such as those located nearby customers who already 
placed orders, allows for more efficient routes over time. However, it also increases the frequency of vis- 
its at such touted customers as they are serviced before they would normally require, which leads to 
smaller demand volumes per visit. To tackle this trade-off, we propose several strategies to decide which 
customers to tout and when, using the characteristics of the customers as well as the current plan at 
the time of touting. Specifically, using the demand and the location information, we approach the ones 
which are close to the current tour, relatively far from the depot and not likely to easily be covered in 
the near future. This information is then used as a part of different touting strategies, which are further 
embedded in a rolling-time horizon vehicle routing algorithm to address the multi-period nature of the 
problem. These different strategies are empirically compared in a simulation based on a real-world waste 
collection problem. We demonstrate that touting indeed allows to significantly reduce the travel distance 
in a dynamic vehicle routing problem. 

© 2023 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

In this paper, we consider a vehicle routing problem (VRP) with 
due dates and customer orders (e.g., for collections of goods) ar- 
riving dynamically over multiple periods. The addressed problem 

is motivated by a real-world problem faced by a waste collection 
company. Naturally it is more efficient to collect waste from cus- 
tomers located in the same region than from customers that are 
spread out. Therefore we investigate the option to actively influ- 
ence demand by approaching additional customers that can be eas- 
ily integrated into the current route and encouraging them to order 
sooner, a demand management technique known as touting . We as- 
sume that all customers are loyal and regular customers, whose 
demand distributions are known or can be estimated. Using these 
distributions, we predict the customers who are likely to place an 
order in the near future and tout these. Our problem is related to 
dynamic VRPs with stochastic customer arrivals, where the infor- 
mation of the demand distributions of the customers is available 
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and can be used for future planning. However, our approach is 
novel, as we examine the benefit of touting, i.e., interacting with 
customers and encouraging them to order earlier. The outcome of 
touting is determined by the customer, who may accept or reject 
the touting offer. In the former case, the customer is served on 
the next route, otherwise, there is no change with respect to the 
customer’s status. So touting will not increase overall demand, just 
shift the timing of the demand. Because of this, touting may seem 

counter-productive, as it is likely to increase the number of re- 
quired visits to a customer as customers are encouraged to order 
earlier, and thus smaller amounts. However, as we show in this pa- 
per, by specifically touting customers that fit well with the already 
acquired customer orders, touting can significantly reduce the dis- 
tances traveled to service all customers. To the best of our knowl- 
edge, this is the first paper considering touting strategies in vehicle 
routing. 

Note that the focus of this study is not on proposing a novel 
algorithm to solve dynamic VRPs, but on linking dynamic VRP 
solvers to the demand management technique of touting. We 
propose several heuristics to decide which customers should be 
touted, and when, in order to minimize overall distances traveled. 
The touting strategies are then combined with a vehicle routing al- 
gorithm operating on a rolling time horizon. We test the resulting 
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algorithms in a simulation based on a real-world waste-collection 
problem of an industry partner that motivated our work. 

We would like to stress that the idea of touting is not limited 
to waste collection; it can be beneficial in a wide variety of similar 
dynamic vehicle routing problems, involving collection, delivery, or 
service. For example, companies that offer preventive maintenance 
services may need to repeatedly serve customers by known dead- 
lines and could contact some customers to check whether they 
would accept an early service. In delivery problems with deadlines, 
we likewise may want to pro-actively contact certain customers 
whom we believe are likely to be interested in a delivery (of food, 
for instance) and whose locations fit well with the current planned 
routes. In the following, we stick to the waste collection applica- 
tion to explain our approach. 

The paper is organized as follows. We start with a review of 
related literature in Section 2 , followed by a description of the 
considered problem in Section 3 . Section 4 explains the proposed 
touting strategies as well as the methodology to solve the routing 
problem. The simulation model with empirical results of the dif- 
ferent strategies are presented in Section 5 . Finally, Section 6 sum- 
marizes the paper and suggests some avenues for future research. 

2. Literature review 

Vehicle routing is a very large and diverse research 
area ( Braekers, Ramaekers, & Van Nieuwenhuyse, 2016 ), and 
even the class of dynamic vehicle routing problems would be too 
large to be covered here. The reader may refer to Pillac, Gendreau, 
Guéret, & Medaglia (2013) , Ritzinger, Puchinger, & Hartl (2016) , 
Ulmer, Goodson, Mattfeld, & Thomas (2020) , or Soeffker, Ulmer, & 

Mattfeld (2022) for detailed reviews on dynamic VRP literature. 
In this section, we will focus on the papers most relevant to 

our work, primarily on the class of multi-period vehicle routing 
problems (MPVRPs). 

2.1. Nature of the demand - static or dynamic 

In static problems, all data is available upfront. Although in our 
problem the customers arrive dynamically over time, we plan on 
a rolling horizon, and each sub-problem could be regarded as a 
static problem. In this sense, our problem is related to those static 
problems involving due dates. Athanasopoulos & Minis (2013) pre- 
sented a general model for the MPVRP, where the tasks have time 
windows and allowed visit days. Each period has a time constraint 
and the objective is to minimize transportation cost of the entire 
horizon. Archetti, Jabali, & Speranza (2015) and Larrain, Coelho, 
Archetti, & Speranza (2019) considered customer release and due 
dates, and their objective is to minimize the distance traveled as 
well as the inventory holding cost at the depot until the goods are 
shipped to the customers. 

In the dynamic MPVRP, new orders arrive dynamically over 
time and the initial plan may need to be revised to take into 
account the new information. In this case, the problem at hand 
changes due to the changed set of customers, and therefore, the 
solution found at the beginning of a period may not be the op- 
timal solution of the new problem in the next period ( Ozbaygin 
& Savelsbergh, 2019 ). Angelelli, Grazia Speranza, & Savelsbergh 
(2007) studied a variant in which a set of orders are revealed at 
the beginning of each time period and they have to be served ei- 
ther in that period or in the next one by a single uncapacitated 
vehicle. The plans are modified at the beginning of each period 
depending on the new orders. Wen, Cordeau, Laporte, & Larsen 
(2010) optimized the routes such that the total customer waiting 
time and travel time are minimized, and daily workload of the ve- 
hicles is balanced over the planning horizon. Cordeau, DellÕAmico, 
Falavigna, & Iori (2015) addressed an auto-carrier transportation 

problem with heterogeneous fleet and introduced penalties for late 
deliveries. To address the dynamic nature of the problem, a rolling- 
horizon approach is used. 

2.2. Plan update 

While the above papers assume that the plan can only be 
changed once at the beginning of every period (as we do in our pa- 
per), some authors have considered the case where the plan may 
be changed as soon as a new order arrives, re-directing the ve- 
hicle to follow the updated plan. Ninikas, Athanasopoulos, Zeim- 
pekis, & Minis (2014) allowed diversion from the current plan for 
new orders requesting urgent service, while due dates of regular 
orders still need to be obeyed. Their objective is minimizing over- 
all transportation cost and maximizing the number of urgent cus- 
tomers covered over the horizon. Dayarian, Crainic, Gendreau, & 

Rei (2015) and Dayarian, Crainic, Gendreau, & Rei (2016) analyzed 
the case where the customers have stochastic demands. The ini- 
tial plan is constructed using the probabilistic information. Then 
during the day, if the realized demand is higher than expected, 
vehicles are diverted to the depot to unload. Angelelli, Bianchessi, 
Mansini, & Speranza (2009) studied different strategies to solve a 
2-period routing problem. At the beginning of each period, they 
route a fleet of uncapacitated vehicles using the known customers. 
Then, while the vehicles are traveling, new orders arrive and the 
routes are replanned. The new plan may postpone some customers 
originally scheduled today to the next day. The objective is to ser- 
vice all requests with minimum average cost. Ulmer, Soeffker, & 

Mattfeld (2018) studied the same problem by increasing the num- 
ber of periods in the planning horizon. However, their objective is 
to maximize the number of same-day services. 

2.3. Use of historical information 

In some studies, knowledge on future demands is used in route 
planning. Subramanyam, Mufalli, Pinto, & Gounaris (2017) modeled 
the problem as a robust multi-stage optimization problem that 
hedges against customer order uncertainty, whose support func- 
tions are known from historical orders. The objective of the prob- 
lem is minimizing the transportation cost over the planning hori- 
zon. Billing, Jaehn, & Wensing (2018) also used historical data 
to obtain probabilities that customers place an order at a pe- 
riod and used these to make decisions about whether existing or- 
ders should be served today or be postponed to a later period. 
Albareda-Sambola, Fernández, & Laporte (2014) modelled the dy- 
namic VRP as a prize-collecting VRP by assigning prize measures 
to known customers using the information on future orders. They 
aim at routing the known customers such that the plan is also con- 
venient for likely future requests. Ferrer & Alba (2019) considered 
a waste collection problem with prediction of the fill levels of the 
containers. The route planning is done based on these predictions. 

2.4. Steering the demand in planning 

In a MPVRP context, few papers consider demand manage- 
ment to decrease transportation costs. Estrada-Moreno, Savels- 
bergh, Juan, & Panadero (2019) analyzed effects of price discounts 
offered to customers to relax their preferred delivery day by one 
day, either to the day before or after the preferred day. The aim 

is to minimize total distribution cost and discounts paid over the 
planning horizon. Yildiz & Savelsbergh (2020) solved a simplified 
setting, where all the nodes are located on a line with the depot 
on one end. They considered discounts in exchange for delivery 
day flexibility, however assumed that they are accepted by the cus- 
tomers with a certain probability only. The customer set is static in 
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both studies. On the other hand, in attended home delivery liter- 
ature, several demand management techniques are studied. In re- 
cent years, online grocery sales have increased rapidly, especially 
after the pandemic many people prefer their groceries delivered to 
their home instead of shopping in-store. Therefore, attended home 
delivery problems have become important. In this context, demand 
management techniques are extensively studied to steer the cus- 
tomers in a desired direction. One approach uses price incentives 
in the shape of discounts for some delivery slots to have more ef- 
ficient plans ( Yang & Strauss, 2017; Yang, Strauss, Currie, & Eglese, 
2016 ). Another technique is to tailor the provided service or prod- 
ucts according to the customers having the service. For example, 
some delivery slots may not be opened to a specific geographical 
area, some areas may be offered more slots, or the length of the 
slot for an area may be adjusted according to some features of the 
customers or of the area ( Agatz, Campbell, Fleischmann, & Savels- 
bergh, 2011 ). Recently, Agatz, Fan, & Stam (2021) have analysed us- 
ing green labels that are defined as ‘environmentally friendly time 
slots’ to motivate selection of specific delivery times. 

2.5. Inventory routing problems 

Our problem is conceptually also similar to the Stochastic In- 
ventory Routing or Vendor Managed Inventory Routing Problems, 
where the decisions are centralized at the supplier and the cus- 
tomer demand is stochastic. Some papers in this area ( Coelho, 
Cordeau, & Laporte, 2014; Markov, Bierlaire, Cordeau, Maknoon, & 

Varone, 2018; 2020 ) assume that the supplier can precisely moni- 
tor the inventory level at customer sites, and needs to ensure that 
customers do not have stock-outs. The aim is to minimize both 
the transportation and inventory holding costs. Other papers as- 
sume that the supplier has no knowledge of the inventory levels 
and will only observe the inventory level when arriving at the cus- 
tomer ( Huang & Lin, 2010; Jaillet, Bard, Huang, & Dror, 2002 , and 
Ketzenberg & Metters, 2020 ). Hence, the plans are based on ex- 
pected values and recourse actions are defined if the plans do not 
meet the actual requirements of the customers. Our problem sits 
between the above two cases: the supplier cannot monitor the cus- 
tomers’ inventory levels but has information on the historical de- 
mand, and as soon as a customer requests a collection, the amount 
to be collected is revealed by the customer, i.e., the demand be- 
comes known. In addition, it is possible to call (tout) a customer, 
offer them a service, and, if the customer accepts the offer and 
places an order, again the amount to be collected becomes known. 

Table 1 provides an overview of similarities and differences of 
our study compared to the existing literature in multi-period ve- 
hicle routing. In summary, our study extends the current literature 
of multi-period vehicle routing problem by introducing the concept 
of touting, i.e., actively approaching a customer with the purpose 
to elicit orders earlier, and combining this demand management 
technique with routing decisions. 

3. Problem definition 

Our work is motivated by the real-world application of a waste 
collection company in the UK. This section first illustrates the pro- 
cedures of the company, then explains how we model them in our 
paper. 

3.1. Real-life challenge 

The company has a fleet of waste collection vehicles with dif- 
ferent capacities. It services a stable set of customers, from whom 

they collect the waste products. Customers accumulate waste over 
time, i.e., on one day a high amount of waste may be produced, 
whereas on another day the waste production may be low. The 

waste can be stored in tanks, and when the accumulated amount 
gets close to their storage capacity, they request a collection, spec- 
ifying the amount of waste to be collected. The waste collection 
company promises service within a certain number of days. While 
the waste is being collected, there is a service time spent at the 
customer site. If the driver knows the client’s premises, this re- 
duces the time needed to collect the waste. For this reason, the 
company has decided to assign each driver to a designated service 
area, which allows an independent planning of each driver’s route. 
That is, a multi-period single vehicle routing problem is addressed 
in each service area. 

The company plans the routes of the vehicles on a daily ba- 
sis. Throughout the day, the customer service department collects 
orders from the customers and at the end of the day, the routes 
of the collection vehicles for the following day are decided sub- 
ject to the capacity of the vehicles, daily and weekly working time 
limits for the drivers, as well as due dates of the customers. The 
routes are constructed based on the customers who have already 
requested collection. As the customers are to be serviced within a 
certain number of days, the problem spans several days. Planning 
is done on a rolling horizon, i.e., the route for the following day 
is executed as planned, while there might be changes in the other 
routes as further requests are received. The stakeholders involved 
in this process are the customers, the customer service department 
and the route planners of the company as well as the drivers of 
the waste collection vehicles. The objective of the company is to 
service its customers with the least transportation cost, i.e., with 
the minimum total distance driven by the collection vehicles. 

The company does not perform any forecasting on predicting 
the potential customers. This is done by the drivers based on their 
experiences. If they know that a customer has not requested a col- 
lection for some time and if they are servicing an area nearby that 
customer, then they ask the customer service department to com- 
municate with that customer and check whether they need a col- 
lection. This action is called “touting”. If the customer is happy 
with the collection, then they are added to the current plan and 
the driver collects their waste within the day. This way, the cus- 
tomers nearby those already scheduled for the current route can 
be serviced without a large detour. 

3.2. Touting for the vehicle routing problem 

Our paper focuses primarily on this touting aspect. Before 
finalizing the next day’s tour, the company can attempt to elicit 
additional orders via touting. In the model, the drivers’ experience 
on predicting the potential customers is replaced by a forecasting 
model. When a potential customer is approached and offered a col- 
lection on the next day, they will accept this offer with a proba- 
bility depending on the current fill level of their storage tank. If 
the touted customer accepts the offer, they will be serviced on the 
next day’s tour. Thus, customer requests are received during the 
day, while touting only takes place at the end of the day when 
there are no more requests. Figure 1 illustrates the sequence of de- 
cisions and the random events on a planning day, where the chart 
on the right shows the flow of events between 5pm and 6pm. 

At 8am the company starts receiving orders from the customers 
via phone calls or emails. At the same time, the drivers execute 
their planned routes, which have been finalized on the day be- 
fore, by visiting the customers in the planned order. At a cut-off
time (5pm), the company starts planning and touting for the next 
day. Using the known requests, i.e., the orders received until 5pm 

as well as the unserviced orders from previous days, a tentative 
routing plan is constructed. After that, a forecasting model is run 
to predict customers which are likely to request a service soon. 
If there are such customers, then they are added to the potential 
customers list. If this list contains some customers which could be 
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Table 1 

Multi-period vehicle routing literature overview. It highlights the nature of the customers (static or dynamic), the nature of the demand 
(deterministic, i.e., amount revealed at time of order, or stochastic, i.e., amount revealed when vehicle arrives at customer location), whether 
i) the method used in the paper anticipates the future demand and uses this information in the optimization, ii) the customers have due 
dates, and iii) the plans are re-optimized according to the revealed information while the vehicle is on the road and finally the demand 
management technique if the paper includes one. 

Papers 
Set of customers Demand Anticipation Due 

dates 
Re- 
opt. 

Demand 

static dynamic det. stoc. of demand manag. 

Athanasopoulos & Minis (2013) � � � 

Archetti et al. (2015) � � � 

Larrain et al. (2019) � � � 

Angelelli et al. (2007) � � � 

Wen et al. (2010) � � � 

Cordeau et al. (2015) � � � 

Ninikas et al. (2014) � � � � � 

Dayarian et al. (2015) � � � � 

Dayarian et al. (2016) � � � � 

Angelelli et al. (2009) � � � � 

Ulmer et al. (2018) � � � 

Subramanyam et al. (2017) � � � � 

Billing et al. (2018) � � � � 

Albareda-Sambola et al. (2014) � � � � 

Ferrer & Alba (2019) � � � 

Estrada-Moreno et al. (2019) � � � discounts 
Yildiz & Savelsbergh (2020) � � � discounts 
Coelho et al. (2014) � � � 

Markov et al. (2018) � � � 

Markov, Bierlaire, Cordeau, Maknoon, & Varone (2020) � � � 

Jaillet et al. (2002) � � � 

Huang & Lin (2010) � � � 

Ketzenberg & Metters (2020) � � � � 

Our paper � � � � touting 

added to the next day’s plan making it more efficient, i.e., by col- 
lecting a large amount of waste without a long detour, then the 
most relevant of those is identified, and this customer is contacted 
and asked whether they would accept a collection on the next day, 
in other words, they are ‘touted’. If the customer accepts having a 
collection on the next day, they are added to the tentative plan 
and removed from the potential customers list, otherwise they are 
also removed from this list to prevent further communication with 
the customer. After that, other suitable customers are touted, until 
there are no more such customers or no additional customer can 
be feasibly added to the existing plan. These events take place un- 
til 6pm, after which the route plans for the next day are finalized. 
Of course, the schedule used here is representative only, there may 
be different settings in different practices. 

There are two types of decisions: selecting the customers to 
tout, and routing the current customers. Figure 2 illustrates a se- 
ries of touting and routing decisions along with the changes in 
the system depending on these decisions and on the exogenous 
information. Assume that the vehicle capacity is 4, all customers 
have a unit demand, and at most one customer can be touted 
(this is for illustration purposes, there is no such restriction in the 
model). At the beginning ( Fig. 2 -1), i.e., at 5pm on day 1, there are 
5 customers with known orders (white circles) and 3 potential cus- 
tomers, i.e., predicted to have a sufficient amount of waste through 
a forecasting model (grey circles). Using the known orders, an ini- 
tial plan is constructed as illustrated in Fig. 2 -1, i.e., customers 1, 2, 
3, and 4 are planned to be serviced the next day, and customer 5 is 
left for the following day. Note that because of the vehicle’s capac- 
ity restriction it cannot service the fifth customer. However, as long 
as their due dates are respected, the planner may want to post- 
pone some customers to a later day if they require long detours 
to be serviced and it is expected that the vehicle may visit these 
areas in the future. The first decision is to tout customer 7, which 
changes the state of the system as shown in Fig. 2 -2. If customer 
7 accepts the touting offer, then the system evolves to a state as 
shown in Fig. 2 -3.a, which is then followed by a routing decision 

resulting in the tour for the following day as in Fig. 2 -4.a. Note 
that customer 4 has been removed from the tour to be serviced on 
another day so that it is feasible to include customer 7. If customer 
7 does not accept the touting offer, then the system evolves to a 
state as shown in Fig. 2 -3.b. Another customer may be considered 
for touting, e.g. customer 6, which changes the state of the sys- 
tem as shown in Fig. 2 -4.b. Their acceptance of the touting offer 
evolves the system into a state as shown in Fig. 2 -5. After that, the 
routing decision is made as shown in Fig. 2 -6, in which customer 
1 is replaced by customer 6. 

This is essentially a multi-period dynamic vehicle routing prob- 
lem with capacity constraints, time constraints and due dates. The 
planning is done for a single vehicle, which belongs to the driver 
operating in the area under consideration. We assume that all cus- 
tomers are regular customers known to the company, as the num- 
ber of new customers is negligible. Customers request a collection 
when the amount of their waste products reaches a threshold, and 
the company knows this amount only when the customer specifies 
it while placing the order. While it has been considered to install 
smart sensors at the clients’ premises for monitoring their inven- 
tory levels, in practice this has been deemed too expensive and is 
therefore not done. Instead, historical data may be used to forecast 
a customer’s inventory level. 

Let us emphasize again that touting does not generate addi- 
tional demand, it just nudges a customer to order earlier, and as 
a consequence, the amount to be collected is less than that if 
the company had just waited for the customer to place the or- 
der. While this implies more frequent visits to a customer picking 
up smaller amounts, and thus higher cost, it also allows to influ- 
ence the timing of the order, thus opening the opportunity to save 
travel distance by visiting neighboring customers on the same day, 
or moving demand from high-demand periods to low-demand pe- 
riods. 

Let us return to the simple example from above, assuming the 
demand of each order is one, the capacity of the vehicle is four, 
and each customer must be served within two days. In Fig. 3 five 
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Fig. 1. Sequence of decisions and random events on a planning day. 

Fig. 2. Example of a series of touting and routing decisions. 

customers (unfilled circles) are known on day 1 and the others 
will place their order on day 2. If touting is not used, the plan- 
ner would route the corresponding known customers on each day, 
and obtain a result as depicted in Fig. 3 -a. With touting, the plan- 
ner may predict some customers who are likely to order soon, 
and tout for example customer 7, as their location is close to cus- 
tomers that would be visited tomorrow. If the customer accepts, 
they can then be serviced on the next day, and the resulting tours 
would look like in Fig. 3 -b, with a significantly shorter overall 
distance. 

In order to help clarify the structure of the decision making 
problem, we provide a dynamic programming formulation of the 
problem (even though one cannot directly solve it in this way). The 
details of the formulation can be found in Appendix D . 

4. Rolling horizon route planning and demand management 

Our paper focuses on integration of demand management with 
route planning via touting. The actual route planning algorithm 

used is secondary, but necessary to evaluate our strategies empir- 
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Fig. 3. Route plans with and without touting customers. 

ically. Planning at the touting phase needs to have an anticipatory 
touting strategy for including suitable customers to the plan as 
well as a fast and high quality routing procedure so as to ensure 
that we arrive at efficient overall routes. Therefore, the proposed 
methodology is essentially a combination of routing and touting 
algorithms, which are applied to find the solution on a planning 
day. For the former, we use Large Neighborhood Search (LNS) to 
construct the routes the vehicle will be performing. It uses the in- 
formation of the customers with existing collection requests and 
proposes a route plan to serve these customers. For the latter, we 
use a touting strategy, which will be elaborated in Section 4.2 . It 
uses the information of all customers in the portfolio of the com- 
pany, e.g., their history of collections to i) determine potential cus- 
tomers to tout, ii) and among them to select the most relevant one 
to approach. Within this strategy, we also utilize the routing algo- 
rithm to calculate how the solution would be revised in case the 
touted customer accepts the offer and is included in the solution. 
The combination of these algorithms continues to be used until 
there are no customers that can feasibly be added to the solution. 
This procedure is repeated on every planning day with the updated 
information. Thus, in this section we will describe our routing al- 
gorithm and the touting strategies. 

4.1. Route planning 

Given the dynamic nature of the problem, planning is done on 
a rolling horizon. That is, at the end of each day, we solve a multi- 
period VRP with all the order data available. On the next day, we 
execute the plan for this day, remove all serviced customers from 

the set of orders, and add any new orders that arrived during this 
day. Then we solve the next multi-period VRP with this new order 
data and the cycle repeats. 

To solve the VRP of each day, we chose to use LNS. This was 
motivated by the fact that VRP is NP-hard and thus an exact 
method is computationally expensive, but also because for a dy- 
namic problem, solving each sub-problem of the rolling horizon 
procedure exactly does not guarantee overall optimality anyway, 
as we will later demonstrate in Section 5.2 . LNS starts by con- 
structing an initial solution via cheapest insertion. The orders are 
sorted according to their due dates and the ones having the earli- 
est due dates are considered first. Out of those, the customer that 
can be inserted with the least additional driving distance is in- 
serted, and the procedure is repeated until all orders have been 
scheduled. This procedure ensures all capacity and time constraints 
are obeyed and creates new routes as needed. An overview of the 
algorithm is given in Algorithm 1 , where d i j stands for the driving 
distance between nodes i and j. 

The improvement step follows the removal and repair heuris- 
tics introduced in Ropke & Pisinger (2006) . In each improvement 
step, some customers are removed from the current solution either 
randomly, or based on worst marginal distance, proximity time, or 

Algorithm 1 Initial Solution Construction. 

Input: List of Unscheduled Customers 

1: while Unscheduled Customers List not empty do 
2: Put the customers having the earliest due dates into the Pri- 

ority List

3: while Priority List not empty do 
4: for all customers in Priority List do 
5: for all possible insertion positions in the routes cover- 

ing all time periods do 
6: if insertion of customer i between nodes j and k is 

feasible then 

7: Calculate the insertion cost as: 
8: (−d jk + d ji + d ik ) 

9: end if 

10: end for 

11: end for 

12: Determine the customer with the least insertion cost, i.e., 
customer i 

13: Perform the cheapest insertion for customer i 
14: Delete customer i from Priority List and Unscheduled Cus- 

tomers List 

15: end while 

16: end while 

demand. They are then re-inserted into the partial solution using 
greedy and regret insertion heuristics. The details of the algorithm 

are outlined in Algorithm 2 in Appendix B . 

4.2. Touting algorithm 

Let us assume that an initial plan based on the orders received 
so far is given, i.e., via the routing algorithm discussed in the previ- 
ous subsection, and that we have a given route to execute for the 
next day. We then attempt to make it more efficient by exploit- 
ing information (from a forecasting model) about a set of potential 
customers whom we could contact to elicit their business. 

More specifically, our aim is to identify customers who are 
likely to request service in the near future and to tout the ones 
that would make the overall plan better. We assume that these 
potential customers who may require a service soon are available 
from a forecasting model. To determine a customer to tout among 
these potential customers, we may consider different criteria, such 
as required detour from the next day’s route, its distance from the 
depot, or whether it is possible to cover that potential customer in 
the near future. Figure 4 illustrates these criteria using a solution 
with four scheduled customers (circles) and a depot (rectangle) as 
well as several potential customers, shown with grey circles. The 
values next to the arcs are the lengths of these arcs, which will 
be used to quantify the measures. In Fig. 4 a, touting customer 5 
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Fig. 4. Factors in selecting the most relevant customer to tout. 

seems more advantageous than touting customer 6 in terms of the 
required detour to insert the customer. Figure 4 b shows an exam- 
ple where it may be more beneficial to tout a customer far from 

the depot if the vehicle is traveling in their neighborhood, than a 
customer close to the depot, as the latter may be easily included 
in another tour. Finally, other potential customers in the neighbor- 
hood of a potential customer may also be taken into account to de- 
cide which customer to tout. If there are many potential customers 
in the neighboring area, then another vehicle may be sent to cover 
that area on another day. In Fig. 4 c, Customer 6 has many neigh- 
bors, whereas Customer 5 has only one, which makes Customer 5 
more relevant to tout. 

4.2.1. Relevance measure 

We now define a relevance measure for each potential cus- 
tomer that takes into account all three criteria mentioned above. 
Let N be the set of potential customers that may be added to 
the route, whose calculation is elaborated in Section 4.2.2 . We in- 
dex the depot as 0. For a potential customer i ∈ N, the detour 
amount is calculated by determining the cheapest insertion cost 
c i , i.e., for each pair of consecutive nodes ( j, k ) in the next day’s 
route with distance d jk , the insertion cost is calculated as c i = 

argmin (d ji + d ik − d jk ) . For example, for customer 5 in Fig. 4 c, the 
insertion cost is c 5 = 0 . 5 and it is c 6 = 1 . 5 for customer 6. Let I i 
be the cost of exclusively covering customer i by a single vehi- 
cle, i.e., I i = d 0 i + d i 0 . For customers 5 and 6 in Fig. 4 c, these costs 
will be I 5 = 2 and I 6 = 8 , respectively. Finally, we define a neigh- 
borhood demand measure p i for customer i based on their neigh- 
bors at a distance of less than ρ . More formally, define N ρ (i ) = 

{ j ∈ N| d i j ≤ ρ} . Let Q i = 
∑ 

j∈ N ρ (i ) ∪{ i } q j be the total demand of i and 

their neighbors, where q i stands for the demand of customer i . We 
then define p i = Q i /L , i ∈ N, with L the load capacity of the vehi- 
cle, as a measure to assess whether it is worthwhile to drive to 
an area where customer i is located. To quantify this measure us- 
ing customers 5 and 6 in Fig. 4 c, let us assume that the potential 
customers have unit demand and the capacity of the vehicle is 5. 
Then the demand measures for customers 5 and 6 are calculated as 
p 5 = 0 . 4 and p 6 = 1 , respectively. If p i is high, it means that there 
is high demand in the area and the vehicle would go there any- 
way to service these customers. Then customer i can be covered 
along with other customers nearby by another vehicle in the near 
future, hence it does not necessarily need to be touted right away. 
However, if p i is low, meaning that customer i is alone or has few 

demand around, then it is beneficial to include them in the next 
day’s route. 

The relevance measure of a potential customer i is then calcu- 

lated as r i = α
c i 
M 

− β
I i 
I 

+ γ
p i 
P 

where α, β and γ are the weights 

assigned to each criterion, and M, I, and P are used to normal- 
ize the different components. They represent the maximum detour 

amount to include a customer, the maximum distance to cover a 
customer with an individual route, and the maximum of the neigh- 
borhood demand measures over all eligible customers for tout- 
ing, respectively. The total distance to cover a customer can be 
calculated at the beginning of the planning horizon and it does 
not change. However, the other two values need to be updated in 
each relevance measure calculation whenever a new maximum is 
achieved. To set the initial values for the first calculation, we run 
the simulation once and feed the final maximum values attained at 
the end of the simulation. The lower the relevance value, the more 
beneficial to tout that customer since we want to include those 
customers with a) small detour amount from the next day’s tour, 
b) long distance from the depot, and c) little demand nearby. 

4.2.2. Customers considered for touting 

Touting customers when they have only accumulated a very 
small amount of waste will not only annoy the customer, but 
also lead to very frequent collections of tiny amounts. On the 
other hand, only touting customers which are predicted to or- 
der soon anyway may severely restrict the choice of customers 
to tout. In the touting algorithm, we restrict touting to customers 
whose predicted fill level is at least 50% of their tank capacity. 
Section 5.4.2 will examine the algorithm’s sensitivity to this choice. 

4.2.3. Waiting vs. touting 

Obviously touting only makes sense if the route planned for the 
next day still has sufficient capacity to incorporate additional cus- 
tomers. On the other hand, if there is little demand and there are 
no customers who have to be serviced on the next day because 
of their due date, then it may be more beneficial to simply wait 
for new orders to arrive and not send the vehicle out at all. Con- 
sequently, we consider touting only when the utilization of next 
day’s vehicle is under a threshold, �% of vehicle capacity, the ve- 
hicle must be dispatched because at least one customer must be 
served the next day, and serving all these urgent customers still 
allows for some slack in time to potentially serve others. 

While we apply this waiting rule in combination with all tout- 
ing heuristics, waiting is of course also possible if touting is not 
used. This strategy is called Wait-if-Possible , where if the vehicle 
utilization of the next day’s route is under �% of its capacity and 
there are no customers due next day. We check whether it is pos- 
sible to shift the customers in the initial plan to the following day 
without deteriorating the objective function. If this is possible, the 
vehicle is not dispatched, hoping that next day we receive orders 
from conveniently located customers such that we can come up 
with a more efficient plan. The scheduled jobs remain in the set of 
open orders. De Bruecker, Beliën, De Boeck, De Jaeger, & Demeule- 
meester (2018) also stated that instead of having multiple half days 
work, it may be more advantageous to have a complete day off. For 
example, the drivers might use these off days for training purposes. 
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4.2.4. Touting heuristics 

Having defined the background information, we now propose 
the following heuristics to tout customers: 

• Tout using Distance per Litre : This heuristic touts customers in 
order of the benefit obtained on the total distance per litre of 
waste collected after their inclusion, given that the customer is 
inserted at the position requiring the smallest additional detour. 

• Tout using Relevance Measures : This approach first touts the cus- 
tomer which has the lowest relevance measure. 

It is possible to insert more than one additional customer via 
touting. We thus also test whether it is beneficial to re-optimize 
the VRP after the inclusion of every customer, and before the next 
touting is attempted. More specifically, we distinguish between 

• Tout without Re-Optimization : Here, we only add customers to 
the next day’s route without re-optimizing all tours. 

• Tout & Re-Optimize : This strategy allows re-optimizing the rout- 
ing decisions after the addition of the touted customer in the 
next day’s route. 

In all cases, touting continues until either there are no further 
potential customers or it is not feasible to add another customer 
to the next day’s route. Furthermore, a customer is only touted as 
long as their insertion does not violate time and capacity feasibility 
of the solution and if and only if the solution with the additional 
customer is better than the current solution, i.e., it has a smaller 
value for total distance per litre of collected waste. Note that, the 
routing problem solved on each day has the objective of mini- 
mization of total distance traveled by the vehicles as it considers 
a static set of customers at the time of planning. However, if ad- 
ditional customers are included in the tours through touting, then 
the total demand changes compared to the case where there are no 
additional customers. Therefore, comparing the solutions to these 
different sets of customers through their total distances is not fair. 
Thus, while comparing different strategies, we consider total dis- 
tance driven per litre of waste collected. Nevertheless, since the 
amount of waste collected is constant except for end-of-problem 

effects, these two objectives are equal in the long-run. 

5. Experimental study 

In this section, we first introduce the instances we use in the 
experiments. Then, we show that for a dynamic multi-period VRP, 
solving each period’s subproblem with an exact method is no bet- 
ter than the LNS heuristic we employ in this paper. Finally, we per- 
form simulation studies to investigate the proposed touting strate- 
gies. The heuristics as well as the simulations were implemented 
in Java and all computations were performed on a PC equipped 
with an Intel Core i7 2.60 GHz processor and 32 GB of RAM. 

In LNS, the maximum number of iterations is set to 40 0 0, and 
the removal rules select half of the customers to be removed from 

the current solution. Regarding the percentage of customers re- 
moved from the solution, in several papers studying LNS, the per- 
centage of customers to be removed from the solution is ran- 
domly selected from the interval [10%–40%]. However, our initial 
experiments showed that 50% provides better results, which has 
been observed also in the literature. For example, Liu, Tao, & Xie 
(2019) conducted experiments with this value but decided to use 
a lower ratio because of the longer computational times of the for- 
mer. As we are not constrained with the time because of the small 
number of customers to be routed on a day, we decided to con- 
tinue with 50% for more promising results. 

5.1. Problem instances 

In the experiments, we use real world data from a waste collec- 
tion company operating in the UK. The company has several depot 

Fig. 5. Locations of the customers and the depot for two drivers. 

locations across the country and each depot has dedicated drivers 
who cover different geographical areas. Customers’ waste is accu- 
mulated in tanks at a random rate which depends on the size of 
their business. When the accumulated waste is close to the max- 
imal tank capacity, the customer requests a collection. They also 
state the lead time they require, typically seven working days be- 
ginning from the day of request. 

As only the data from one depot and its two drivers was made 
available to us, in the experiments, we use this depot of the com- 
pany and the historical data for these drivers who operate for that 
depot. The dataset covers three months of waste collections of 
these two drivers. Each collection order includes the customer’s 
name, postcode, date when the waste collection order has been 
placed, and the amount of waste requested to be collected. Cus- 
tomer locations are shown in Fig. 5 where the depot is represented 
by a red house. Total numbers of collections in the instances are 
273 and 260, whereas the numbers of unique customers in the net- 
work are 142 and 125 for drivers 1 and 2, respectively. The dataset, 
which includes these historical orders as well as the problem pa- 
rameters, such as vehicle capacity and time limits is available at 
Mendeley Data ( Branke, Deineko, & Strauss, 2023 ). 

The service time at a customer location is substantial and can- 
not be ignored. It consists of a constant setup time and a vari- 
able collection time. Setup time includes preparing and disman- 
tling the collection tools before and after the collection, respec- 
tively, whereas the collection time is the time spent on actually re- 
moving the waste from the tank and is proportional to the amount 
of waste collected. Since the company does not have records of 
the times the drivers spend on customer sites, we estimate these 
service times using linear regression based on data from differ- 
ent drivers’ operations. We collected 430 data points and using 
these values, we found the service time can be approximated by 
s = 12 . 06 + 0 . 01565 w , where w is the amount of waste collected in 
litres and s is the service time in minutes. 

We use this historical data of the company directly in the ex- 
periments presented in Section 5.2 , whereas in Section 5.3 , we 
use simulated data, which is generated using the properties of this 
data. 

5.2. Comparing exact and heuristic VRP solvers 

Since the requests arrive continuously over time and the prob- 
lem is solved on a rolling time horizon, an optimal plan for a par- 
ticular planning horizon may become sub-optimal after arrival of 
new orders, i.e., solving each period’s VRP to optimality does not 
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Table 2 

Comparison of results of solution approaches using exact and heuristic algorithms. 

Driver 1 Driver 2 

Subproblems are solved exactly heuristically exactly heuristically 

Total distance (km) 13,327 12,943 9334 9274 
Average lead time (days) 2.52 2.52 3.14 3.16 
Average capacity utilization 62.24% 62.78% 74.28% 74.37% 
Number of routes 55.0 54.5 56 55.8 
Average number of customers served per route 4.96 5.01 4.66 4.65 
Computational time (sec) 13,205 28.92 51,058 51.64 

guarantee that the overall solution is optimal. This is illustrated 
through a toy example in Appendix C . For this reason, and because 
of the computational time required by exact solvers, we use the 
LNS described in Section 4 in our experiments. However, in order 
to judge the quality of this heuristic, we compare it with an ex- 
act solver. Note that each method is applied to solve the problem 

for a given single stage on a rolling horizon, rather than solving 
the whole dynamic problem for the entire planning horizon. The 
mathematical model can be found in Appendix A , and has been 
solved using CPLEX. 

Table 2 presents the results of both approaches tested on two 
real-world order datasets. As the heuristic has a randomized com- 
ponent, results are averaged over 30 runs, while the mathematical 
model is deterministic and solved only once. Capacity utilization is 
calculated by dividing the amount of waste collected by the vehicle 
capacity. Lead time shows the average number of days between the 
day a customer requests a collection and the day it is served. The 
computational time is the total time to solve the problems over 
a 3-month horizon. Interestingly for these problem instances, the 
approach using the LNS heuristic to solve the every-day routing 
problem is able to find solutions with even smaller total distance 
than if the exact method is used to solve each day’s VRP. While this 
may seem surprising, this is due to the loss of overall optimality of 
the exact method when applied on a rolling horizon. In fact, opti- 
mal solutions are often more brittle to changes than heuristically 
generated ones. These findings have been previously pointed out 
also in other studies ( Brinkmann, Ulmer, & Mattfeld, 2020; Powell, 
Towns, & Marar, 20 0 0 ). We take these results as confirmation that 
the chosen LNS heuristic is fit for purpose. 

5.3. A simulator for demand management 

In the previous subsection we used the real-world order data. 
However, touting changes the time of ordering due to some touted 
customers ordering sooner than expected, and thus, in order to 
test and compare different touting strategies, we needed to cre- 
ate a simulator based on the real-world data that would allow the 
touting algorithm to interact with customers. 

Therefore, we first create simulated data based on the real in- 
stances introduced in Section 5.1 . To achieve this, we keep the cus- 
tomer locations the same, as visualized in Fig. 5 . However, rather 
than using a historical set of orders as in the previous subsec- 
tion, we assume that customers accumulate waste over time, with 
the amount accumulated each day following a normal distribution 
with mean μ and variance σ 2 . The parameters of the waste ac- 
cumulation distributions are derived from real data on the order 
amounts and the times between consecutive orders using maxi- 
mum likelihood estimation, and are assumed fixed throughout the 
simulation. The storage capacity of each customer is set to the 
maximum amount collected from the corresponding customer. For 
each customer, the initial amount of waste at the start of the sim- 
ulation is chosen uniformly at random between 0% and 95% of its 
capacity. Then, on each planning day, a random value, which rep- 
resents the waste generated by that customer on that day, is gen- 

Table 3 

Distance per litre values for different relevance measure parameter set- 
tings. 

Parameter Values α, β, γ = 1 / 3 α = 1 β = 1 γ = 1 

Driver 1 0.02046 0.02061 0.02085 0.02090 
Driver 2 0.01362 0.01374 0.01369 0.01387 

erated according to the customer’s demand distribution and its ac- 
cumulated waste is increased accordingly. 

The customers request service when their accumulated waste 
reaches 90% of their storage capacity. When touted before they 
would usually order, they will agree to a collection with probability 
p accept = 

w 
0 . 9 W where w is the amount of waste accumulated and W 

is the customer’s storage capacity. In other words, their probabil- 
ity of accepting a collection increases linearly with the amount of 
waste accumulated. The neighborhood threshold used in the rele- 
vance measure calculation, ρ , is set to 25 km. The threshold for the 
utilization of next day’s vehicle, �, is set to 90%. 

The dataset including the distribution parameters of each cus- 
tomer’s waste accumulation, tank storage capacities as well as the 
distance and travel time matrices is available at Mendeley data 
( Branke, Deineko, & Strauss, 2023 ). The simulation horizon has 
been set to 240 days, corresponding to one business year. 

5.4. Analysis of demand management strategies 

Here, we summarize the results for the touting strategies pre- 
sented in Section 4.2.4 . We will start with an analysis of the 
weights in the calculation of our relevance measure. We usually 
assume that only customers with a predicted amount of accumu- 
lated waste that is greater than half of their storage capacity are 
considered for touting, although we will vary this threshold in 
Section 5.4.2 . Finally, we demonstrate the advantage of touting by 
comparing it with approaches that don’t use touting. The key ob- 
jective to minimize is the distance per litre collected, as the to- 
tal volume collected depends on the touting strategy and thus dis- 
tance alone is not a suitable objective. 

5.4.1. Relevance measure parameters 

The relevance measure proposed in Section 4.2.1 is a linear 
combination of three criteria. To better understand the importance 
of the different criteria, we run an experiment using the Tout using 
Relevance Measures & Re-Optimize approach where the relevance is 
calculated using only one of the criteria, or equal weighting of the 
different criteria. In Table 3 , we report the average of the distance 
traveled per litre of waste collected over the planning horizon for 
both drivers. The results show that using an equal weighting in the 
calculation leads to a lower average distance per litre of waste col- 
lected for both drivers, thus gives better results. One-sided paired 
t-tests show that the equal weighting of the three criteria is sig- 
nificantly better at 0.05 level than any of the individual criteria for 
all cases and for both drivers. Therefore, we use equal weighting in 
the following experiments. 
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a.

b.

Fig. 6. Statistics for different accumulation levels. 

5.4.2. Accumulation threshold 

We use a minimum accumulation threshold to determine which 
customers may be considered for touting. The default setting in 
this paper is 50%. We increase it to 75% and decrease it to 25%, 
then we compare the performances of all values for Tout using Rel- 
evance Measures & Re-Optimize strategy. 

In Fig. 6 , we report some statistics emerging from the experi- 
ments with these accumulation levels. According to these results, 
while the accumulation threshold decreases, we observe an in- 
creasing trend in the number of touted customers because the set 
of potential customers that are considered in touting gets larger. 
Therefore, there are more customers to tout and it is easier to find 
more appropriate customers from a larger set. In parallel, the av- 
erage number of days between two visits decreases since the cus- 
tomers are visited more frequently due to more toutings. This is 
also reflected in the % times the customers order by themselves or 
are touted, with the first percentage increasing while the threshold 
is increasing. As a result, when the accumulation threshold is set 
to 25%, visiting customers more frequently slightly decreases the 
efficiency with a higher total distance traveled per litre of waste 
collected compared to 50% setting. On the other hand, in the 75% 
setting, since the set of potential customers is smaller, fewer cus- 
tomers can be approached. This decreases the advantage of tout- 
ing by not being able to reach the appropriate customers, which 
results in higher distance traveled per collected amount. We again 
perform one-sided paired t -tests in order to validate the results. 
The test statistics show that the differences between 25% and 50% 
as well as between 50% and 75% are significant. Therefore, we con- 

clude that 50% is an appropriate threshold for the accumulation 
level to determine the potential customers to tout. 

5.4.3. Benefit of touting strategies 

Based on the above analysis, we now test different touting 
strategies for both drivers using the accumulation threshold of 50% 
and equal weighting for the relevance parameters ( α = β = γ = 

1 / 3 ). Table 4 summarizes the average results of 100 simulation 
runs. The results in the No-Touting column are obtained without 
applying any strategies, i.e., they belong to the solutions of the 
rolling horizon route planning heuristic only. Column 3 summa- 
rizes the results obtained by the Wait-if-Possible strategy without 
touting. The results of Tout using Distance per Litre , abbreviated 
by dist./lt. , and Tout using Relevance Measures , abbreviated by rel- 
evance , are grouped according to whether they are applied along 
with re-optimization or not. Tout without Re-Optimization strategies 
are given in the fourth and fifth columns, whereas the last two 
columns summarize the results of Tout & Re-Optimize strategies. 

We report the total distance traveled throughout the planning 
horizon, total number of vehicles dispatched, which is the num- 
ber of routes generated, average capacity utilization of the vehicle, 
average lead time (in days) for the customers served, i.e., the num- 
ber of days between the day a customer requests a collection and 
the day they have been serviced, the number of touted customers, 
the number of customer visits during the planning horizon, the av- 
erage of the distance traveled per litre of waste collected over the 
planning horizon, and the computational times in seconds required 
to simulate the entire year. We then compare the performances 
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Table 4 

Results of different strategies. 

Strategies Wait- No Re-Optimization Re-Optimization 

No-Touting if-Possible Dist./Lt. Relevance Dist./Lt. Relevance 

Driver 1 Total distance 50,289 35,500 34,167 34,181 35,559 33,931 
Number of routes 233 159 149 150 150 149 
Capacity utilization 59% 86% 93% 92% 92% 93% 
Average lead time 2.41 4.10 3.81 3.75 3.80 3.76 
# Touted customers - - 125 149 112 147 
# Customer visits 815 815 854 863 850 861 
Distance / litre collected 0.03050 0.02153 0.02060 0.02060 0.02146 0.02046 

Imp. wrt. 
Wait-if-Possible -41.7% - 4.3% 4.3% 0.3% 5.0% 
No-Touting - 29.4% 32.5% 32.5% 29.7% 32.9% 

Computational time 106.7 107.3 123.5 132.3 214.7 230.4 

Driver 2 Total distance 37,712 33,387 32,228 32,030 33,150 31,926 
Number of routes 240 217 208 209 208 208 
Capacity utilization 81% 90% 94% 94% 94% 94% 
Average lead time 3.59 4.73 4.22 4.17 4.22 4.16 
# Touted customers - - 165 193 168 202 
# Customer visits 879 879 935 945 936 950 
Distance / litre collected 0.01618 0.01432 0.01375 0.01367 0.01414 0.01362 

Imp. wrt. 
Wait-if-Possible -13.0% - 4.0% 4.5% 1.3% 4.9% 
No-Touting - 11.5% 15.0% 15.5% 12.6% 15.8% 

Computational time 104.2 123.6 134.7 160.1 310.4 322.4 

of different touting strategies with those of No-Touting and Wait- 

if-Possible strategies and report the improvements with respect to 
these strategies. 

The results reveal that the default rolling horizon planning that 
solves a VRP each day and sends out a vehicle if there is an open 
customer order is a rather inefficient strategy. The simple Wait-if- 

Possible strategy that delays sending out the truck until there is 
either sufficient demand or it has to be sent out because of an im- 
minent due date is dramatically more efficient (29.4% for Driver 1, 
11.5% for Driver 2). This makes sense because occasional waiting 
means the pool of waiting orders is larger, allowing to construct 
more efficient tours. On top of this, touting is able to further im- 
prove efficiency by around 4.5%. The differences between the tout- 
ing strategies are relatively small, except a generally poor per- 
formance of the distance per litre priority rule together with re- 
optimization. Without re-optimization, the distance per litre and 
relevance heuristics perform comparable for Driver 1, while the rel- 
evance heuristic is substantially better for Driver 2. We thus con- 
clude that overall, the relevance measure with re-optimization is 
the most sensible choice. 

Further observations complement the analysis. The number of 
tours is the greatest for No-Touting , since the truck is always sent 
out if there is an open customer order. The policy Wait-if-Possible 

follows No-Touting and the touting strategies have very close num- 
bers for both drivers. As a result, the utilization of the vehicles 
is higher when touting is performed. One may argue that tout- 
ing will not only be more efficient and cost effective, but also 
has advantages for the drivers, as the number of days a driver 
goes out to visit customers is smaller. This may create an oppor- 
tunity for training for the drivers, or simply to take some days 
off. 

Average lead time is the shortest in No-Touting since all cus- 
tomers are serviced as soon as possible. On the other hand, Wait- 

if-Possible has the longest average lead time, as the customers may 
be kept unserviced until their due dates if there are few orders 
to fill the vehicle. Touting strategies lead to smaller average lead 
times than those in Wait-if-Possible case, as the touted customers 
are served one day after they are approached, which provides the 
smallest possible lead time. 

When the routes are re-optimized after the addition of the 
touted customers, the existing customers may be redistributed to 
other routes such that the total distance is lower compared to the 

initial solution. Hence, a better solution is obtained for this set 
of customers. However, as new customers arrive on subsequent 
days, the previously shifted customers may prevent obtaining a 
good solution. It may be even harder to tout more customers. 
This is observed when the customers to tout are selected using 
the distance per litre criterion, which is a myopic approach. How- 
ever, when the relevance measure is used as criterion, then re- 
optimisation is beneficial in the long-term and further increases 
the efficiency. Note that this benefit is achieved at the expense 
of increased computational times (74% and 101% higher compared 
to the no re-optimization strategy for Driver 1 and 2). It is also 
observed that the number of customer visits during the planning 
horizon is higher when touting is used, but this is outweighed by 
the more efficient routes. 

Another perspective from the customers’ standpoint is that they 
are served slightly more often with touting (see Fig. 6 ). For the 
instance for Driver 1, the average number of days between two 
consecutive collections is 71 and 74 when touting is used and 
not used, respectively. These values are 69 and 73 for the in- 
stance for Driver 2. These differences are small and are not ex- 
pected to make a noticeable difference in the experience of the 
customers. On the other hand, for the instances for Driver 1 and 
Driver 2, when touting is performed, 14% and 18% of the time, 
the customers are served even before they need to place an or- 
der via touting, whereas when touting is not performed, they need 
to place the orders by themselves all the time. According to our 
partner company, some customers do not always pay attention to 
how much waste has been collected in their containers and some- 
times this leads to overflowing. This is not only environmentally 
costly, but also requires that an urgent collection must be arranged 
for this customer. Although we have not included these kinds of 
uncertainties in our simulation, customers are probably happy to 
be approached and have their waste collected before an overflow 

happens. 
We perform additional experiments using the Tout using Rele- 

vance Measures & Re-Optimize strategy by removing the probability 
that a touted customer accepts the offer, i.e., they always accept 
being served on the next day. For both drivers, as expected, the 
numbers of touted customers and overall customer visits increase 
and the average lead time as well as the number of days between 
two consecutive visits decreases. However, vehicle utilization and 
number of routes remain unchanged. For the distance traveled per 
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Fig. 7. Route plans before and after touting potential customers. 

Table 5 

Constructive heuristic results of different strategies. 

Strategies Wait- No Re-Optimization Re-Optimization 

No-Touting if-Possible Dist./Lt. Relevance Dist./Lt. Relevance 

Driver 1 Total distance 53,342 40,233 39,931 39,873 39,432 39,024 
Number of routes 234 148 146 146 146 146 
Capacity utilization 59% 93% 94% 94% 94% 94% 
Average lead time 2.16 4.46 4.37 4.35 4.30 4.25 
# Touted customers - - 31 32 46 53 
# Customer visits 815 815 828 829 831 836 
Distance / litre collected 0.03235 0.02440 0.02411 0.02410 0.02384 0.02357 

Imp. wrt. 
Wait-if-Possible -32.6% - 1.2% 1.2% 2.3% 3.4% 
No-Touting - 24.6% 25.5% 25.5% 26.3% 27.1% 

Computational time 0.03 0.47 0.52 0.53 1.25 1.32 

Driver 2 Total distance 46,378 41,494 40,713 40,508 39,459 38,848 
Number of routes 239 207 205 205 205 205 
Capacity utilization 81% 94% 95% 95% 95% 95% 
Average lead time 2.83 5.02 4.78 4.76 4.73 4.65 
# Touted customers - - 73 82 94 112 
# Customer visits 879 879 908 912 913 921 
Distance / litre collected 0.01989 0.01780 0.01740 0.01732 0.01686 0.01659 

Imp. wrt. 
Wait-if-Possible -11.8% - 2.2% 2.7% 5.3% 6.8% 
No-Touting - 10.5% 12.5% 13.0% 15.2% 16.6% 

Computational time 0.02 0.91 1.08 1.13 1.67 1.76 

litre of waste collected, although it has slightly increased and de- 
creased for Driver 1 and 2, respectively, paired t-tests show that 
the differences are not significant. 

Figure 7 illustrates a simulation day in which touting is per- 
formed using Tout using Relevance Measures & Re-Optimize strategy. 
The depot is represented by an orange house and the customer set 
in the current plan involves customers 1–5. The planned route for 
the next day is depicted on the left with a total distance of 94 
miles and 90 0 0 litres of waste collected. Customers 6 and 7, which 
are shown in the right figure, with demands of 1200 and 10 0 0 
litres of waste are found as potential customers. Because their ad- 
dition is feasible in terms of capacity and time, they are touted 
and included in the current plan. As a result, the vehicle could col- 
lect 2200 litres of additional waste with only 4 miles of detour. 
Distance traveled per litre collected has decreased from 0.0104 to 
0.00875. 

Finally, in order to demonstrate that the benefits of touting are 
independent of the algorithm used to solve the routing problem, 
we conduct another set of simulation experiments. Here, we only 
use the construction heuristic to obtain a solution, we do not im- 
prove it by means of LNS. The details of this heuristic are out- 
lined in Algorithm 1 . Similarly, in Tout & Re-Optimize strategies, 
while re-optimizing the solution after considering a touted cus- 
tomer, only the initial solution is constructed, it is not further im- 

proved. Table 5 presents the results for Drivers 1 and 2. The rel- 
ative findings are analogous to those obtained with the more so- 
phisticated heuristic. 

Since these results are obtained by using only the initial solu- 
tion construction heuristic, it is expected that re-optimization re- 
sults in better solutions. Compared to using the LNS heuristic, of 
course, the solution quality is on average 13.3% and 23.6% worse in 
terms of total distance per litre collected for Driver 1 and Driver 
2, respectively. In addition, average lead times are longer in this 
approach, except for the no-touting strategy. This is due to the na- 
ture of the construction heuristic, which tries to fill the next day’s 
vehicle. Since more jobs are scheduled in the first vehicle, the av- 
erage lead time decreases. While the relative performances of dif- 
ferent strategies are similar to that of the heuristic with improve- 
ment component, Tout using Distance per Litre & Re-Optimize strat- 
egy provides a better result compared to the strategies where re- 
optimization is not used. Overall, these results demonstrate that 
touting relevant customers improves the efficiency in the long-run, 
independent of the method to solve the VRP. 

5.4.4. Experiments on additional instances 

As our industrial partner supplied the data of two drivers that 
are discussed above, to further validate the performance of the 
proposed strategies, we conduct additional experiments on in- 
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Table 6 

Results of different strategies for C101 instance. 

Strategies 
Wait- No Re-Optimization Re-Optimization 

No-Touting if-Possible Dist./Lt. Relevance Dist./Lt. Relevance 

Total distance 21,869 16,282 16,246 16,264 16,364 16,133 
Number of routes 224 165 161 161 161 161 
Capacity utilization 67.9% 92.5% 95.7% 95.6% 95.7% 95.9% 
# Touted customers - - 47 49 46 52 

C101 # Customer visits 609 609 633 636 634 637 
Distance / litre collected 1.79440 1.33382 1.32003 1.32044 1.32779 1.30905 

Imp. wrt. 
Wait-if-Possible -34.5% - 1.0% 1.0% 0.5% 1.9% 
No-Touting 0.0% 25.7% 26.4% 26.4% 26.0% 27.0% 

Total distance 21,339 15,542 15,515 15,502 15,598 15,487 
Number of routes 232 172 168 169 168 168 
Capacity utilization 69.8% 94.3% 96.9% 96.7% 97.0% 97.0% 
# Touted customers - - 45 47 42 51 

R101 # Customer visits 789 789 814 815 812 817 
Distance / litre collected 1.65046 1.19930 1.18937 1.18784 1.19503 1.18605 

Imp. wrt. 
Wait-if-Possible -37.6% - 0.8% 1.0% 0.4% 1.1% 
No-Touting 0.0% 27.3% 27.9% 28.0% 27.6% 28.1% 

Total distance 26,492 19,316 19,287 19,186 19,342 19,194 
Number of routes 230 169 165 165 165 165 
Capacity utilization 68.5% 93.4% 96.1% 96.0% 96.1% 96.3% 
# Touted customers - - 39 40 37 45 

RC101 # Customer visits 724 724 747 747 745 750 
Distance / litre collected 2.10621 1.53282 1.51796 1.51068 1.52220 1.50967 

Imp. wrt. 
Wait-if-Possible -37.4% - 1.0% 1.4% 0.7% 1.5% 
No-Touting 0.0% 27.2% 27.9% 28.3% 27.7% 28.3% 

stances we generate based on the well-known VRPTW instances of 
Solomon ( Solomon, 1987 ). We select one instance from each prob- 
lem category, where the customers’ locations are randomly dis- 
tributed across the network (R), or they are clustered (C) or half of 
them is clustered and the other half is randomly distributed (RC), 
specifically we use instances C101, R101, and RC101. As the data is 
designed for a static VRP, we make some additions to adapt it to 
our problem. First, we assume that a customer’s demand value in 
the Solomon instance is the tank capacity of the customer in the 
revised instance for our problem. Then to simulate the random ac- 
cumulation process, we generate mean and variance values based 
on one of the drivers’ data. Using the relationship between the ca- 
pacity and the mean and the variance in that data, we generate the 
mean and variance values in Solomon’s instances. 1 Then we set 
the maximum lead time to 10 days to obtain feasible schedules. 
We apply the simulation process as discussed in Section 5.3 and 
the average results of 100 simulation runs are presented in 
Table 6 

We observe that the results for all three spatial distributions 
are consistent with the ones obtained using the company’s dataset. 
Touting strategies bring substantial improvement relative to the 
No-Touting strategy, and using the relevance measure works better 
than using distance/litre. 

There are also improvements with respect to Wait-if-Possible 

strategy with again Tout & Re-Optimize using Relevance Measures 

bringing the highest improvement. 

6. Conclusion 

We have presented a dynamic multi-period vehicle routing 
problem as faced by a UK waste collection company. It is solved on 
a rolling-horizon with a Large Neighborhood Search to solve each 
individual VRP. The paper introduces the idea to integrate demand 
management into the tour planning via a method called touting . 

1 This dataset is included in the Mendeley Data ( Keskin, Branke, Deineko and 
Strauss, 2023 ). 

Touting consists of contacting a customer expected to order a col- 
lection soon, and nudge them to place their order now. While this 
means smaller amounts are collected and the customers need to be 
visited more frequently, it opens up the opportunity for the com- 
pany to visit a customer when they are nearby anyway, potentially 
reducing the overall distance traveled. 

We have proposed different strategies for touting potential fu- 
ture customers. Using real world data from waste collection indus- 
try, we have shown that touting appropriate future customers on 
relevant days may save a considerable amount of fuel due to de- 
creased total distance traveled per litre of waste collected. Further- 
more, the number of tours required is shown to be smaller if the 
touting strategies are followed, which may provide additional mon- 
etary benefits from the vehicle acquisition costs. Although these 
advantages are shown using a real-world waste collection prob- 
lem, the idea of exploiting knowledge of demand and active man- 
agement of that demand in the form of touting can be applied to 
many routing problems in which customers arrive dynamically, in- 
cluding maintenance routing - as visiting the customers a few days 
before their deadline would not make much difference - and rout- 
ing random and subscribed customers, for example Amazon could 
contact subscribed customers to offer service before the scheduled 
dates if their routes are nearby customers on the tour. 

This research opens up several directions for future research. 
First, in this study, the decisions are made at the end of each 
time period. Future work may attempt to make decisions more dy- 
namically within the day, and the routes of the vehicles may be 
updated according to the new information, i.e., each time a new 

order is received, or when a customer accepts the touting offer. 
This will make not only routing, but also touting dynamic, i.e., 
customers to be touted change according to the new set of cus- 
tomers and the current tour. Second, we have considered a single- 
vehicle routing problem as our industry partner uses fixed service 
regions per driver for operational reasons. While we anticipate that 
results carry over to VRPs with multiple vehicles, this should be 
demonstrated. Third, the most successful strategy for touting was 
the proposed relevance measure that is a linear combination of 
three criteria with equal weighting. Additional criteria such as the 

180 



M. Keskin, J. Branke, V. Deineko et al. European Journal of Operational Research 310 (2023) 168–184 

customer’s own anticipated demand could be integrated, and the 
weighting of the criteria could be more sophisticated. Finally, an- 
other future work may include incentivising customers by offering 
discounts at the time of touting to increase the probability that 
they accept the offer. 
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Appendix A. Mathematical model for the static VRP at each 

time period 

Here, we present the mathematical formulation for the routing 
subproblem on a day within the planning horizon. H = { 1 , 2 , . . . l} 
stands for the planning horizon for the day the problem is solved 
and is a subset of the whole horizon. Let C = { 1 , . . . , n } be the set 
of known customers, which have not yet been serviced at the be- 
ginning of the planning day. A depot is located at vertex 0. d i j and 
t i j stand for the distance and travel time between vertices i and j. 
The vehicle has a load capacity L . Let the amount of goods to be 
collected from customer i , the due date of the order, and the time 
spent while collecting the goods at the customer site be q i , d i , and 
s i respectively. Hence, the last period in the planning horizon, l, 
is determined by the latest due date of the customers. Each day 
t ∈ H has a time limit, i.e., the vehicle should be back at the depot 
before T t max . Furthermore, there is a limit T max on the total time 
spent over the planning horizon, e.g., weekly working time limit 
according to the hours of service regulations. The decision variable 
x i jt is 1 if and only if arc (i, j) is traversed on day t . u i jt and τt 
track the tank load of the vehicle upon traversing arc (i, j) , and 
total time spent on day t , respectively. The mathematical model is 
formulated as follows: 

minimize 
∑ 

t∈ H 

∑ 

i, j∈ C 

d i j x i jt (A.1) 

subject to 

∑ 

j∈ C 

d i 
∑ 

t=1 

x i jt = 1 i ∈ C (A.2) 

∑ 

j∈ C 

x i jt = 

∑ 

j∈ C 

x jit i ∈ C, t ∈ { 1 . . . d i } (A.3) 

∑ 

j∈ C 

u i jt −
∑ 

j∈ C 

u jit = q i 
∑ 

j∈ C 

x i jt i ∈ C, t ∈ { 1 . . . d i } (A.4) 

u i jt ≤ Lx i jt i, j ∈ C, t ∈ H (A.5) 

∑ 

j∈ C 

u j0 t −
∑ 

j∈ C 

u 0 jt = 

∑ 

i, j∈ C 

q i x i jt t ∈ H (A.6) 

∑ 

i, j∈ C 

(t i j + s i ) x i jt ≤ τt t ∈ H (A.7) 

τt ≤ T t max t ∈ H (A.8) 

∑ 

t∈ H 

τt ≤ T max (A.9) 

x i jt ∈ { 0 , 1 } i, j ∈ C, t ∈ H (A.10) 

u i jt , τt ≥ 0 i, j ∈ C, t ∈ H (A.11) 

The objective function, (A.1) minimizes the total distance trav- 
eled over the remaining planning periods. Constraints (A.2) ensure 
that each customer is serviced in one of the periods until their 
due date, whereas Constraints (A.3) establish the flow conserva- 
tion. Constraints (A.4) - (A.6) track the load of the vehicle and en- 
sure that the tank capacity is not exceeded. Constraints (A.7) cal- 
culate arrival time at the depot after completion of the route and 
Constraints (A.8) make sure that it does not exceed the time limit 
in each period. Total time limit over all periods is satisfied by Con- 
straint (A.9). Finally, (A.10) - (A.11) define domains of the decision 
variables. 

Appendix B. Framework for solving the vehicle routing 

problem 

In this appendix, the details of the algorithm, which we use 
to solve the multi-period vehicle routing problem throughout the 
simulation, are presented in Algorithm 2 , where x stands for a so- 

Algorithm 2 An LNS Framework to Solve Multi-Period VRP. 

1: Construct an initial solution, x init 
2: x best , x pre v ious ← x init 
3: while iter ≤ maximum number of iterations do 

4: Select a removal rule randomly 
5: Determine q % of the scheduled customers according to the 

removal rule 
6: Remove the determined customers from the current solution 
7: Select an insertion rule randomly 
8: Insert the removed customers into the solution according to 

the insertion rule, obtain a new solution, x current 
9: if f (x current ) < f (x pre v ious ) then 

10: x pre v ious ← x current 
11: end if 

12: if f (x current ) < f (x best ) then 

13: x best ← x current 
14: end if 

15: end while 

lution, which is a set of routes belonging to different time periods 
and executed by the same vehicle, while f (x ) stands for the total 
length of the routes in solution x . x current , x pre v ious , and x best corre- 
spond to the solution obtained in the current iteration, the incum- 
bent solution the algorithm has had in the previous iteration, and 
the overall best solution found until that iteration, respectively. 

Appendix C. Comparison of solutions on a rolling horizon 

This appendix illustrates the fact that for the problems where 
the customers arrive dynamically over time, the optimal solution 
obtained using the customers known on one day may not be nec- 
essarily optimal when applied on a rolling horizon. Let us consider 
the example in Fig. 2 without customer 4 to make the calculations 
simpler. On the first day, customers 1, 2, 3, and 5 are known, and 
they are optimally served as in Fig. C.8 -a. Total distance of this tour 
is 19.12, which is calculated assuming unit length for each arc and 
Euclidean distances. Then the next day three more customers ar- 
rive and are served as shown in Fig. C.8 -b. Total distance of this 
tour is 16.45. On the contrary, if only 3 customers are served on 
the first day as shown in Fig. C.8 -c, and one of them is left to the 
following day, then the total distances traveled on these two days 
would become 12.80 and 16.53, respectively, which decreases the 
total distance of two days’ tours from 35.57 to 29.33. 
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Fig. C.8. Illustration of different solutions on a rolling horizon setting. 

Appendix D. Markov decision process representation 

This appendix provides a dynamic programming formulation of 
the problem. To that end, let us define the state, decisions, rewards, 
exogenous information and the state transitions of the Markov De- 
cision Process that underpins our problem. With this terminology, 
we then can formally state its dynamic programming formulation. 

D1. Stages, states and decisions 

We consider a finite planning horizon with a discrete time grid 
of decision epochs (stages). Let us assume that the customer ar- 
rivals occur within the day exogenously and this random infor- 
mation regarding demand collected over the day becomes avail- 
able at the end of the day. Let us further assume that touting 
takes place in the next m epochs after the customer arrivals are 
complete. Then the decision space consists of decision epochs k ∈ 

{ e 1 1 , e 
1 
2 , . . . , e 

1 
m , e 

1 
m +1 , e 

2 
1 , e 

2 
2 , . . . , e 

2 
m , e 

2 
m +1 , . . . , K} , where e a 

b 
is the b th 

decision epoch to determine which customer to tout on day a , and 

finally there is a decision epoch to decide the tours after there are 
no further customers to tout. On the first day, we observe demand 
that has arrived over the day in one batch at the beginning of pe- 
riod e 1 1 , and proceed on this basis with sequential touting deci- 
sions. The next m epochs represent the time interval over which 
touting decisions are being made and we observe the customers’ 
responses to them; and the routing decision takes place in the last 
epoch, e 1 

m +1 . Therefore, we decide whether to tout a customer (and 
if so, whom – expressed by a decision variable x t 

k 
), and then ob- 

serve whether the touted customer responds positively to the of- 
fer. At the respective last epoch e a 

m +1 , for each day a , we observe 
no further new information but schedule customers to be served 
on the next day based on all requests (including touted ones) re- 
ceived to date, expressed by a decision vector x r 

k 
. 

At stage k , the system is in a state S k = 

(R k = (q c 
k 
, d c 

k 
, h c 

k 
) c∈ C , T a (k ) ) , where C stands for the set of cus- 

tomers. The array R k contains all yet unscheduled customer 
requests, consisting of q c 

k 
as the requested quantity to be collected 

from customer c, with q c 
k 

> 0 if there is an outstanding order, and 
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0 otherwise. Next, d c 
k 
corresponds to the deadline of the collection 

request if the order is outstanding, or has no meaning if q c 
k 

= 0 . 
Note that this notation allows us to also handle the case where 
orders remain unfulfilled beyond their deadline. The array h c 

k 
represents customer c’s collection history, consisting of collection 
dates and collection amounts, which we use to predict the fill level 
at each customer and subsequently decide whether a customer 
would be touted or not. Recall that we assume a finite and known 
customer population C; thus their locations are not changing 
from one state to another and we do not need to explicitly carry 
the locations of the customers in the state variable. Finally, T a (k ) 
represents the set of touted customers on the corresponding day 
a (k ) to which period k belongs, up until period k . We need to 
keep track of touted customers to prevent contacting them again. 
Of course, this information is also added to the history arrays 
h , but separating out which customers have been touted already 
makes the model easier to read. 

D2. Rewards, exogenous information and state transitions 

Our overall objective is to minimize the expected routing cost 
across all days in the planning horizon. Routing costs are incurred 
only at the end-of-day stages k ∈ E = { e a 

m +1 : a ∈ A } , where A is 
the set of all days in the planning horizon. These costs, denoted 
by f (S k , x 

r 
k 
) , pertain to the final schedule for the next day given 

requests in state S k and routing decision x 
r 
k 
. During the day we 

only collect orders and this exogenous information becomes avail- 
able at the beginning of each day in period e a 1 of day a in the 
form of an array R new 

k 
that contains quantities and deadlines of 

all new requests. We assume that the underpinning distribution 
is known such that the expectation over R new 

k 
is well-defined. For 

the first decision epoch k = e a 1 of day a , we start in state S k = 

(R k −1 ∪ R new 
k 

, T a = ∅ ) . 
Subsequently, in each decision epoch e a 

i 
, i ∈ { 2 , . . . , m } , we de- 

cide on which customer to tout (if any), and then observe whether 
the touted customer will accept the offer as well as what quan- 
tity to be collected. If customer c accepts the touting offer, then 
its information is added to the state as R c 

k 
= (q c 

k 
, d c 

k 
) ; otherwise, if 

customer c does not accept or if we do not tout in the first place, 
then R c 

k 
= ∅ for all c ∈ C. The set of customers touted so far, T a , is 

expanded such that it includes customer c and this new demand 
information is added to the request history of customer c, h c . We 
assume that a touted request must always be scheduled for the 
next day. Therefore, for the touted customers who have accepted 
collection, d c 

k 
is set to the next day. The state transition is written 

as R k +1 = R k ∪ R c 
k 
. 

At the end of a day ( k ∈ E), we schedule to serve certain cus- 
tomer requests for the next day, which then are removed from the 
pool of orders to be served by setting the corresponding indicator 
q c 
k 

= 0 , for all scheduled customers c ∈ C, and by adding the col- 
lection information to the corresponding collection history h c . As- 
suming R (c k ) denotes the customers scheduled for the next day, 
we use the shorthand notation R k +1 = R k \ R (c k ) to represent this 
transition. 

D3. Dynamic programming formulation 

With this notation, we now can express the problem as a dy- 
namic program. Let V k (S k ) be the value function at stage k and 
state S k ; more specifically, it is the minimal expected cost from 

stage k until the end of the time horizon K and is given by: 

V k (S k ) = 

⎧ 

⎪ 
⎨ 

⎪ 
⎩ 

E R new 
k 

[

V k +1 (R k ∪ R new 
k 

, T a = ∅ ) 
]

k = e a 1 ∀ a ∈ A, 

min c∈ C\{ c ′ ∈ C: q c ′ > 0 }\ T a ∪{ 0 } 

E R c 
k 

[

V k +1 (R k ∪ R c 
k 
, T a ∪ { c} ) 

]

k∈{ e a 2 , . . . , e 
a 
m } ∀ a ∈ A, 

min x r 
k 
f (S k , x 

r 
k 
) + V k +1 (S k \ S(x 

r 
k 
)) ∀ k ∈ E. 

which is a combination of different cases depending on the type 
of the state. The first case corresponds to the initial states at the 
end of a day, after the customer arrivals are complete and the in- 
formation on these new customers is available. The second case 
is for the states where touting is performed, i.e., the customers to 
tout are determined and their responses to the touting offers are 
observed. The minimization is over the touted customers, however 
it also includes the case in which we do not tout any customers, 
which is represented by 0. Finally, the last case stands for the last 
states of a day, in which the routing decision is taken based on 
the available information on unscheduled customers, and routing 
costs based on the function f (S k , x 

r 
k 
) are incurred. The boundary 

condition is given by V K+1 (S k ) = 0 for all states S k (since we sim- 
ply assume that there are no further orders coming in on the final 
day in the planning horizon). 

Clearly, this dynamic program is intractable due to its large 
state space and the fact that it involves vehicle routing problems 
in each stage k ∈ E. Therefore, in Section 4 , we present a heuristic 
approach for tackling this problem. This heuristic approach con- 
structs routes for currently known customers, then uses different 
ways to decide which (if any) customer to tout. In the Markov 
decision model, routing decisions are made only in the final pe- 
riods k ∈ E since it is not possible to calculate the value function 
of the DP formulation in reasonable time for realistic instances of 
the problem, whereas in our heuristic we progressively add touted 
customers to the routes. 
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