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Abstract
There is a growing urgency and global demand to address Artificial Intelligence (AI) safety. But swift and
sustained progress is unlikely to emerge without a shared understanding of what it means for the use of AI
to be safe. This paper advances a comprehensive definition of AI safety, followed by an exploration of the
fundamental concepts that underpin this definition. The aim is to contribute to a meaningful and inclusive
discussion and further the public discourse on AI safety.
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Introduction
Artificial Intelligence (AI) is here to stay. The technology now supports everyday activities, from routine
tasks such as driving, to specialised decisions such as clinical diagnosis. The domains where the impact of
AI could be most beneficial, including transport, health and social care, are safety critical. In these
domains, AI failures can have significant consequences, causing physical, psychological, and social harm. A
fundamental concern therefore arises: What does it mean for AI to be safe? The somewhat vague but
commonly provided response is, 'it depends’, for example on where and how the technology is used and
how it is developed. This paper proposes a well-rounded definition of AI safety. It then explores key
concepts that influence its meaning. The aim is to inform the cross-disciplinary debate and advance the
safety argument about AI1 [1].

Defining AI Safety

The definition of AI safety put forward in this paper is as follows:

Freedom from unacceptable risk of harm caused by the use of AI

Here, safety is characterised as a negative condition where freedom from harm is the focus. In contrast, a
more constructive and affirmative description, emphasising the existence of protective capabilities, can be
articulated as follows:

Protection from unacceptable risk of harm caused by the use of AI

These definitions are interwoven. In the latter definition, the protective capability, often achieved through
constant technological and social adjustments to changing and uncertain contexts, is intended to produce
the freedom from unacceptable risk as outlined in the former definition.

1 Which could reveal that AI may be unsafe to deploy in particular contexts and why.
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Explaining AI Safety

Each key concept is next explained individually, acknowledging any interrelated aspects of these concepts
as needed. For a visual summary of this discussion, please refer to Figure 1.

AI, according to the National Institute of Standards and Technology, is defined as the "capability of a device
to perform functions that are normally associated with human intelligence such as reasoning, learning, and
self-improvement" [2]. The dominant AI technique driving most current AI-enabled capabilities is Deep
Learning (DL). In its simplest form, DL is a neural network with multiple connected layers, trained on large
datasets. Two characteristics of AI, and specifically DL, present significant challenges to existing safety
practices: the under-specificity of the function and the opacity of the model. Under-specificity refers to the
gap between, on one hand, the underlying human intentions for deploying AI and, on the other, the
specific, tangible specifications used to develop the technology [3]. Under-specificity hinders domain
specialists, engineers and regulators in their efforts to establish and evaluate concrete safety requirements
against which AI functions can be developed and tested. This challenge is exacerbated by the
overwhelming focus in the literature on overall AI performance, overlooking nuances and context, e.g.
treating historic, and out-of-context, clinician performance as a primary benchmark for clinical AI systems,
which may not be appropriate for new or unforeseen situations [4]. The second challenge is opacity [5].
The inability to understand how AI arrives at its outputs makes traceability and accountability
challenging. It weakens our capacity to "explain" and "deal with the consequences" of AI functions [6].
Under-specificity and opacity pose challenges to assuring the safety of both narrow2 and general-purpose3

AI models.

Figure 1: A visual exploration of the AI definition, with a machine learning failure triggering a complex chain of events leading to
harm (simplified here), countered by protective technical, human and social lines of defence

3 Also known as ‘ Frontier AI’: “It refers to highly capable general-purpose AI models, most often foundation models, that can perform a wide variety
of tasks and match or exceed the capabilities present in today’s most advanced models. It can then enable narrow use cases” [7].

2 “Narrow artificial intelligence (narrow AI) is AI that is designed to perform a specific task. It is a specific type of artificial intelligence in which a
learning algorithm is designed to perform a single task or narrow set of tasks, and any knowledge gained from performing the task will not
automatically be applicable or transferable” [7].
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Use considers the algorithm in its intended technological, physical and social context. Safety, as a whole
system property, is inherently sensitive to its context. The notion of AI context is varied, and encompasses
how AI interacts with (1) other software components, e.g. cloud computing services, (2) hardware devices,
e.g. CT scanners or lidars (3) the broader physical environment, e.g. communication between self-driving
cars and the road infrastructure, (4) humans, e.g. capacity of doctors to detect bias in AI-based diagnosis
systems and (5) the socio-political context in which AI is deployed, e.g. overreliance on technology to
compensate for staff shortages. Despite the expectation that AI functions are adaptive, and deliver
contextually-meaningful experiences, the technology often exhibits brittleness [8]. AI is particularly
susceptible to being ‘fooled’ or ‘confused’ by small and irrelevant environmental factors, such as stickers on
stop signs [9]. Interestingly, while we often focus on external context, for AI, context extends not just
outward but also inward. AI predictions and recommendations are inseparable from the contextual biases
and stereotypical associations encoded in the training and test data [10]. The robustness of AI safety
evidence is challenged by the multiple facets of this contextual complexity. This often weakens the validity
of such evidence in constantly changing environments, e.g. in urban driving or patient-centric healthcare
delivery. An in-depth understanding of AI and its context is a prerequisite for considering the subsequent
safety concepts.

Causation should be interpreted in a broad socio-technical sense, considering the complex web of social
and technological influences that AI produces. The impact can be direct, as seen in end-to-end machine
learning for driverless cars, when AI functions autonomously control the vehicle sensors and actuators, or
indirect, such as in AI-based clinical decision support systems, where clinicians are expected to make the
final decisions. Causation also requires an understanding of the entire AI supply chain: causation can stem
from upstream data collection practices to downstream user interactions and societal influences. The
opacity of AI, and the interactive complexity within its wide context, make it difficult to model and trace
exact causes and effects. This in turn challenges our ability to proactively mitigate risk and reactively hold
people accountable for actual harms caused by AI. Anticipating AI's potential consequences
(forward-looking causation) and explaining how it actually arrived at those outcomes (backward-looking
causation) is essential for an proactive, transparent and accountable AI safety culture.

Harm in system safety is traditionally defined against physical damage. Typically, the focus is on damage
to human physical health. This is followed by damage to property, with, more recently, the inclusion of
damage to psychological well-being and to the environment. These remain key when considering AI safety.
However, the discussion around AI safety seems to favour an ‘expansive’ scope of harm [11] which
stretches to discrimination, bias, misinformation, privacy violation and threats to democratic institutions,
amongst other moral, political, social and financial harms. These kinds of harm are significant and
concerning. They should be systematically addressed and mitigated in an integrated manner (e.g. avoiding
safety measures that unjustifiably constrain personal freedom or entrench existing inequalities). Another
important factor in system safety is intent: was harm intended, and if so, by whom? Was it justified? If
harm is unintended, its occurrence is treated as a safety accident or incident. If harm is intended and this
harm was caused maliciously, it is treated as a security event. Healthcare presents intriguing cases in this
respect. Physical harm in surgery is often intended, for example making a precise incision, but may be
justified, given the anticipated clinical benefit. As such, AI safety needs to be both expansive and specific.
On the one hand, it should consider diverse kinds of harm, from social bias to physical accidents. This
makes it an inclusive concept that everyone can contribute to. On the other hand, AI safety also needs to
build on established methods from safety-critical domains. These specialist methods help us control both
physical and psychological harm caused by AI.
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Risk is the ‘idea of a possibility of danger’ [12]. Technically, risk is the product of likelihood and severity of
harm. However, risk is not an objective truth to be discovered and calculated. It's a social construct
influenced by various uncertainties that are difficult to quantify, like the origin and quality of the data used
to train AI or how users might actually interact with the tool. The notion of risk is central because
complete avoidance of harm is rarely feasible. In risk analysis, harm is considered in relation to a
particular context. Further, risk determination is typically framed by how harm could be caused “in a
stipulated way by the hazard” [13], e.g. a hazard could be: misclassifying a ‘slow down’ traffic sign in foggy
conditions. For narrow AI, hazard-based risk analysis is feasible though challenging. If AI's intended
purpose is unclear or underspecified (e.g., classifying traffic signs in all weather conditions) and the AI
model is opaque, it is hard to predict how likely it is to cause harm through its hazardous outputs.
However, these concerns are significantly more complex for general-purpose AI, since the technology is
often presented as context-independent (i.e. specifying a well-specified purpose/context for this type of AI
is often deliberately avoided by the AI developers). Even when context is identified for a specific use case,
deployers of a general-purpose AI often lack access to the AI model and its vast training and testing
datasets to allow them to accurately assess the likelihood of harm.

Unacceptable risk to whom and given what else are two factors that need to be assessed as fundamental
inputs into the AI risk decision-making process. Risk acceptability, and the lack of it, is a complex social
notion not a technical one. To this end, risk decision-making needs to be participatory and transparent.
Affected stakeholders, or their trusted representatives, e.g. regulators, need to be meaningfully involved in
how the use of AI could present them, and others in society, with potential benefits and risks. The variety
of risk communicated should be comprehensive, covering physical, psychological, moral and legal ones,
amongst others, to allow the affected stakeholders to understand and consider any necessary tradeoffs.
This will enable an open and reflective dialogue about the distribution of benefits and risks from the use of
an AI system and whether it is equitable across all affected stakeholders [14].

Freedom from unacceptable risk is rarely, if ever, a certainty. Rather, it is communicated with a degree of
confidence. Confidence is determined given the effectiveness of the protection or control measures
deployed, acknowledged uncertainties and underlying assumptions. For AI, epistemic uncertainty is
particularly significant. It represents deficits in our knowledge about the AI implementation and outputs,
and the impact the technology may have on its environment. In safety, confidence may be effectively
communicated using safety cases [15]. The explicit and structured arguments in safety cases provide a
means for justifying and evaluating confidence about the absence of unacceptable risk. An AI safety case
can help facilitate the scrutiny of the otherwise implicit reasoning, the interrogation of sufficiency of the
evidence, and whether assumptions hold true (for whom and under what conditions). This, in turn, helps
foster transparency throughout the entire AI lifecycle.

Basic Ingredients for Authentic AI Safety
Just as a surgical checklist is not a complete guide for training competent surgeons, the definition of AI
safety above is not an exhaustive tutorial on a rapidly emerging field. Its aim is to ensure that established
safety concepts do not get lost in the hype surrounding AI, a field dominated by both a deliberate
downplaying of real and pressing safety concerns and an unhealthy fixation on existential threats. These
core concepts are essential ingredients for building a responsible safety mindset, replacing the current
sci-fi hubris with a pluralistic basis that upholds an equitable right to safety for all.
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